+ All Categories
Home > Documents > ENGI5312-MechanicsofSolidsII-ClassNotes03

ENGI5312-MechanicsofSolidsII-ClassNotes03

Date post: 01-Jun-2018
Category:
Upload: kkhalid-yousaf
View: 217 times
Download: 0 times
Share this document with a friend

of 27

Transcript
  • 8/9/2019 ENGI5312-MechanicsofSolidsII-ClassNotes03

    1/27

    Chapter 7 Energy Methods(Chapter 14)

    1. Internal Strain Energy Stored and External Work done

    2. Conservation o Energy

    !. I"pa#t $oading

    4. %rin#iple o &irt'al Work 

    . Castiglianos *heore"

    External Work done

    +'e to an ,xial $oad on a -ar

    Consider a bar, of length L and cross-sectional area A, to be subjected to an end

    axial load P. Let the deformation of end B be ∆1. When the bar is deformed by axial load,

    it tends to store energy internally throughout its olume. !he externally a""lied load P,

    acting on the bar, does #or$ on the bar de"endent on the dis"lacement ∆1 at its end B,

    #here the load is a""lied. Let this external #or$ done by the load be designated as ue.

    %ra#ing the force-deformation diagram of the bar, as it is loaded by P.

    1

    ∆1

    P

    A

    B

    &nd dis"lacement

    A""lied force P

    P

    '

    d∆

    ∆1

  • 8/9/2019 ENGI5312-MechanicsofSolidsII-ClassNotes03

    2/27

    ∫ ∆

    =∆= 1(

    done#or$&xternal Fd ue

    )ince the force ersus the end dis"lacement relationshi" is linear, ' at any dis"lacement∆

    can be re"resented by

    ' * $ ∆, #here $ * a constant of "ro"ortionality

    11

    +

    1

    (( (

    +

    $ Psince,+++

    1

    1 1

    ∆=∆

    =∆

    =   

      

       ∆=∆∆=∆=

    ∆∆ ∆

    ∫ ∫   P k k 

    d k  Fd ue A

    !he external #or$ done on the bar by P increases from ero to the maximum as the load P

    increases from ( to P in a linear manner. !herefore the total #or$ done can be

    re"resented by the aerage magnitude of externally a""lied force i., P/+, multi"lied

     by the total dis"lacement ∆1 as gien by e0uation A.

    Let an additional load P′ be a""lied to the bar after the load P has caused an end

    extension of ∆1 at B. Considering the deformation of the end B of the bar due to the

    a""lication of an additional load P′ at B, let the additional deformation of the bar be e0ual

    to ∆′.

    +

    ∆1P

    A

    B

    &nd dis"lacement

    A""lied force

    '

    ∆1

    L

    P′

    ∆′

    P′

    P

    2

    3

    Area * P∆′

    Area * 4 P′∆′

    Area * P′∆1

    &

    C %

    5

    6

  • 8/9/2019 ENGI5312-MechanicsofSolidsII-ClassNotes03

    3/27

    !he total external #or$ done

    +

    11   ∆′+∆′+=   P  P ue  

    ∆′′+∆′+∆′+∆=   P  P  P  P +

    1

    +

    1

    +

    1

    +

    111

    Considering ∆) 6&' and 6&%, Area of 'igure 23' * Area of 'igure C%52

    i.e., ∆′=∆′   P  P  1  

    ∆′′+∆′+∆=

    ∆′′+∆′+∆′+∆=

    ∆′′+∆′+∆′+∆=∴

     P  P  P 

     P  P  P  P 

     P  P  P  P ue

    +

    1

    +

    +

    1

    +

    1

    +

    +

    1

    +

    1

    +

    1

    1

    1

    11

    2ence #hen a bar haing a load P acting on it is subjected to an additional load P ′, then

    the #or$ done by the already acting P due to the incremental deformation ∆′ caused by

    P′ is e0ual to P∆′. !his is similar, to a suddenly a""lied load P creating an instantaneous

    deformation ∆, "roducing an external #or$ of P∆′.

    7

    3ncremental #or$ 

    done on the bar#hen load P #as

    a""lied at B,

    initially

    3ncremental #or$ done

    on the bar if the load P′ is

    a""lied to the bar

    resulting in a

    dis"lacement ∆′ 

    Additional #or$

    done by P as the bar deforms by

    an additional ∆′

    Area * 4 P∆1

    ∆′

  • 8/9/2019 ENGI5312-MechanicsofSolidsII-ClassNotes03

    4/27

    Work done d'e to an end "o"ent

    Let a moment 8 be a""lied to end B of the beam AB. Let the rotation at end B be θ1 due

    to 8. )ince 8 and θ gradually increase from ero to θ1 follo#ing earlier formulations for 

    an axially loaded bar,

    11

    (

    +

    #or$external1

    θ 

    θ θ 

     M 

     Md U e

    =

    == ∫ 

     999999999999999999999999999999999999999999999999999999999999999999999999 

    Work done d'e to the externally applied tor'e *1

    :

    θ

    81A

    B

    θθ1

    81

    8oment

    !1

  • 8/9/2019 ENGI5312-MechanicsofSolidsII-ClassNotes03

    5/27

    11

    (

    +

    1

    φ 

    φ φ 

    Td ue

    =

    = ∫ 

    Internal Energy Stored (or Internal Work +one)

    +'e to an end axial or#e

    !he internal strain energy stored in the material is de"endent on the amount of stresses

    and strains created #ithin the olume of the structure.

    ;

    φ1   φ

    !1

    !or0ue

    dxdy

    d

    σ

    σ

    P

    <

    # is thedis"lacement

    d

    dy

    dx

    σ

    σ

    y

    x

    σ

    ε

    )tress

    )train

    Com"lementary

    strain energy

    )train

    energy

  • 8/9/2019 ENGI5312-MechanicsofSolidsII-ClassNotes03

    6/27

    !he internal strain energy =i stored #ithin the body is gien by

    ∫ ∫    ×== moed-distanceelement->onforceaerage?ii   duU 

    ( )

     E dV  E 

    dv

    dxdydz 

    d dxdy

     z 

     z 

     z  z 

     z  z 

     z  z  z 

    σ 

    ε 

    σ 

    ε σ 

    ε σ 

    ε σ 

    ==

    =

    =

       

      =

    ∫ 

    ∫ 

    ∫ 

    ∫ 

    .

    +

     since ++

    1

    +

    1

    -+

    1

    +

    1

    dz dw

    dz 

    dw

     z 

     z 

    ε 

    ε 

    =

    =

    +'e to Shear Stresses and Strains

    ( )

    ∫ ∫    

     

      

     ==   dz dydxduU   zy zyii   γ  τ +

    1

    ?'orce on other faces do not do any #or$ since motion of face ABC% is ero>

    @

    Aerage force on

    to" face, i.e.,

    &'2

    distance moed

    d

    dy

    dx

    y

    x

    % C

    BA

    2

    '&

    τy

    τyγ y

    γ yd

  • 8/9/2019 ENGI5312-MechanicsofSolidsII-ClassNotes03

    7/27

    GdvG

    dv

    dxdydz 

     xy

    v

     xy

    v

     zy xy

     zy xy

    τ 

    γ  

    τ 

    γ  τ 

    γ  τ 

    ==

    =

    =

    ∫ 

    ∫ 

    ∫ 

    xy

    +

     since +

    1

    +

    1

    +

    1

    +'e to a /ending "o"ent

    ∫ ∫ 

    ∫ ∫ 

    ∫ ∫ 

    ==

    =

       

      

    ==

     L

     A

    V v

    i

     EI 

    dx M dx EI 

     I  M 

    dA ydx EI 

     M 

    dxdydz  E 

     I 

     My

    dV  E 

    (

    +L

    (

    +

    +

    L

    (

    +

    +

    +

    +

    +

    ++ 

    ++

    σ 

    3 - can be constant or arying

    +'e to an axial or#e

    ∫ ∫ 

       

      

    ==V 

    i   dV  E 

     A

     N 

    dV  E U  ++

    +

    +σ 

    x y

    88

     D

     D

  • 8/9/2019 ENGI5312-MechanicsofSolidsII-ClassNotes03

    8/27

     L

    +

    +

     +

    +

    -,

    +

    +

    +

    +

    ∫ =∫ ∫ =

     AE 

    dx N  

    V L E  A

     Adx N  

     E  A

    dV   N  

    +'e to a transverse shear or#e

    section-crossof sha"eonde"endingesshear ari)ince 

    shear.forfactorformf   #here,+

     

    +3

    +

    1

    +

    s

    L

    (

    +

    L

    (+

    +

    +

    +

    +

    +L

    (

    +

    +

    ++

    ==

       

     

     

     =

       

      

     =

       

      ==

    ∫ ∫ ∫ 

    ∫ ∫ 

    ∫ ∫ 

    GA

    dxV   f  

    dxdAt 

    Q

     I 

     A

    GA

    dxdAt 

    Q

    dAdx It 

    VQ

    GdV 

    GU 

     s

     A

     A

    V V 

    i

    τ 

    ?)ee "ages 11 and 1+ for additional details concerning the form factor f s>

    +'e to a torsional "o"ent

    F

    E

    x

    y

    L

    !

    !

  • 8/9/2019 ENGI5312-MechanicsofSolidsII-ClassNotes03

    9/27

    ( )

    ∫ ∫ 

    ∫ ∫ 

    ∫ ∫ 

    ==

    =

       

      ==

    L

    (

    +

    +

    +

    L

    (

    +

    +

    +

    +

    ++ 

    +

    1

    +

    dxGJ 

    T dxGJ 

     J T 

    dxdAGJ 

    dV  J 

    GdV 

    GU 

    V V 

    i

     ρ 

     ρ τ 

    +'e to *hree di"ensional Stresses and Strains

    M'lti0axial Stresses !he "reious deelo"ment may be ex"anded to determine the

    strain energy in a body #hen it is subjected to a general state of stress, 'igure sho#n

    aboe. !he strain energies associated #ith each of the normal and shear stress

    com"onents can be obtained from &0s. 3 and 33. )ince energy is a scalar, the strain energy

    in the body is therefore

    ∫   

    +++++= V   xz  xz  yz  yz  xy xy z  z  y y x xiU    γ  τ γ  τ γ  τ ε σ ε σ ε σ  +1

    +

    1

    +

    1

    +

    1

    +

    1

    +

    1

      3

    !he strains can be eliminated by using the generalied form of 2oo$Gs la# gien by

    &0uations gien in Cha"ter 1(. After substituting and combining terms, #e hae

    H

    σx

    σy

    σ

    τxy

    τx

    τy

    τyx

    σ1

    σ7

    σ+

    'ig. 1:-;

  • 8/9/2019 ENGI5312-MechanicsofSolidsII-ClassNotes03

    10/27

    ( )   ( )   ( )∫   

    +++++−++=

     xz  yz  xy z  x z  y y x z  x xi   dV G E  E 

    U    ++++++

    +

    1

    +

    1τ τ τ σ σ σ σ σ σ 

    ν σ σ σ   

    33

    #here,

    ( )[ ]

    ( )[ ]

    ( )[ ]

    ( )

    1+

    1

    1

    1

    ν 

    τ γ  γ  

    τ γ  

    τ γ  

    σ σ ν σ ε 

    σ σ ν σ ε 

    σ σ ν σ ε 

    +=

    ==

    =

    =

    +−=

    +−=

    +−=

     E G

    G

    G

    G

     E 

     E 

     E 

     xz 

     zx xz 

     yz  yz 

     xy

     xy

     y x z  z 

     x z  y y

     z  y x x

    3f only the "rinci"al stresses 7+1 ,,   σ σ σ   act on the element, as sho#n in the earlier figure,

    this e0uation reduces to a sim"ler form, namely,

    ( )   ( )   dV  E  E 

    U V 

    i   ∫   

    ++−++=

      717++1

    +

    7

    +

    +

    +

    1

    +

    1σ σ σ σ σ σ 

    ν σ σ σ    1: I1:

    Jecall that #e used this e0uation in )ec. 1(. as a basis for deelo"ing the maximum-

    distortion-energy theory.

     999999999999999999999999999999999999999999999999999999999999999999999999 

    sing the prin#iple o #onservation o energy

    Internal strain energy stored in the str'#t're d'e to the applied load 3

    External ork done /y the applied load.

    1(

  • 8/9/2019 ENGI5312-MechanicsofSolidsII-ClassNotes03

    11/27

     5555555555555555555555555555555555555555555555555555555555555 

    ,ppendix to Ee#t o *ransverse Shear 6or#es

    ∫ ∫   

    =

     L

     A

    r    dxdA yt 

     y xQ

     x I  xG

     xV U 

    (

    +

    +

    +

    +

    ,

    +

    11

    !o sim"lify this ex"ression for =r  , let us define a ne# cross-sectional "ro"erties f s, called

    the form factor for shear. Let

    dA yt 

     y xQ

     x I 

     x A x  f  

     A

     s   ∫ ≡ --,

    -

    --

    +

    +

    + +

    !he form factor is a dimensionless number that de"ends only on the sha"e of the cross

    section, so it rarely actually aries #ith x. Combining &0s. 1 and + #e get the follo#ing

    ex"ression for the strain energy d'e to shear in /endingK

    ∫ = L

     sr 

    GA

    dxV   f  

    U (

    +

    +

    1

    7

    !he form factor for shear must be ealuated for each sha"e of cross section. 'or 

    exam"le, for a rectangular cross section of #idth b and height h, the ex"ression

       

     

    −=+

    :

    +

    +

     y

    hb

    Q

    #as obtained in exam"le Problem @.1: Cha"ter @. !herefore, from &0. + #e get

    ;

    @

    :+

    1

    1+

    1

    +

    +/

    +/

    ++

    ++

    7

    =

       

      

     −

       

      

    = ∫ − bdy yhb

    bbh

    bh  f  

    h

    h s :

    11

  • 8/9/2019 ENGI5312-MechanicsofSolidsII-ClassNotes03

    12/27

    !he form factor for other cross-sectional sha"es is determined in a similar manner.

    )eeral of these are listed in !able A, gien belo#. !he a""roximation for an 3-section or 

     box section is based on assuming that the shear force is uniformly distributed oer the

    de"th of the #ebs.

    *a/le , 6or" 6a#tor  s or shear

    )ection   f   s

    Jectangle @/;

    Circle 1(/H

    !hin tube +

    3-section or box section   ≈A/A#eb

    I"pa#t %ro/le"s sing Energy Methods

    What are im"act forces

    )uddenly a""lied forces that act for a short duration of time

    - Collision of an automobile #ith a guard rail

    - Collision of a "ile hammer #ith the "ile

    - %ro""ing of a #eight on to a floor 

    1+

    W

    h

    δ

    δst

    δmax

    t

    Plastic im"act

  • 8/9/2019 ENGI5312-MechanicsofSolidsII-ClassNotes03

    13/27

    Loaded member ibrates till e0uilibrium is established.

    ,ss'"ptions

    1. At im"act, all $inetic energy of stri$ing mass is entirely transferred to the structure. 3t

    is transferred as strain energy #ithin the deformable body.

    ++

    +

    1

    +

    1v

     g 

     !vU  i     

     

      

     ==

    !his means that the stri$ing mass should not bounce off the structure and retain

    some of its $inetic energy.

    +. Do energy is lost in the form of heat, sound or "ermanent deformation of the stri$ing

    mass.

    ,xial I"pa#t o an Elasti# od

    i * elocity of im"act

    +

    +

    1

    e  =

    +

    +

    +

    +

    +

    +

    i

    !v

     E 

    V  

     x

    v"# dV  

     E 

     xdV  

    v"#  E 

     x

    i

    =

    =∫ =∫ =

    σ  σ  σ  

    &0uating =i * =e

    17

    m i

    δ

    L

  • 8/9/2019 ENGI5312-MechanicsofSolidsII-ClassNotes03

    14/27

     AL

     E 

    i

    !v

    V"# 

     E 

    i

    !v

     x

    i

    !v

     E 

    V"# 

     x

    ++

    ,

    +

    +

    1

    +

    +

    1

    ==∴

    =

    σ  

    σ  

     EA

     L

    i

    !v

     AL

     E 

    i

    !v

     E 

     L

     x E 

     L

     L

     E 

     x

     E 

     L x

    ++

    ,x

     ,

    ===∴

    ===

    σ  δ  

    δ  

    ε σ  

    δ  

    ε 

    I"pa#t esponse o an elasti# spring

    )tatic deflection of s"ring  st k 

     δ ==

    $ * s"ring constant * load "er unit deformation

    maxδ   * maximum deflection of s"ring due to im"act * δ

    'e * maximum force in s"ring during im"act δ δ    k k    == max

    1:

    W m * W/g

    hEelocity * i just

     before im"actWδmaxδmax

  • 8/9/2019 ENGI5312-MechanicsofSolidsII-ClassNotes03

    15/27

    ( )

    ( )

    -3- +

    11+

    (++.,.

    (++

    (+

    1.,.

    +

    1

    +

    1

    +

    1

    +

    +

    ++

    +

    +±=+±=∴

    =−−

    =−−→=−−

    =×   

      =× 

      

      =+→=

     st 

     st  st  st  st 

     st  st 

    eie

    hh

    hei

    h

     h k ei

    k k  F h U U 

    δ δ δ δ δ δ 

    δ δ δ δ 

    δ δ δ δ 

    δ δ δ δ δ 

    3f #e use the elocity at im"act as a "arameter, just before im"act

    33- +

    +

    1

    +

    1

    +

    ++

     g 

    vh

    v g 

     !vh

    i

    ii

    =∴

    ==

    )ubstituting in &0n. 3,

    ++=

     st 

    i st 

     g 

    v

    δ δ δ 

    +

    11 333

    I"pa#t -ending o a -ea"

    W

    δ δ    ×=+

    =

    i!$%&t 

    ie

     P h 

    U U 

    +

    1-

    'or a central load,

    1;

    δ

    h

  • 8/9/2019 ENGI5312-MechanicsofSolidsII-ClassNotes03

    16/27

    ( )

    7

    +

    7

    7

    7

    L

    +:&3 

    :F+1

    :F

    :F

    δ 

    δ δ 

    δ 

    δ 

    δ 

    =

    ×     ×=+∴

    =∴

    =

     L EI h 

     L

     EI  P 

     EI 

     L P 

    i!$%&t 

    i!$%&t 

    (+:+:

    .,.

    (+:

    77+

    7

    +

    =   

      

     −  

     

      

     −

    =−−

    h EI 

    L

     EI 

    Lei

    h  L

     EI 

    δ δ 

    δ δ 

    Let EI 

    L st 

    :F

    7=δ 

       

      

     +±=

    +±=∴

    =−−∴

     st 

     st  st  st 

     st  st 

    h

    h

    h

    δ δ 

    δ δ δ δ 

    δ δ δ δ 

    +11 

    +

    (++

    st

    +

    +

    !o find the im"act bending stress,

       

      

       

      =

       

      

     ==

     I 

     L&

     I 

    & L P 

     I 

    & M  i!$%&t i!$%&t 

    :L

    :F&3 

    :

    7

    max

    δ 

    σ 

    &irt'al Work Method or +ele#tions (or +eor"ations)

    Wor$-energy method, of e0uating the external #or$ to internal strain energy, has the

    disadantage that normally only the deflection or deformation caused by a single force

    1@

  • 8/9/2019 ENGI5312-MechanicsofSolidsII-ClassNotes03

    17/27

    can be obtained. !he method of irtual #or$ "roides a general "rocedure to determine

    the deflections and slo"es or rotations at any "oint in the structure #hich can be a truss,

    a beam or frame subjected a number of loadings.

    !o deelo" the irtual #or$ method in a general manner, let us consider a body or 

    a structure of arbitrary sha"e later this body #ill be made to re"resent a s"ecific truss,

     beam or frame sho#n in the figure belo#.

    ∆ * %eformation at A, along AB, caused by the loads P1, P+ and P7.

    Let us assume that #e #ant to determine the deflection ∆ of a "oint A, along the line AB,

    caused by a number of actual or real forces P1, P+ and P7 acting on the body, as sho#n in

    'igure b. !o find ∆ at A, along AB, due to the a""lied loads P1, P+ and P7, using the

    irtual #or$ method, the follo#ing "rocedure could be used.

    1

    A

    B1

    u

    u

    P

    6

    L

    unit irtualforce

    3nternal irtualforce

    A

    B

    u

    u

    P

    6

    L

    3nternal irtual

    force

    A

    u

    u

    P

    6

    L

    P1

    P+

    P7

    ∆L

    magnitude * 1

    a Eirtual 'orces

    b Jeal 'orces

    acting on the

     body

  • 8/9/2019 ENGI5312-MechanicsofSolidsII-ClassNotes03

    18/27

    'igure a

    Step 1 Place a irtual force here #e use a unit irtual force on the body at "oint A in

    the same direction AB, along #hich the deflection is to be found. !he term irtual force is

    used to indicate that the force is an imaginary one and does not exist as "art of the real

    forces. !his unit force, ho#eer, causes internal irtual forces throughout the body. A

    ty"ical irtual force acting on a re"resentatie element of the body is sho#n in 'igure

    a.

    'igure b

    Step 2 Dext "lace the real forces, P1, P+ and P7 on the body ?'igure b>. !hese forces

    cause the "oint A to deform by an amount ∆ along the line AB, #hile the re"resentatie

    element, of length L, no# deforms by an amount dL. As these deformations occur #ithin

    the body, the external unit irtual force already acting on the body before P1, P+ and P7

    are a""lied moes through the dis"lacement ∆M similarly the internal irtual force u

    1F

    unit irtual

    force

    A B1

    u

    u

    P

    6

    L

    P1

    P+

    P7

    dL

  • 8/9/2019 ENGI5312-MechanicsofSolidsII-ClassNotes03

    19/27

    acting on the element before P1, P+ and P7 are a""lied moes through the dis"lacement

    dL. !hese forces, moing through dis"lacements ∆ and dL, do #or$.

    Step !  !he external irtual unit force, moing through dis"lacement ∆, "erforms

    external irtual #or$ gien as 1 times ∆, on the body. )imilarly, the internal irtual

    force u, moing through dis"lacement dL, "erforms internal irtual #or$ gien as u

    times dL. )ince the external irtual #or$ is e0ual to the internal irtual #or$ done on all

    elements ma$ing u" the body, #e ex"ress the irtual #or$ e0uation asK

    ∑   ×=∆×   -,1   dLu A

    !he summation sign, in &0n. A, indicates that all the internal irtual #or$ in the #hole

     body must be included. &0n. A gies the deflection ∆ along the line of action of unit

    irtual force. A "ositie alue for ∆ indicates that the deflection is in the same direction as

    the unit force.

    3n #riting do#n &0n. A, one has to remember that the full alues of the irtual

    forces unit force at A, and all the internal forces, u i #ere already acting on the body

    #hen the real forces #ere a""lied i. P1, P+ and P7. !herefore, no one-half a""ears in

    any term of &0n. A.

    3n a similar manner, the rotation or slo"e at a "oint in a body can be determined by

    a""lying a irtual unit moment or cou"le instead of a unit force at the "oint #here the

    rotation is desired see 'igure belo#.

    1H

    Jealdeformations

    Eirtual forces

  • 8/9/2019 ENGI5312-MechanicsofSolidsII-ClassNotes03

    20/27

    (a) &irt'al 'nit "o"ent applied (/) eal or#es %18 %2 and %! applied

    %eelo" irtual force u, #ithin Eirtual unit moment rotates through an

    the body angle θ

    ( ) ( ) ( ) ( )dLu !   ×=×   ∑θ 1 B

    Spe#ii# Str'#t'res

    *r'sses

    (i) S'/9e#ted to applied external loads only

    +(

    A

    B1

    u

    u

    P

    6

    L

    Eirtual unit

    moment

    3nternal irtual

    force

    A

    u

    u

    P

    6

    L

    P1

    P+

    P7

    dL

    θ

    Jeal slo"eJeal deformation

    Eirtual unit

    moment Eirtual internal forces

  • 8/9/2019 ENGI5312-MechanicsofSolidsII-ClassNotes03

    21/27

    3f ui re"resents the internal forces deelo"ed in the members, due to an a""lied

    unit load at the "oint #here the deformation is to obtained in the re0uired

    direction, then &0n. A can be ex"ressed as

    ( ) ( )   ∑=∆×ii

    iii

     E  A

     L P u1 C

    (ii) 6or tr'sses s'/9e#ted to a te"perat're #hange (#a'sing internal or#es)

    !he incremental deformation caused in member due to a tem"erature rise is dL,

    #here

    ( ) LT dL   ∆=α 

    Also

    ( ) ( ) ( )∑=

    ∆=∆×'

    i

    iiii   LT u1

    1   α  %

    (iii) *r'sses ith 6a/ri#ation Errors

    ( ) ( )   ∑=

    ∆=∆×'

    i

    ii   Lu1

    1 &

    #here

    ∆L * difference in length of the member from its intended length, caused

     by a fabrication error.

    -ea"s

    'or loads acting on a beam subjected to bending moments alone, the deformation

    ∆, at a gien "oint along a gien direction is gien by

    +1

    !em"eraturechange

  • 8/9/2019 ENGI5312-MechanicsofSolidsII-ClassNotes03

    22/27

    ( ) ( ) ∫ =∆×  EI !Mdx

    1 '

    #here m is the bending moment in the member #hen a unit load is a""lied on the

    structure at the s"ecified "oint in the s"ecified direction. 'or a general loading on the

     beam, generating axial, shear, bending and torsional forces/moments in the beam

    ( ) ( ) ∫ ∫ ∫ ∫    +++=∆×   dxGJ tT 

    dxGA

    vV   f  dx

     EI 

    !M dx

     AE 

    'N    s1

    #here n is the axial force generated in the beam #hen a unit load is a""lied on the beam

    in the re0uired directionM similarly m, and t are the bending moment, shear force and

    torsional moment generated under the a""lied unit load.

    Consider a tr'ss s'/9e#ted to loads 618 62 and 6!

    =nit irtual load is a""lied in the direction in #hich the deflection is re0uired, say at B in

    the ertical direction. Let uAB, uBC, uCA and uC% be the internal forces generated #hen the

    unit load is a""lied at B.

    ++

    A

    C

    B

    %

    A

    C

    B

    %

    1

    '7

    '+

    '1

  • 8/9/2019 ENGI5312-MechanicsofSolidsII-ClassNotes03

    23/27

    Let PAB, PBC, PCA and PC% be the internal forces generated in the truss members due to the

    gien loads '1, '+ and '7 acting on the beam. !hen the ertical deflection at B is obtained

    as,

    ∑=

    =∆'

    i   ii

    iii (

     E  A

     L P uv

    1

    2

    Considering a -ea" S'/9e#ted to -ending $oads %18 %2 and %!

    Let us say that it is re0uired to find the ertical deflection at C due to the gien loads.

    i A""ly a unit ertical load irtual at C in the ertical direction and find the

    moment m in the beam.

    ii !hen a""ly the gien loads on the beam say P1, P+  and P7 and com"ute the

     bending moments 8 in the beam. !hen the deflection ∆ at C is obtained

    ∫ =∆  EI !Mdx

    ) v3

    +7

    L L/+

    A B C

    L L/+

    AB C

    P1P+ P7

  • 8/9/2019 ENGI5312-MechanicsofSolidsII-ClassNotes03

    24/27

    Castiglianos *heore"

    -ased on the strain energy stored in a /ody)

    Consider a beam AB subjected to loads P1  and P+, acting at "oints B1  and B+  ,

    res"ectiely.

    +++1+

    1+111

    vvv

    vvv

    +=+=

    3f 11111   v P   f     = ,#here f 11 * deflection at B1 due to a unit load at B1

    and +11+1   v P   f     =  #ith f +1 * deflection at B+ due to a unit load at B1

    and

    +++++   P   f  v   = , #ith f ++ * deflection at B+ due to a unit load at B+ N+1+1+

      P   f  v   = , #ith f 1+ * deflection at B1 due to a unit load at B+.

    +:

    P1 P+

    B1 B+

    +1

    P1

    B1

    B+

    +111

    *

    P1 P+

    ++1+

    O

  • 8/9/2019 ENGI5312-MechanicsofSolidsII-ClassNotes03

    25/27

    !hen

    3- f   +1+111

    1+111

     P   f   P 

    vvv

    +=+=

    )imilarly,

    33- f   +++1+1

    +++1+

     P   f   P 

    vvv

    +=

    +=

    Considering the #or$ done * =i 

    333 +

    1

    +

    1

    +

    1

    +

    1

    +

    1

    +

    1

    +11+

    +

    +++

    +

    111

    +1+1++++1111

    1+1+++111

     P  P   f   P   f   P   f  

     P   f   P  P   f   P  P   f   P 

    v P v P v P 

    ++=

    ×+×+×=

    ++=

     Do# #e reerse the order the a""lication of loads P1 and P+, i., a""lying P+ at B+ firstand then a""lying P1 at B1,

    +;

    P1 P+

    B1 B+

    +1

    P+

    B1 B+

    ++1+

    *

    P1 P+ +111

    O

  • 8/9/2019 ENGI5312-MechanicsofSolidsII-ClassNotes03

    26/27

     f  111+1+111+1   P   f   P vvv   +=+=

    )imilarly,

     f  1+1++++1+++   P   f   P vvv   +=+=

    =i *

    3E +

    1

    +

    1

    +

    1

    +

    1

    +

    1

    +

    1

    +

    111+1+1

    +

    +++

    11111+1+++++

    111+1++++

     P   f   P  P   f   P   f  

     P   f   P  P   f   P  P   f   P 

    v P v P v P 

    ++=

    ×+×+×=

    ++=

    Considering e0uation 333 and 3E, and e0uating them, it can be sho#n that

    +

    111+1+1

    +

    +++

    +11+

    +

    +++

    +

    111

    +

    1

    +

    +

    1

    +

    1

     P   f   P  P   f   P   f  

     P  P   f   P   f   P   f  U i

    ++=

    ++=

    +11+   f    f    =  !his is called Betti I 8ax#ellGs reci"rocal theorem

    +@

    1

    B1 B+

    f +1

    1

    B1 B+

    f ++f 1+

  • 8/9/2019 ENGI5312-MechanicsofSolidsII-ClassNotes03

    27/27

    %eflection at B+ due to a unit load at P1 is e0ual to the deflection at B1 due to a unit loadat P+.

    'rom &0n. 333

    1+1+111

    1

    v P   f   P   f   P 

    U i =+=∂∂

    'rom &0n. 3E

    +1+1+++

    +

    v P   f   P   f   P 

    U i =+=∂∂

    !his is CastiglianoGs first theorem.

    )imilarly the energy =i can be ex"ress in terms of s"ring stiffnesses $ 11, $ 1+ or $ +1, N $ ++and deflections 1 and +M then it can be sho#n that

    +

    +

    1

    1

     P v

     P v

    i

    i

    =∂∂

    =∂∂

    !his is CastiglianoGs second theorem. When rotations are to be determined,

    i

    i M 

    v

    ∂∂

    =θ 


Recommended