+ All Categories
Home > Documents > Engineering Hand Book

Engineering Hand Book

Date post: 24-Feb-2018
Category:
Upload: atif-khan
View: 266 times
Download: 6 times
Share this document with a friend

of 42

Transcript
  • 7/25/2019 Engineering Hand Book

    1/42

    Industrial Development & Engineering Associates (IDEA) is a company

    specializing in the sourcing and supply of standard and customized products

    to the industrial markets of Pakistan, with major focus on Oil & Gas,

    Petroleum Refining, Petrochemical, Power , Fer ti lizer, Cement, Chemical

    and Textile Industries.

    IDEA provides an extensive range of client support services based on the

    worldwide information and business expertise of our company. We put

    together a world of resources representing leading manufac turers and

    trading companies from the world: USA, Canada, Europe, Japan Far

    East.

    Air and Hydraulic Cylinders

    f') Air Compressors

    f') Air Filters

    f') Air Pollution Control Solutions

    ~ Aluminium Castings

    Bearings

    eBelting

    Boilers

    f') Bolt Fasteners

    CNC Machinery

    Construction Equipment Supplies

    Controls

    Corrosion Control Equipment

    f') Cutting Tools

    f') Elect ric and Electronic Enclosures

    Electric Heaters

    Electronic Components

    ~ Flow Meters

    Fluid Handling Equipment

    Gas Detectors

    Gaskets

    Gears

    Heat Exchangers

    o Heat ing Elements

    () Hose Fittings

    f) HVAC Equipment

    .f)

    Hydraulic Equipment

    Iron and Steel Bars and Rods

    f) Loading Arms

    f>

    Material Handling Equipment

    f') Pipe Fittings

    f') Pollution Control Equipment

    () Precision Guage

    tr Y

    Pressure Sensors

    Pressure Vessels

    fi

    Printed Circuit Boards

    f') Pumps

    f')

    Reverse Osmosis Plants

    f) Stainless Steel

    f') Stainless Steel Fitt ings

    () Stainless Steel Pipes

    o

    Steel Forgings

    Temperature Sensors

    Vacuum Pumps

    Variable Speed Drives/Motors

    e Waste Water Treatment Plant

    Table of Contents

    Chapter 1

    Definition and Abbreviations for Physical Quantities 1

    Chapter 2

    Units of Physical Quantities 3

    Chapter

    3

    System of Units 23

    Chapter 4

    General Mathematical Formulae 27

    4.1 Algebra.................. ...... 27

    4.2 Geometry .............................................................. 29

    4.3 Trigonometry ........................................................... 39

    4.4 Logarithm ...... . 40

    4.5 Exponents .. ....... .. . .42

    4.6 Complex Numbers ....... ........................................ 42

    Chapter 5

    Engineering Concepts and Formulae .44

    5.1 Electricity.. ..................... . 44

    5.2 Applied Mechanics 57

    5.2.1 Newton'slawsof motion . 57

    5.2.2 LinearVelocity And Acceleration 60

    5.2.3

    5.2.4 Centripetal (Centrifugal) Force . . . 62

    5.2.5 Stress,StrainAnd Modulus Of Elasticity.... . 64

    5.3 Thermodynamics 64

    5.3.1 Laws of Thermodynamics 64

    5.3.2 Momentum 65

    5.3.3 Impulse . 65

    5.3.4 Elastic and Inelastic collision 65

    5.3.5 Center of Mass 65

    5.3.6 Angu lar Motion 65

  • 7/25/2019 Engineering Hand Book

    2/42

    5.4

    5.3.7 Conditions of Equilibrium ..

    5.3.8 Gravity.

    5.3.9 Vibrations & Waves.

    5.3.10 Standing Waves .

    5.3.11 Beats..

    5.3.12 Temperature and Heat..

    5.3.13 IdealGases..

    5.3.14 Elastic Deformation .

    5.3.15 Temperature Scales.

    5.3.16 Sensible Heat Equation .

    5.3.17 Latent Heat.

    5.3.18 Gas Laws .

    5.3.19 Specific Heats Of Gases ..

    5.3.20 Efficiency of Heat Engines ..

    5.3.21 Heat Transfer by Conduction .

    5.3.22 Thermal Expansion of Solids .

    5.3.23 Chemical Heating Value of a Fuel.

    Fluid Mechanics .

    5.4.1 Discharge from an Orifice.

    5.4.2 Bernoulli's Theory .

    5.4.3 Actual pipe dimensions .

    65

    66

    66

    66

    66

    ..67

    67

    ..68

    68

    68

    68

    68

    69

    70

    71

    72

    ..72

    77

    .77

    . 78

    78

    Chap ter 6

    References 80

    6.1 Periodic Table of Elements 80

    6.2 Resistor Color Coding 81

    Formulas and Conversions

    C

    Chapter 1

    Def in it ion and Abbrev iat ions for Phys ical Quan ti ti es

    Svmb ol Un it

    Ouantitv

    m meter

    l.enqth

    kg kilogram

    Mass

    s second Time

    A ampere

    Electric current

    K

    kelvin Thermodynamic temp

    cd candela Luminous intensity

    Quantity Unit Symbol

    Equivalent

    Planeangle radian rad

    -

    Force newton N kg . m/s'

    Work, energy heat joule JNm

    Power watt W

    J/s

    Frequency hertz

    Hz

    s'

    Viscosity:

    -

    m'/s

    10 c St

    kinematic

    (Centistoke)

    Viscosity:

    -

    Ns/rrf

    10

    3

    cP

    Dynamic (Centipoise)

    Pressure

    -

    Pa or N/m' pascal, Pa

    Symbol

    Pr ef ix Fact or by which uni t is

    multiplied

    T Tera 10

    12

    G Giaa 10'

    M

    Mega

    10

    -1-

  • 7/25/2019 Engineering Hand Book

    3/42

    Formulas and Conversions

    Symbol

    Prefix

    Factorby which uni t i s

    multiplied

    k Kilo 10

    3

    h

    Hecto 10'

    da Deca 10

    d Deci

    10-

    1

    c

    Centi

    10-'

    m

    Milli

    10-

    3

    jJ

    Micro

    10-

    n

    Nano

    10-

    9

    p Pico 10-

    1

    Quantity

    Electrical

    Symbol Deri ved

    uni t unit

    Potential Volt V

    W/A

    Resista nce Ohm

    'Q

    VIA

    Charge

    Coulomb C As

    Capacitance

    Farad F As;V

    Electric field

    -

    Vim

    -

    strength

    Electric flux

    -

    C/m'

    -

    density

    Quantity

    Magnetic Symbol Deri ved unit

    uni t

    Magnetic flux

    Weber Wb

    Vs

    =

    Nm/A

    Inductance Henry H

    Vs/A

    =

    Nm/A'

    Magnetic field

    - A/m

    -

    strength

    ,

    Magnetic flux density Tesla T

    Wb/m'

    =

    (N)/(Am)

    - 2 -

    Formulas and Conversions

    [ Chapter 2 r;;) I

    Units of Physical Quanti ties

    Conversion Factors (general):

    1 acre

    =

    43,560 square feet

    1 cubic foot

    =

    7.5 gallons

    1 foot = 0.305 meters

    1 gallon

    =

    3.79 liters

    1 gallon

    =

    8.34 pounds

    1 grain per gallon = 17.1 mg/L

    1 horsepower

    =

    0.746 kilowatts

    1 million gal lons per day

    =

    694 gallons per minute

    1 pound

    =

    0.454 kilograms

    1 pound per square inch

    =

    2.31 feet of water

    Degrees Celsius = (Degrees Fahrenheit - 32) (5/9)

    Degrees Fahrenheit = (Degrees Celsius) (9/5) + 32

    1

    % =

    10,000 mg/L

    Name

    To convert f rom

    To

    Multiply

    Divide by

    bv

    Acceleration ft/sec rn/s 0.3048 3.2810

    Area

    acre m' 4047

    2.471E-04

    Area ft'

    m'

    9.294E-02

    10.7600

    Area

    hectare m'

    1.000E+04

    1.000E-04

    Area

    in

    2

    m'

    6.452E-04

    1550

    Density

    g/cm

    3

    kq/rn 1000

    1.000E-03

    Density

    lbrn/ft kq/rn 16.02

    6.243E-02

    Density lbm/in?

    kq/rrr' 2.767E+04

    3.614E-05

    - 3 -

  • 7/25/2019 Engineering Hand Book

    4/42

    Formulas and Conversions

    Name

    To co nver t f ro m

    To

    Multiply

    Divide by

    by

    Density

    Ibs'/in

    4

    kg/m

    3

    1.069E+07

    9.357E-08

    Density sluq/ft

    kg/m

    3

    515.40

    1. 940E-03

    Energy BTU J

    1055

    9.478E-04

    Energy cal J

    4.1859 0.2389

    Energy erg

    J

    1.000E-07

    1.000E+07

    Energy

    eV J

    1.602E-19

    6.242E+18

    Energy Ftlbf

    J

    1.3557

    0.7376

    Energy

    kiloton TNT J

    4.187E+12

    2.388E-13

    Energy

    KWhr J

    3.600E+06

    2.778E-07

    Energy

    Megaton TNT J 4.187E+15 2.388E-16

    Force

    Dyne N

    1.000E-05

    1.000E+05

    Force

    Lbf N

    4.4484

    0.2248

    Force

    Ozf N 0.2780 3.5968

    Heat capacity

    BTU/lbm . of

    J/kg .O(

    4188

    2.388E-04

    Heat transfer coefficient

    BTU/hr-ft'.of

    W/m'O(

    5.6786 0.1761

    Length

    AU

    m

    1.496E+ll

    6.685E-12

    Length

    ft

    m 0.3048 3.2810

    Length

    in

    m

    2.540E-02

    39.3700

    Length

    mile m 1609

    6.214E-04

    Length Nautical mile

    m 1853

    5.397E-04

    Length

    parsec m 3.085E+ 16

    3.241E-17

    Mass amu

    kg

    1.661E-27

    6.022E+26

    Mass

    Ibm kg

    0.4535

    2.2050

    Mass

    Ibs'/in kg 1200.00

    5.711E-03

    Mass

    slug kg

    14.59

    6.853E-02

    Mass flow rate

    lbrn/hr kg/s

    1.260E-04

    7937

    - 4-

    Formulas and Conversions

    To convert from

    To

    Multiply

    Divide by

    Name

    by

    Mass fl ow r at e

    lbrn/sec kg/s

    0.4535

    2.2050

    Moment of inertia

    ft -lb s' kgm'

    1.3557

    0.7376

    Moment o f i ne rt ia

    inIbs kq-rrr' 0.1130 8.8510

    Moment of inertia

    .

    ,

    kgm'

    7.062E-03

    141.60

    zm-s

    power

    BTU/hr

    W 0.2931

    3.4120

    power

    hp

    W

    745.71

    1.341E-03

    power

    tons of refrigeration W

    3516

    2.844E-04

    Pressu re

    bar

    Pa

    1.000E+05

    1.000E-05

    Pressure

    dyne/em

    Pa

    0.1000

    10.0000

    Pressure

    in. mercury

    Pa

    3377

    2.961E-04

    Pressu re

    in. water Pa

    248.82

    4.019E-03

    Pressure

    kgf/cm'

    Pa

    9.807E+04

    1.020E-05

    Pressu re

    Ibf/ft'

    Pa

    47.89

    2.088E-02

    Pressure

    lbf/irr'

    Pa

    6897

    1.450E-04

    Pressure

    mbar

    Pa

    100.00

    1.000E-02

    Pressure

    microns mercury

    Pa 0.1333

    7.501

    Pressure

    mm mercury Pa

    133.3

    7.501E-03

    Pressure std atm

    Pa

    1.013E+05

    9.869E-06

    Specif ic heat

    BTU/lbmoF

    J/kg .O(

    4186

    2.389E-04

    Spec if ic heat cal/g'O(

    J/kg'O( 4186

    2.389E-04

    Temperature

    of

    O(

    0.5556

    1.8000

    Thermal conduct iv ity

    BTU/hrftoF

    W/mO(

    1.7307

    0.5778

    Thermal conductivity BTU in/hrft'oF

    W/mO(

    0.1442

    6.9340

    The rmal conductivity cal/cmsO( W/mO( 418.60 2.389E-03

    Thermal conduct ivity

    cal/fthroF

    W/mO( 6.867E-03 145.62

    Time

    day

    S

    8.640E+04

    1.157E-05

    - 5 -

  • 7/25/2019 Engineering Hand Book

    5/42

    I

    . .

    Formulas and Conversions

    Multiply

    By To obtain

    I

    Fathom

    1.8288'

    meter(m)

    Formulas and Conversions

    Foot

    0.3048' meter(m)

    30.48'

    Foot

    centimeter(cm)

    Name To convert from To

    Multiply

    Di vi de b y

    304.8'

    by

    Foot

    millimeter(mm)

    Time sidereal year S 3.156E+07

    3.169E-08

    Inch

    0.0254' meter(m)

    I

    Torque

    ftlbf

    2.54'

    centimeter( cm)

    Nm

    1.3557

    0.7376

    Inch

    Torque

    inlbf

    N'm

    0.1130 8.8504

    Inch

    25.4'

    millimeter(mm)

    Torque

    In -ozf

    Nm

    7.062E-03

    141.61

    Kilometer

    0.6213712 mile(USstatute)

    Velocity ft/min rn/s

    5.079E-03

    196.90

    Meter

    39.37008 Inch

    Velocity

    ft/s rn/s 0.3048

    3.2810

    Meter

    0.54680066 Fathom

    Velocity

    Km/hr rn/s

    0.2778 3.6000

    1

    Meter

    3.280840 Foot

    Velocity miles/hr rn/s

    0.4470

    2.2370

    Meter

    0.1988388 Rod .

    Viscosity - absolute

    centipose

    Ns/m'

    1.000E-03

    1000

    Meter

    1.093613

    Yard

    Viscosity - absolute

    q/crns

    Ns/m'

    0.1000 10

    Meter

    0.0006213712 mile(USstatute)

    Viscosity - absolute

    Ibf/ft's

    Ns/m'

    47.87

    2.089E-02

    Microinch

    0.0254'

    microrneterfmicronjfum)

    ~ o o

    iscosity - absolute lbrn/fts

    Ns/m'

    1.4881

    0.6720

    micrometer(m icron) 39.37008 Microinch

    Viscosity - kinematic

    centistoke

    m'/s

    1.000E-06 1.000E+06

    mile(USstatute)

    1,609.344 .

    meter(m)

    Viscosity - kinematic

    fe/see

    m'/s

    9.294E-02

    10.7600

    mile(USstatute) 1.609344 . kilometer(km)

    Volume ft

    3

    m

    3

    2.831E-02 35.3200

    millimeter 0.003280840 Foot

    Volume

    in

    3

    m

    3

    1.639E-05

    6.102E+04

    millimeter

    0.0397008 Inch

    '~

    Volume

    Liters

    m

    3

    1.000E-03

    1000

    Rod

    5.0292'

    meter(m)

    ~

    Volume

    U.S. gallons m

    3

    3.785E-03

    264.20

    Yard 0.9144'

    meter(m)

    Volume flow rate

    ft

    3

    /min

    m

    3

    /s

    4.719E-04 2119

    Volume flow rate U.S. gallons/min

    m

    3

    /s

    To Convert

    To Mul ti pl y By

    6.309E-05

    1.585E+04

    '-=---

    Cables Fathoms

    120

    A. DISTANCE (Length) Cables

    Meters

    219.456

    .

    Conversions

    Cables

    Yards 240

    Multiply By To obtain

    LENGTH

    Centimeter 0.03280840 foot

    - 7 -

    Centimeter 0.3937008 inch

    - 6 -

    .. :. ..

  • 7/25/2019 Engineering Hand Book

    6/42

    Formulas and Conversions

    To Convert

    To

    Multiply By

    Centimeters

    Meters

    0.01

    Centimeters

    Yards

    0.01093613

    Centimeters

    Feet

    0.0328084

    Centimeters

    Inches

    0.3937008

    Chains, (Surveyor's)

    Rods

    4

    Chains, (Surveyor's) Meters

    20.1168

    Chains, (Surveyor's)

    Feet

    66

    Fathoms Meters

    1.8288

    Fathoms

    Feet

    6

    Feet

    Statute Miles

    0.00018939

    Feet

    Kilometers

    0.0003048

    Feet

    Meters

    0.3048

    Feet

    Yards

    0.3333333

    Feet

    Inches

    12

    Feet

    Centimeters

    30.48

    Furlongs

    Statute Miles

    0.125

    Furlongs

    Meters

    201.168

    Furlongs Yards

    220

    Furlongs

    Feet

    660

    Furlongs

    Inches

    7920

    Hands (Height Of Horse) Inches

    4

    Hands (Height Of Horse)

    Centimeters

    10.16

    Inches

    Meters

    0.0254

    Inch es

    Yards

    0.02777778

    Ir.ches Feet

    0.08333333

    Inches

    Centimeters

    2.54

    Inches

    Millimeters

    25.4

    Formulas and Conversions

    - 8-

    To Convert

    To

    Multiply By

    Kilometers

    Statute Miles 0.621371192

    Kilometers

    Meters

    1000

    Leagues, Nautical

    Nautical Miles 3

    Leagues, Nautical Kilometers

    5.556

    Leagues, Statute

    Statute Miles 3

    Leagues, Statute

    Kilometers 4.828032

    Links, (Surveyor's) Chains 0.01

    Links, (Surveyor's) Inches 7.92

    Links, (Surveyor's) Centimeters

    20.1168

    Meters Statute Miles

    0.000621371

    Meters Kilometers

    0.001

    Meters Yards

    1.093613298

    Meters Feet 3.280839895

    Meters Inches

    39.370079

    Meters

    Centimeters 100

    Meters

    Millimeters

    1000

    Microns

    Meters

    0.000001

    Microns

    Inches

    0.0000394

    Miles, Nautical

    Statute Miles

    1.1507794

    Miles, Nautical

    Kilometers

    1.852

    Miles, Statute

    Kilometers

    1.609344

    Miles, Statute

    Furlongs 8

    Miles, Statute

    Rods

    320

    Miles, Statute

    Meters 1609.344

    Miles, Statute

    Yards

    1760

    Miles, Statute

    Feet 5280

    Miles, Statute

    Inches

    63360

    - 9 -

  • 7/25/2019 Engineering Hand Book

    7/42

    Formulas and Conversions

    To Convert

    To Multiply By

    Miles, Statute Centimeters

    160934.4

    Millimeters

    Inches 0.039370079

    Mils Inches 0.001

    Mils ~1illimeters 0.0254

    Paces(US)

    Inches 30

    Paces (US) Centimeters 76.2

    Points (Typographical) Inches 0.013837

    Points (Typographical)

    Millimeters

    0.3514598

    Rods Meters 5.0292

    Rods Yards 5.5

    Rods Feet 16.5

    Spans Inches

    9

    Spans

    Centimeters 22.86

    Yards Miles 0.00056818

    Yards

    Meters 0.9144

    Yards

    Feet

    3

    Yards

    Inches 36

    Yards

    Centimeters

    91.44

    Conversion

    Length

    1 ft

    =

    12 in

    1 yd = 3 ft

    1 cm = 0.3937 in

    1 in = 2.5400 cm

    1 m

    =

    3.281 ft 1 ft

    =

    0.3048 m

    1 m

    =

    1.0936 yd

    1 yd

    =

    0.9144 m

    1 km = 0.6214 mile 1 mile = 1.6093 km

    1 furlong = 40 rods

    1 fathom

    =

    6 ft

    Formulas and Conversions

    Conversion

    1 statute mile

    =

    8 furlongs

    1 rod = 5.5 yd

    1 statute mile = 5280 ft

    1 in

    =

    100 mils

    1 nautical mi le = 6076 ft

    1 l ight year

    =

    9.461 x 10

    15

    m

    1 league = 3 miles

    1 mil = 2.540 x 10'5 m

    Area

    1 ft' - 144 in'

    1 acre

    =

    160 rod'

    1 yd'

    =

    9 ft'

    1 acre

    =

    43,560 ft>

    1 rod' = 30.25 yd'

    1 mile'

    =

    640 acres

    1 cm'

    =

    0.1550 in'

    1 in' = 6.4516 crrr'

    1 m'

    =

    10.764 ft>

    1 ft>

    =

    0.0929 m'

    1 krn'

    =

    0.3861 mile'

    1 mile'

    =

    2.590 km'

    Volume

    1 ern

    =

    0.06102 in

    3

    1 in

    3

    =

    16.387 ern

    1 m

    3

    = 35.31 ft3

    1 ft

    3

    = 0.02832 m

    3

    1 Litre = 61.024 in

    3

    1 in

    3

    =

    0.0164 litre

    1 Litre

    =

    0.0353 ft3

    1 ft

    3

    = 28.32 litres

    1 Litre

    =

    0.2642 gal. (U.S.)

    1 yd

    3

    = 0.7646 m

    3

    1 Litre

    =

    0.0284 bu (U.s.)

    1 gallon (US) = 3.785 litres

    1 Litre

    =

    1000.000 ern?

    1 gallon (US) = 3.785 X 10'3 m

    3

    1 Litre

    =

    1.0567 qt. (liquid) or

    1 bushel (US)

    =

    35.24 litres

    0.9081 qt. (dry)

    1 oz (US fluid) = 2.957 X 10'5 m

    3

    1 stere

    =

    1 m

    3

    Liquid Volume

    1 gill = 4 fluid ounces

    1 barrel

    =

    31.5 gallons

    1 pint = 4 gills

    1 hogshead = 2 bbl (63 gal)

    1 quart = 2 pints

    1 tun = 252 gallons

    1 gallon = 4 quarts

    1 barrel (petrolum) = 42 gallons

    - 11 -

    - 10 -

  • 7/25/2019 Engineering Hand Book

    8/42

    Formulas and Conversions

    Conversion

    Dry Volume

    1

    quart =

    2

    pints

    1

    quart =

    67.2

    in'

    1

    peck =

    8

    quarts

    1

    peck =

    537.6

    in'

    1

    bushel =

    4

    pecks

    1

    bushel

    = 2150.5

    in'

    B. Area

    Conversions

    Multiply

    By

    To obtain

    AREA

    acre

    4,046.856

    meter> (rn)

    acre

    0.4046856

    hectare

    centimeter> 0.1550003

    inch'

    centimeter>

    0.001076391

    foot>

    foot'

    0,09290304' meter' (rn)

    foot'

    929.0304'

    centimeter> (ern)

    foot'

    92,903.04

    millimeter> (rnrn)

    hectare

    2.471054

    acre

    inch'

    645.16'

    millimeter> (rnm)

    inch'

    6.4516

    centimeter> (ern)

    inch'

    0,00064516

    meter> (rn)

    meter'

    1,550.003 inch'

    meter'

    10.763910

    foot>

    meter'

    1.195990

    yard'

    meter'

    0.0002471054

    acre

    millimeter>

    0,00001076391

    foot'

    millimeter> 0.001550003

    inch'

    yard'

    0.8361274

    meter> (rn')

    - 12 -

    Formulas and Conversions

    c . Volume

    Conversions

    MetricConversionFactors:Volume(includingCapacity)

    Multiply

    By

    To obtain

    VOLUME(including CAPACITY)

    centimeter'

    0.06102376

    inch

    foot'

    0.028311685

    meter' (rn)

    foot'

    28,31685

    liter

    gallon (UK liquid)

    0,004546092

    meter (rrr')

    gallon (UK liquid)

    4,546092

    litre

    gallon (US liquid)

    0,003785412

    meter' (rn)

    gallon (USliquid)

    3,785412

    liter

    inch'

    16,387,06

    millimeter' (rnrn)

    inch'

    16,38706

    centimeter' (ern)

    inch?

    0,00001638706

    meter? (rn)

    Liter

    0,001 '

    meter? (rn)

    Liter

    0,2199692

    gallon (UK liquid)

    Liter

    0,2641720

    gallon (US liquid)

    Liter

    0,03531466

    foot

    3

    meter'

    219,9692

    gallon (UK liquid)

    meter'

    264,1720

    gallon (US liquid)

    meter'

    35,31466

    foot'

    meter'

    1,307951

    yard

    3

    meter'

    1000:

    liter

    meter'

    61,023,76

    inch'

    millimeter'

    0,00006102376

    inch?

    Yard

    3

    0,7645549

    meter' (rrr')

    D. Mass and Weight

    Conversions

    - 13 -

  • 7/25/2019 Engineering Hand Book

    9/42

    Formulas and Conversions

    To Convert To Multiply By

    Carat

    Milligrams 200

    Drams, Avoirdupois

    Avoirdu pois Ounces 0.06255

    Drams, Avoirdupois

    Grams

    1.7718452

    Drams, Avoirdupois Grains 27.344

    Drams, Troy Troy Ounces

    0.125

    Drams, Troy

    Scruples 3

    Drams, Troy

    Grams

    3.8879346

    Drams, Troy Grains

    60

    Grains

    Kilograms

    6.47989E-05

    Grains Avoirdupois Pounds

    0.00014286

    Grains

    Troy Pounds

    0.00017361

    Grains

    Troy Ounces

    0.00208333

    Gra ins Avoirdupois Ounces

    0.00228571

    Grains

    Troy Drams

    0.0166

    Grains Avoirdupois Drams

    0.03657143

    Grains Pennyweig hts

    0.042

    Grains

    Scruples

    0.05

    Grains Grams

    0.06479891

    Grains Milligrams 64.79891

    Grams

    Kilograms 0.001

    Grams Avoirdupois Pounds

    0.002204623

    Grams Troy Pounds

    0.00267923

    Grams Troy Ounces

    0.032150747

    Grams Avoirdupois Ounces

    0.035273961

    Grams Avoirdupois Drams

    0.56438339

    Grams Grains

    15.432361

    - 14 -

    Formulas and Conversions

    To Convert

    To

    Multiply By

    Milligrams 1000

    Grams

    Hundredweights, Long

    Long Tons

    0.05

    Hundredweights, Long

    Metric Tons

    0.050802345

    Hundredweights, Long

    Short Tons

    0.056

    Hundredweights, Long

    Kilograms

    50.802345

    Hundredweights, Long

    Avoirdupois Pounds

    112

    Hundredweights, Short

    Long Tons

    0.04464286

    Hundredweights, Short

    Metric Tons

    0.045359237

    Hundredweights, Short

    Short Tons

    0.05

    Hundredweights, Short

    Kilograms

    45.359237

    Hundredweights, Short

    Avoirdupois Pounds

    100

    Kilograms

    Long Tons

    0.0009842

    Kilograms

    Metric Tons

    0.001

    Kilograms

    Short Tons

    0.00110231

    Kilograms

    Short Hundredweights

    0.02204623

    Kilograms

    Avoirdupois Pound~ 2.204622622

    Kilograms

    Troy Pounds

    2.679229

    Kilograms Troy Ounces

    32.15075

    Kilograms

    Avoirdupois Ounces

    35.273962

    Kilograms

    Avoirdupois Drams

    564.3834

    Kilograms

    Grams

    1000

    Kilograms

    Grai ns

    15432.36

    Milligrams

    Grains

    0.015432358

    Ounces, Avoirdupois

    Kilograms

    0.028349523

    Ounces, Avoirdupois

    Avoirdupois Pounds

    0.0625

    Ounces, Avoirdupois

    Troy Pounds

    0.07595486

    Ounces, Avoirdupois

    Troy Ounces

    0.9114583

    - 15 -

  • 7/25/2019 Engineering Hand Book

    10/42

    Formulas and Conversions

    To Convert To

    Multiply By

    Ounces, Avoirdu pois Avoirdupois Drams

    16

    Ounces, Avoirdupois

    Grams

    28.34952313

    Ounces, Avoirdupois Grains 437.5

    Ounces, Troy Avoirdupois Pounds 0.06857143

    Ounces, Troy

    Troy Pounds 0.0833333

    Ounces, Troy Avoirdupois Ounces

    1.097143

    Ounces, Troy

    Troy Drams

    8

    Ounces, Troy Avoirdupois Drams 17.55429

    Ounces, Troy

    Pennyweights

    20

    Ounces, Troy

    Grams

    31.1034768

    Ounces, Troy

    Grains

    480

    Pennyweig hts Troy Ounces

    0.05

    Pennyweights Grams

    1.55517384

    Pennyweig hts

    Grains

    24

    Pounds, Avoirdupois Long Tons

    0.000446429

    Pounds, Avoirdupois Metric Tons

    0.000453592

    Pounds, Avoirdupois

    Short Tons

    0.0005

    Pounds, Avoirdupois

    Quintals

    0.00453592

    Pounds, Avoirdupois Kilograms

    0.45359237

    Pounds, Avoirdupois

    Troy Pounds 1.215278

    Pounds, Avoirdupois

    Troy Ounces 14.58333

    Pounds, Avoirdupois Avoirdu pois Ounces

    16

    Pounds, Avoirdupois

    Avoirdupois Drams 256

    Pounds, Avoirdu pois

    Grams 453.59237

    Pounds, Avoirdupois

    Grains 7000

    Pounds, Troy Kilograms

    0.373241722

    Pounds, Troy Avoirdupois Pounds 0.8228571

    - 16 -

    Formulas and Conversions

    To Convert

    To

    Mu lt ip ly By

    pounds, Troy

    Troy Ounces

    12

    pounds, Troy

    Avoirdu pois Ounces

    13.16571

    pounds, Troy

    Avoirdupois Drams

    210.6514

    pounds, Troy Pennyweights

    240

    pounds, Troy

    Grams

    373.2417216

    Pounds, Troy

    Grains

    5760

    Quintals

    Metric Tons

    0.1

    Quintals

    Kilograms

    100

    Quintals

    Avoirdupois Pounds

    220.46226

    Scrupies

    Troy Drams 0.333

    Scruples

    Grams

    1.2959782

    Scru pies

    Gra ins

    20

    Tons, Long (Deadweight) Metric Tons

    1.016046909

    Tons, Long (Deadweight) Shor t Tons

    1.12

    Tons, Long (Deadweight) Long Hundredweights 20

    Tons, Long (Deadweight)

    Short Hundredweights

    22.4

    Tons, Long (Deadweight)

    Kilograms

    1016.04691

    Tons, Long (Deadweight)

    Avoirdupois Pounds 2240

    Tons, Long (Deadweight)

    Avoirdupois Ounces

    35840

    Tons, Metric

    Long Tons

    0.9842065

    Tons, Metric

    Short Tons

    1.1023113

    Tons, Metric

    Quintals

    10

    Tons, Metric

    Long Hundredweights

    19.68413072

    Tons, Metric

    Short Hundredweights

    22.04623

    Tons, Metric

    Kilograms 1000

    Tons, Metric

    Avoirdupois Pounds

    2204.623

    Tons, Metric

    Troy Ounces

    32150.75

    - 17 -

  • 7/25/2019 Engineering Hand Book

    11/42

    Formu las and Conversions

    To Multiply By

    long Tons 0.8928571

    Metric Tons 0.90718474

    Long Hundredweights 17.85714

    Short Hundredweights 20

    Kilograms

    907.18474

    Avoirdu pois Pounds 2000

    To Convert

    Tons, Short

    Tons, Short

    Tons, Short

    Tons, Short

    Tons, Short

    Tons, Short

    E. Density

    Conversions

    To Convert To Multi ply By

    Grains/imp. Gallon Parts/million 14.286

    Gra ins/US ga lion Parts/million 17.118

    Grains/US ga llon Pounds/million ga I 142.86

    Grams/cu. Cm Pounds/mil-foot

    3.405E-07

    Grams/cu. Cm Pounds/cu. in 0.03613

    Grams/cu. Cm Pounds/cu. ft

    62.43

    Grams/liter Pounds/cu. ft 0.062427

    Grams/liter

    Pounds/1000 gaI 8.345

    Grams/liter

    Grains/gal

    58.417

    Grams/liter Parts/million

    1000

    Kilogra rns/cu meter

    Pounds/mil-foot

    3.405E-10

    Kilograrns/cu meter Pounds/cu in

    0.00003613

    Kilogra rns/cu meter

    Grams/cu cm 0.001

    Kilogra rns/cu meter

    Pound/cu ft 0.06243

    Milligrams/liter Parts/million 1

    Pounds/cu ft

    Pounds/mil-foot

    5.456E-09

    Pounds/cu ft Pounds/cu in

    0.0005787

    - 18-

    Formulas and Conversions

    To convert

    To

    Multiply By

    Pounds/cu ft

    Grarns/cu cm

    0.01602

    Pounds/cu ft

    Kqs/cu meter

    16.02

    Pounds/cu in

    Pounds/mil-foot

    0.000009425

    Pounds/cu in

    Gms/cu cm

    27.68

    Pounds/cu in

    Pounds/cu ft

    1728

    Pounds/cu in

    Kgs/cu meter

    27680

    F. Relative Density (Speci fic Gravity) Of Various Substances

    Substance

    Relative

    Density

    Water (fresh)

    1.00

    Mica

    2.9

    Water (sea average)

    1.03

    Nickel

    8.6

    Aluminum 2.56

    Oil (linseed) 0.94

    Antimony 6.70

    Oil (olive) 0.92

    Bismuth

    9.80

    Oil (petroleum)

    0.76-0.86

    Brass

    8.40

    Oil (turpentine)

    0.87

    Brick

    2.1

    Paraffin

    0.86

    Calcium

    1.58

    Platinum

    21.5

    Carbon (diamond)

    3.4

    - 19 -

    Formulas and Conversions

  • 7/25/2019 Engineering Hand Book

    12/42

    Substance

    Relative

    Density

    Sand (dry)

    1.42

    Carbon (graphite)

    2.3

    Silicon

    2.6

    Carbon (charcoal)

    1.8

    Silver

    10.57

    Chromium

    6.5

    Slate

    2.1-2.8

    Clay

    1.9

    Sodium

    0.97

    Coal

    1.36-1.4

    Steel (mild)

    7.87

    Cobalt

    8.6

    Sulphur

    2.07

    Copper

    8.77

    Tin

    7.3

    Cork

    0.24

    Tungsten

    19.1

    Glass (crown)

    2.5

    Wood (ash)

    0.75

    Glass (flint)

    3.5

    Wood (beech)

    0.7-0.8

    Gold

    19.3

    Wood (ebony)

    1.1-1.2

    Ir on ( cast)

    7.21

    Wood (elm)

    0.66

    Iron (wrought)

    7.78

    - 20 -

    Formulas and Conversions

    Substance

    Relative

    Density

    Wood (lignum-vitae)

    1.3

    Lead

    11.4

    Magnesium

    1.74

    Manqanese

    8.0

    Mercury

    13.6

    Lead

    11.4

    Magnesium

    1.74

    Manganese

    8.0

    Wood (oak)

    0.7-1.0

    Wood (pine)

    0.56

    Wood (teak)

    0.8

    Zinc

    7.0

    Wood (oak)

    0.7-1.0

    Wood (pine)

    0.56

    Wood (teak)

    0.8

    Zinc

    7.0

    Mercury

    13.6

    G. Greek Alphabet

    Name

    Lower

    Upper

    Case

    Case

    Alpha

    o

    A

    Beta

    ~

    B

    Gamma

    y

    r

    Delta

    1 5

    D .

    Epsilon

    E

    E

    Zeta

    ~

    Z

    ~ .

    - 21 -

  • 7/25/2019 Engineering Hand Book

    13/42

    Formulas and Conversions

    Name

    Lower

    Upper

    Case

    Case

    Eta

    ~

    H

    Theta

    e

    e

    Iota

    I

    I

    Kappa

    K

    K

    Lambda

    A

    r ;

    Mu

    ~

    M

    Nu

    v

    N

    Xi

    ~

    -

    Omicron

    0

    0

    Pi

    n

    n

    Rho

    p

    P

    Sigma

    a

    and c ;

    L

    Tau

    T

    T

    Upsilon

    u

    y

    Phi

    'P

    < P

    Chi

    X

    X

    Psi

    Ii

    4J

    Omega

    w

    Q

    - 22 -

    Formulas and Conversions

    [ Chapter 3 '

    I

    Sy st em of Uni ts

    The two most commonly used systems of units are as follows:

    SI

    Imperial

    SI: The International System oflnits (abbreviated SI ) is a scientific method of expressing

    the magnitudes of physIca l quant rues. TIllS system was formerly called the meter-kilogram-

    second (l\1KS) system.

    Imperial: A unit of measure for capacity officially adopted in the British Imperial System;

    British units are both dry and wet

    Metr ic system

    Exponent

    Numerical

    Representation

    value

    eauivalent

    Example

    Tera

    10

    12

    1000000000000

    T

    Thz (Tera

    hertz)

    Giga

    10

    1000000000

    G

    Ghz (Giga

    hertz)

    Mega

    10

    1000000

    M

    Mhz (Mega

    hertz)

    Unit

    1

    hz (hertz)

    quantity

    1

    F (Farads')

    Micro

    10'

    0.001

    ,I

    ,IF (Micro

    farads)

    Nano

    10-

    0,000001

    n

    nF (Nano

    farads)

    Pico

    10-

    12

    0.000000000001

    pF (Pico

    p

    farads)

    Conversion Char t

    ~

    Into

    Into

    Into

    Into

    Into Into

    Into

    I2 Y

    Mill i

    Centi

    Oed

    MGL* Oeca

    Hecto Kilo

    To

    convert

    10

    10

    5

    10'

    10

    3

    10

    2

    10'

    1

    Kilo

    - 23 -

  • 7/25/2019 Engineering Hand Book

    14/42

    Formulas and Conversions

    ul tply Into

    Into Into

    Into Into Into Into

    I

    bv

    Milli Centi

    Oeci

    MGL* Oeca Hecto

    Kilo

    To

    Formulas and Conversions

    convert

    10

    s

    10'

    10

    3

    102

    10

    '

    1

    10-

    1

    I

    Hecto

    i

    To

    Symbolic

    I

    convert

    10'

    10

    3

    102

    10

    '

    1

    10-

    1

    10-

    2

    Name

    Representation

    Numerical Equivalent

    Oeca

    I

    Acceleration due to gravity on

    9.80 m S-2

    To

    I

    g

    convert 10

    3

    102

    10

    '

    1

    10-

    1

    10'2 10-

    3

    Earth

    MGL*

    cceleration due to gravity on the

    g

    1.62 m S-2

    To

    Moon

    convert

    102 10' 1 10-1 10-2 10-3 10-4 Radius of the Earth RE 6.37

    X

    10 m

    Oeci

    Massof the Earth

    ME

    5.98 x 102 (1 Kilo X 10

    6

    ) Milligrams

    Earth-Sun distance

    1.50 x 10 m

    Physical constants

    Speed of li ght i n air

    c

    3.00 x 10

    8

    m s

    Symbolic

    Numerical Equivalent

    Electron charge

    e -1.60 x 10-

    1

    C

    Name

    Representation

    Mass of electron

    rn,

    9.11 x 10-

    31

    kg

    Avogadro's number N

    6.023 x 10

    2

    /Ckg mol)

    :~

    lanck's constant

    h

    6.63 x 10-

    34

    J s

    Bohr magneton B

    9.27 x 10-2

  • 7/25/2019 Engineering Hand Book

    15/42

    Formulas and Conversions

    Name

    Symbolic

    __Rel r esentation

    Numeric al Equivalent

    Electron ic rest mass

    m e

    Electronic charge to mass ratio

    e/rn,

    9.109 X 10'31kg

    1.759 X 10 C/kg

    Faraday constant

    F

    Permeability of free space

    ~IO

    9.65 X 10

    7

    C/(kg mol)

    4n x 10'7 H/m

    Permittivity of free space

    E o

    8.85

    X

    10'1' F/m

    Pianck's consta nt

    h

    Proton mass

    mp

    Proton to electron mass ratio

    m p/m e

    6.626 X 10'34 J s

    1.672 X 107 kg

    1835.6

    Standard gravitational

    acceleration

    g

    Universal constant of g ravitation

    G

    Universal gas constant

    R o

    9.80665 rn/s, 9.80665 N/k

    6.67

    x

    10-11 N m'/kg'

    8.314 kJ/(kg mol K)

    Velocity of light in vacuum

    C

    Temperatu re

    c

    2.9979

    x

    10 m/s

    5/9(OF - 32)

    Temperature

    K

    5/9(OF + 459.67), 5/9

    0

    R , -c

    273.15

    Speed of liqht i n air

    c

    Electron charge e

    Mass of electron

    m e

    3.00 x 10 m s'

    -1.60

    X

    109 C

    9.11 X 10'31kg

    Planck's constant h

    Universal gravitational constant

    G

    Electron volt

    1eV

    Mass of proton

    m p

    - 25 -

    6.63

    X

    10'34J s

    6.67

    X

    10' N m' kg

    1.60 X 109 J

    1.67 X 107 kg

    [ Chapter 4 .- I

    General Mathematical Formulae

    4.1 Algebra

    A Expansion Formulae

    square of summati~n 2

    (x

    Y ) 2

    = x + Zxy +

    Y

    square of difference

    (x - y) 2= x2 - 2xy +

    i

    Differenceof squares

    .x

    2

    -i=(x+y)(x-y)

    Cube of summation

    (x + y)' = x

    3

    + 3x

    2

    y + 3xi + y'

    Summationof two cubes

    x' + y' = (x + y) (x

    2

    - xy +

    i)

    Cube of difference

    (x - y) 3 = X _ 3x

    2

    y + 3xy2 _ y'

    Differenceof two cubes

    x' - y' = (x - y) (x

    2

    + xy +

    i)

    B.

    Quadratic Equation

    Ifax

    2

    + bx + C = 0,

    -b

    J b

    2

    ''- --4-a-c

    Then X

    =-------

    2a

    TIle b .

    CtSH ; algebraic pro erties ot real numbers 3, band care:

    Property

    Description

    Closure

    a + band ab are real numbers

    Commutative

    a + b

    =

    b + a, ab

    =

    ba

    Associative

    (a+b) + c = a + (b+c), (ab)c = a(bc)

    Distributive

    (a+b)

    =

    ac+bc

    - 27 -

    Formulas and Conversions

  • 7/25/2019 Engineering Hand Book

    16/42

    Identity

    a+O = O+a = a

    Inverse a + (-a) = 0, a(l/a) = 1

    Ca ncellation

    If a+x=a+y, then x=y

    Zero-fa ctor

    aO = Oa = 0

    Negation

    -(-a) = a, (-a)b= a(-b) = -(ab), (-a)(-b) = ab

    Algebraic Combinations

    Factors with a common denominator can be expanded:

    a+ b a b

    --=+

    C C C

    Fractions can be added by finding a common denominator:

    a b ad+ bc

    -+=--

    c d cd

    Products of fractions can be carried out directly:

    a b ab

    c d cd

    Quotients of fractions can be evaluated by inverting and multiplying:

    a d ad

    r, ;= bx-;;-= bc

    Radical Combinations

    V a b = V a V b

    Va =a

    1/11

    ~=~

    v;;; = a~

    a = M r a

    - 28 -

    10

    ::I

    ell

    u ::

    +

    Gl

    E

    ~

    I

    ~

    :I

    Z

    z

    '0

    >

    III

    Gl

    . .

    ~

    Gl

    ~

    I

    ~

    0>

    . . ,

    Z Z

    rv

    III

    . .

    . .

    ::I

    III

    I

    :5

    'C

    II

    I

    I

    OJ

    ~oo

    Gl

    I

    N

    00-

    . .

    V

    ~-'

    ~

    ~11

    '

    :

    OJ

    ~

    Gl

    I

    . . , . .

    C Gl

    Gl

    I

    C D

    :. ,

    Gl

    . ..

    J E

    Qj

    V

    I

    +

    ; :

    v

    E

    : :I G l

    ~

    0

    ..,Il.

    N

    Q I

    .:

  • 7/25/2019 Engineering Hand Book

    17/42

    eaJV

    Ja~aw Jad /

    wan

    aJn6::I

    awnloA

    eaJ a:>elJ

    a:>ua.laJwn:>.II,:)

    Item

    I Circumference 1

    Area

    ISurface Area Vo me

    Figure

    / Perimeter

    , ( > )( s

    b)(\

    0)

    - O -

    i N

    i N

    5

    +

  • 7/25/2019 Engineering Hand Book

    18/42

    VN

    VN

    pIL

    =

    J

    ilPJ )

    z-lIL

    = V

    JILZ

    =

    J

    ~lre3 lZ:.'Il

    { _ Z

    ) = 1 7

    are < 1 > pu e

    e

    ; Ja I lA \

    plozildeJJ.

    I

    \

    /

    VN

    VN

    ( u t S o n ]

    +C J

    \+-1-iqv

    iun6 ::1

    ea.llf

    .Ia~aW.Iad /

    a:Jua.lajwn:1.ID

    - l -

    ~

    I

    Item

    Circumference ~

    I

    Perimeter Area

    Surface Area

    Volume

    Figure

    A=

    arc x

    r

    2

  • 7/25/2019 Engineering Hand Book

    19/42

    \

    /

    'VN

    'VN

    l/ Zq

    +

    lq )~

    = V

    sapis lie jo wnS

    piozad

    eJ.l

    1

    iun6;j

    awnlo/\

    eaJ V a:>ejJns

    eaJV

    Ja~aw Jad /

    wan

    a:>ua.laJwn:>.I0

    Item

    Circumference

    Area

    J

    Perimeter

    Su fa eAr

    Volume figure

    - r - r

    - v[-

    apis

    ljO

    4~6uill

    il4~

    s 5

    ilJil4M

    zS9 'Z =

    If

    59

    'V N

    u06eXilH

    'V N

    A

    =

    4,83

    52

  • 7/25/2019 Engineering Hand Book

    20/42

    - 9 -

    V'N

    V'N

    V'N

    PIOS

    4 x M

    I

    V'N J~ln5u~pil~

    D

    p

    Z

    +

    4

    M

    Z

    +

    4H

    .Ia~awl.1ad /

    Item

    Circumference

    Area Surface Area

    Volume

    Figure

    / Perimeter

    ;0

    'O~

    Formulas and Conversions

  • 7/25/2019 Engineering Hand Book

    21/42

    ~

    . ,

    Vi ::J

    30

    c:

    sr

    0

    ~

    ~

    +

    zr

    z

    z

    z

    i

    w

    e x >

    ' -

    l

    Iv

    tr

    N

    1 / 1

    :i'

    I

    e

    +

    . .

    N

    Q T

    ~

    t\

    +

    III

    N

    )0

    :: E

    I

    i

    r

    -

    =

    useful f lux per pole (webers). entering or leaving the armature

    p = number of pairs of poles

    I\' =

    speed (revolutions per minute)

    Generator Tenninal volts EG JaRa

    ~lolor Terminal volts = EB - JaRa

    - 4S -

    Formulas and Conversions

  • 7/25/2019 Engineering Hand Book

    25/42

    Formulas and Conversions

    Where EG

    =

    generated e.m.f.

    EB generated back c.m.f.

    la

    =

    armature current

    Ra = armature

    resistance

    Alternating Current

    R.\lS value of sine curve

    =

    0.707 of maximum value

    Mean Value of Sine wave

    =

    0.637 of maximum value

    Form factor = RMSvalue MeanValue = 1.11

    Frequency of Alternator =

    pN

    cycles per second

    . 60 .

    Where p ISnumber of pairs of poles

    )J

    is the rotational speed in r rnin

    Slip of Induction Motor

    [ISlip speed of the field - Speed of the rotor) I Speed of the Field] x 100

    Induclors and Induclive Reaclance

    Physical Quantity

    Equation

    Inductors and Inductance

    V

    L

    = L

    ii.

    d I

    Inductors in S eries: LT= L, + L, + L3 + , ..

    Inductor in Parallel:

    1 1

    1

    I

    -=-+-+-+ ..

    LT

    L, L, L,

    Current build up

    ,

    (switch initially closed after having

    At vL(t)=Ee';

    been opened)

    t

    YR(t)=E(l-e ')

    . E '

    I(t)=-(l-e ')

    R

    L

    T = -

    R

    Current decay

    ,

    (switch moved to a new position)

    i(l) 1 0 e t

    v.(t) = R i(t)

    VL(t) =

    RTi(t)

    ~cal

    Quantity

    f = lIT

    rn =

    2][ f

    Equation

    L

    T'= ~

    L .- --

    Alternating current

    L .- --

    complex Numbers:

    C=a+jb

    C =

    M

    cos

    e

    + j

    M

    sin

    e

    M=,/a'+b'

    e = lan '('.)

    a

    polar form:

    C

    =

    M ~

    e

    Inductive Reactance

    IXcI

    =

    00 L

    Capacitive Reactance

    IXcl =

    1 /

    (00

    C)

    Resistance

    R

    Impedance

    Resistance: Z. = R ~Oo

    Inductance: ZL = XL

    L90

    =

    00

    L

    L900

    Capacitance: Zc = Xc ~-90 = 1/ (we)

    L. -90

    0

    Quantity

    Equation

    Ohm's Law for AC

    V=IZ

    Time Domain

    vet) = Vm sin (00 t

    < 1

    i(t) = 1msin (00 t < 1

    Phasor Notation

    V = V,m, L

    V = Vm - < I >

    Compon ents in Series

    ZT = Z, + Z, + Z3 + .

    Voltage Divide r Rule

    V =V ~

    x

    T

    Z T

    Components in Parallel

    1

    1

    1

    1

    -=-+-+-+ ..

    ZT Z,

    Z,

    Z,

    - 47-

    Formulas and Conversions

  • 7/25/2019 Engineering Hand Book

    26/42

    Quantity Equation

    Current Divider Rule

    IT ~~

    ,

    Two impedance va lues in

    Z _ l,Z,

    parallel

    T Z, + Z,

    Capacitance

    Capacitors

    C=

    Q

    [F] (Farads)

    v

    Capacitor in Series

    I I I l

    ..

    C

    T

    C,

    C,

    C,

    Capacitors in Parallel

    CT=C,+C,+C

    J

    +

    Charging a Capacitor

    E .. ...

    i(t)= R e RC

    ,

    v

    R

    (t)

    E e RC

    ,

    vc(t)=E(l-eOCj

    T = RC

    Discharging a

    \

    .'

    Capacitor

    i(t)=

    -....e

    r'

    R

    ,

    vR(t)=-V. eO;'

    ,

    vc(t)

    \0

    e r

    t= R-rC

    Quantity

    Equation

    Capacitance

    C=

    V

    - 48 -

    Formu las and Conversions

    Quantity

    Equation

    Capacitance of a

    C=e4

    Parallel-plate Ca pacitor

    d

    E

    = ~

    d

    Isolated Sphere C = 4nEr

    Capacitors in parallel

    C = C

    ,

    + C, + C,

    Capacitors in series

    I

    I

    1

    I

    =

    C

    C,

    C,

    C,

    Energy stored in a

    charged capacitor

    IT =~= .. .C -, =.. .QV

    2C 2 2

    If the ca pacitor is

    isolated

    w=~

    2C

    If the capacitor is

    W =...CV

    connected to a battery

    2

    For R C circuits

    Q = Qo (1 - e-'1

    R

    c);

    Charging a capacitor

    V =

    v ,

    (1 - e-

    t

    /

    RC

    ;

    Discharging a capacitor

    Q

    =

    Qo

    e-'1

    R

    C

    V = Vo

    e- '1

    R

    C

    If the capacitor is isolated, the presence of the dielectric decreases the potential

    difference between the plates

    If the capacitor is connected to a battery, the presence of the dielectric increases the

    charge stored in the capacitor.

    TI,e introduction of the dielectric increases the capacitance of the capacitor

    - 49 -

    Formulas and Conversions

    power dissipation

  • 7/25/2019 Engineering Hand Book

    27/42

    Formulas and Conversions

    Current in AC Circuit

    RMSCurrent

    In Ca rtesia n

    1= V

    1 2 [R-l(WL- ~)]

    orm -

    [R' + ( wL -

    C& C ) ]

    Amperes

    In polar form

    I -

    _ - 1/ > ,Amperes

    j t (

    1 r

    R' + (oL-- 1

    we)

    . [ d

    R ~l

    here 1 /> ,

    =

    1311-

    Modulus

    I I I

    I -

    Amperes

    ~R'

    + (

    mL- ~ J

    Complex Impedance

    In Cartesia n

    Z =

    R + l( mL- ~) Ohms

    form

    In pola r form

    Z=~R'+(mL- ~ J - I/> ,

    Ohms

    [ 1 1

    L - -

    Where 1/ > ,

    =

    lan' R C & C

    Modulus

    I

    r

    1 r

    Z

    =

    V[R' - \ (iJL- C &C 1 Ohms

    ,- -

    Average power, P

    = / f

    cos

    Watts

    power d issipat ion in a

    I 1 R Watts

    resistor

    -

    Rectification

    controlled half wave

    I -

    Average DC voltage

    (I

    j

    cosa)

    rectifier

    2

    Volts

    ~ontrolled full wave /

    Average DC voltage

    (ltcosa)rectifier

    n

    Volts

    powerFactor

    DC

    I'R

    1-

    Power

    Pi

    11

    R

    AC

    Pac

    =Re(I-.)=

    I J

    cos

    Power

    Powerin ac circuits

    Quantity

    Equation

    Resistance

    The mean power

    =

    P

    =

    I,,,,, V,,,,,

    =

    I,m,2R

    Inductance

    The insta ntaneous power = (10 sin wt) (Vo sin (wt +

    n)

    The mean power

    p

    = a

    Capacitance

    The i nstantaneous power

    =

    (10 sin (wt + n/2)) (Vo sin

    wt)

    The mean power

    P =

    a

    Formula f or a .c.

    The mean power

    =

    P

    =

    I,,,,, V,,,,, cos

    ower

    - 51 -

    ormu as an onversons

    Three Phase Alternators

  • 7/25/2019 Engineering Hand Book

    28/42

    Star connected

    Line voltage = 3 . phase voltage

    Line current

    =

    phase current

    Delta connected

    Line voltage = phase voltage

    Line current = 3 . phase current

    Three phase power

    P

    =

    3 EL IL cos

    EL

    =

    line voltage

    lL

    =

    line current

    cos

    =

    power factor

    Electrostatics

    Quantity Equation

    Instantaneous current,

    I

    =

    dq

    =

    C dv Amperes

    dt dt

    Permittivity o f free space

    10

    9

    _

    10-

    12

    Farads

    =--=8.8)

    o 3 6 1 1

    (meters)

    Energy stored in a

    =..CV,

    Joules

    capacitor

    2

    Quantity Equation

    Coulomb's law

    F=k

    Q,Q

    ,

    r

    Electric fields

    E=f.

    q

    Due to a point charge

    E=-Q-

    4JT6 r2

    Due to a conducting sphere carrying charge

    E

    =

    0

    Q Ins ide the sphere

    - S2 -

    /

    Formulas and Conversions

    I ' Quantitv

    Equation

    outsi de t he sphere

    E

    Q

    4ne r'

    Just outside a uniformly charged conducting

    E

    cr

    sphere or plate

    c

    Anelectric field E is a vector

    TI,e electric field strength is directly proportional to the number of electric f ield l ines

    per unit cross-sectional area.

    The electric field at the sur face ofa conductor is perpendicular to the surface.

    TI,e electric field is z ero i nside a conductor.

    Quantity

    Equation

    Suppose a point charge

    Q

    is at A. The work done in

    11

    Qq

    bringing a charge

    q

    from infinity to some point a distance

    4ne,

    from A is

    Electric potentia I

    /. = ~

    q

    Due to a point charge

    v = Q

    4ne r

    Due to a conducting sphere, of radius a, carrying charge

    1=-'

    :

    4ne anside the sphere

    Outside the sphere

    r

    Q

    4ne,

    I f

    the potential at a point is

    V,

    then the potential energy

    U

    =

    qV

    of a charge

    q

    at that point is

    Work done in br inging charge

    q

    from A of potential

    VA

    to

    W =

    q (V B - VA )

    POint B of potential

    VB

    - S3 -

    Formulas and Conversions

    PhysicalQuantity

  • 7/25/2019 Engineering Hand Book

    29/42

    Formulas and Conversions

    Quantity Equation

    Relation between E a nd V dV

    E=--

    dx

    For unifo rm e lectric field

    E = ~

    d

    Magnetostatics

    Physical Quantity

    -

    Equation

    Magnetic flux density (also called the B-

    B=F

    field) is defined as the force acting per unit

    current length.

    t e

    Force on a current-carrying conductor in a

    F = I

    e

    BF = I

    .

    B

    magnetic field

    And Magnitude of F = F = I B

    sin e

    Force on a moving charged particle in a

    F=qvB

    magnetic field

    Circulating Charges

    ,

    mv

    qvB=-

    r

    Calculation of magnetic flux density

    Physical Quantity Equation

    Magnetic f ields around a long straight wire

    B =

    JL o l

    carrying current

    I

    7

    where a

    =

    perp. distance from a

    very long straight wire.

    Magnetic fields inside a long solenoid,

    I:B = ~ n I,where n = number of

    carrying current turns per unit length.

    Hall effect

    OVH =OvB

    and

    At equilibrium

    - d -

    VH = B v d

    The current in a,mater ial isgiven by

    1= nQAv

    - S4 -

    Theforces between two current-carrYing

    conductors

    I~,

    .1l1,l,f

    2,m

    Equation

    ~

    .---- lt

    Physical Quant i y

    Equation

    ~ torque on a rec tangular coil In a magnetic

    T

    =

    Fb sin e

    field

    =

    N IeBb sine

    = NIA B sine

    I T

    t he co il i s in a radial f ield and the pl ane of the

    T

    =

    NIA B s in e

    coil is always paral le l to the field, then

    =

    N

    I

    A B sin 90

    0

    = NIA B

    Magnetic flux

  • 7/25/2019 Engineering Hand Book

    30/42

    Energy stored in an inductor:

    U =...L/'

    2

    Tra nsformers: I

    N:

    - - - - -

    =

    lip

    Np

    The L R (d.c.) ci rcuit:

    1 =~(l_e-Rr ')

    R

    When a g reat load (or smaller

    II -8

    res is ta nce) is con nected to

    v; -Ep. 'R; 1 =~

    the secondary coil, the flux in

    the cor e dec reases. The

    e.m.f.,

    Ep,

    in the primary coil

    falls.

    Kirchoff's laws

    Kirchoff's firs t l aw (Junction Theorem)

    At a junct ion, t he to ta l cur rent entering the junction is equal to the total

    cur rent l eavi ng t he j unct ion.

    Kirchoff's second law (Loop Theorem)

    The net e.m.f. round a circuit is equal to the sum of the p.d.s round the loop.

    Physical Quantity

    Equation

    Power

    W

    P=-=VI

    t

    Electr ic cur rent

    1=3.

    t

    Work

    W=qV

    Ohm's Law

    V =IR

    Resists nces in Series

    RT = R, + R,,,.

    Resista nces in Paral lel

    1 1 1

    -=-+-.

    RT

    R,

    R,

    Magnetic flux

    =BA

    - 56-

    /

    Formulas and Conversions

    Electroma g n etic

    Emf=-N (< >,-,l

    induction

    t

    emf = IvB

    Magnetic force

    F=IIB

    T ransf orme r t ur ns r at io

    Vs = Ns

    Vp

    Np

    Electromagnetic spectrum

    Frequency

    Wavelength

    10

    2

    10

    I I

    ).(m)

    1

    I

    10-

    1

    10-

    2

    10-

    3

    10-

    4

    10-

    5

    10-

    6

    10-

    7

    108 10-9 10-1010-11

    I

    I I I I I I I I

    I

    - ' -- r

    10

    16

    , - - - - - - ,

    10

    17

    10

    18

    10

    19

    10

    20

    r ad lo fr ea uenC les

    I

    ,

    ,

    ,

    ,

    , '

    , ,

    , ,

    ,

    '

    ii

    : :

    :

    :

    :.; Inrrartdradia ion

    , ,

    ,

    :

    gamm a ra ys

    &Lm

    lo.rea of

    Ispectrum

    ,

    ,

    ; I m lcr o w ay s

    :.

    .

    ,

    15 : . U ftre vi ol e l :

    :~: rad jallon ,

    - ,

    10

    7

    10

    8

    I I I I I I

    10

    9

    10lD 1011 10

    12

    10

    13

    1014

    (Hz)

    10

    10

    15

    Note: 1. Shaded areas represent regions of overlap.

    2. Gamma rays and X-rays occupy a common region.

    5.2 Applied Mechanics

    5.2.1 Newton 's laws of motion

    Newton' first law of motion

    The inertia ofa body is the reluctance of the body to change its state of rest or motion.

    Mass is a measure of inertia.

    Newton's second law of motion

    F

    _mv-mu.

    - tit

    F = m a

    Formulas and Conversions

    ,--

  • 7/25/2019 Engineering Hand Book

    31/42

    Formulas and Conversions

    Impulse = force' time = change of momentum

    Ft=mv-mu

    Newton's third law of motion

    When two objects interact, the y exert equal and opposite forces on one another.

    Third-law pair of forces act on two different bodies.

    Universal Law

    F

    =

    Gm,mp/d

    2

    m, is the mass of the sun.

    mp is the mass of the planet.

    The Universal law and the second law must be consistent

    Newton's Laws of Motion and Their Applications

    Physical Quantity Equations

    s v + u

    V V t

    verage velocity

    2

    Acceleration

    v-u

    a=--

    t

    Momentum

    p=mv

    Force F=ma

    Weight

    weight =mg

    Work done W =

    Fs

    Kinetic energy

    EIo; =tmv2

    Gravitational potential energy

    E, = mgh

    v-u

    a=--'

    t

    s

    =

    ut + tatl ;

    v

    2

    =

    u

    2

    +2a5

    quations of motion

    Centripeta I acceleration

    v

    a=-

    r

    Centripetal force

    F=ma= mv'

    r

    Newton's Law of Universal

    Gravitation

    F=Gm,m,

    r

    . . . . .

    g=G~

    r

    Physical Quantity

    Equations

    . . . -

    Gravitational field strength

    Physical Quantity

    Equations

    Moment of a force

    M=rF

    Principle of

    l:M=O

    moments

    Stress

    Stress =

    .

    A

    Strain

    Strain = ~

    I

    Young's Modulus

    F /A

    y=--

    ~III

    Scalar: a property described by a magnitude only

    Vector: a property described by a magnitude and a direction

    ity: vector property equal to displacement

    I

    time

    The magnitude of velocity may be referred to as speed

    In SI the basic unit is m s, in Imperial ftls

    Other common units are

    kmlh,

    miJh

    Conversions:

    Im 1 s = 3.28 ftls

    lkm/h = 0.621 mi/h

    Speed of sound in dry air is 331 m s at OC and increases by about 0.6 I m s for each 0C

    rise.

    Speed oflight in vaccum equals 3

    x

    108

    m1s

    Acceleration: vector property equal to change in velocity time.

    In SI the basic unit is m/s '

    lIT Imperial ftls

    2

    - 59 -

    Formulas and Conversions

    Conversion:

  • 7/25/2019 Engineering Hand Book

    32/42

    lm~'28.fi

    s _

    Sl

    Acceleration due to gravity. g is 9.81 m s'

    5.2.2 Linear Velocity and Acceleration

    Quantity Equations

    If u initial velocity and v final velocity,

    5=(; tl ~

    then displacement

    s,

    If t is the elapsed time

    1 ,

    s=ut+-at-

    2

    If a is the acceleration

    , =11' +2as

    Angular Velocity and Acceleration

    Quant ity Equations

    B angular displacement

    c

    1 +

    lU

    (radians)

    f

    2

    w angular velocity (radians s):

    w ,

    = initial, W2 = final

    I

    )=iJ\t+-at

    2

    a angular a cc eler at ion

    liJ,=iJ\

    +2aB

    (radians/5

    2

    )

    Linear displacement s = r

    B

    Linea r velocity

    v = r

    w

    Linear, or tangential

    aT = r a

    acceleration

    Tangential, Centripetal and Total Acceleration

    Quantity

    Equations

    Tangential acceleration aT is due to angular acceleration

    aT = ra

    a

    - 60 -

    Formulas and Conversions

    ~tripetal (Centrifugal) acceleration ac is due to change

    Iin direction onlv

    ac = v2/r = r

    w

    2

    t70.tal acceleration, a, of a rotating point experiencing

    I angular acceleration is the vector sum of aT and ac

    a

    =

    aT + ac

    5.2.3 Force

    Vector quantity, a push or pull which changes the shape and/or motion of an object

    In SI the unit of force is the newton, N, defmed as a kg m

    In Imperial the unit offorce is the pound Ib

    Conversion: 9.81 N = 2.21b

    Weight

    The gravitational force of attraction between a mass, m, and the mass of the Earth

    In SI weight can be calculated from Weight = F =mg, where g = 9.81 m/s2

    In Imperial, the mass of an object (rarely used), in slugs, can be calculated from the

    known weight in pounds

    weight

    n1=---

    g

    g

    =32 2 ft

    . 5

    Torque Equation

    T

    = I

    Cl

    where

    T

    is the acceleration torque in Nm, I is the moment of inertia in kg m2 and

    C l is the angular acceleration in radians/s

    2

    Momentum

    Vector quantity, symbol p.

    p =mv (Imperial p = (w/g)v, where w is weight]

    in SI unit is kgm / s

    Work

    Scalar quantity, equal to the (v ector) product of a force and the displacement of an

    object. In simple systems. where W is work,

    F

    force and s distance

    W = F

    s

    In SI the unit of work is the joule, J, or kilojoule, kJ

    1

    J

    = 1

    Nm

    In Imperial the unit of work is the ft-lb

    Energy

    Energy is the ability to do work, the units are the same as for work; J, kJ, and ft-lb

    Formulas and Conversions

    A scalar quantity, equa l to the rate of doing work

    In SI the unit is the Watt W (or kW)

  • 7/25/2019 Engineering Hand Book

    33/42

    Formulas and Conversions

    Kinetic Energy

    1

    E. =-mk'6J'

    2

    Where k is radius of gyration. (()is angular velocity in rad/s

    Kinetic Energy of Rotation

    Er=~/6J'

    2

    Where 1

    =

    mt? is the moment of inertia

    5.2.4 Centripetal (Centri fugal) Force

    F,

    mv'

    r

    Where r is the radius

    Where

    co

    is angular velocity in rad/s

    Potential Energy

    Quantity Equation

    Energy due t o position in a force Ep = m g h

    field, such as gravity

    In Imperial this is us ually expressed Ep = w h

    Where

    w

    is weight, and h is height

    above some sp ec if ie d da tum

    Thermal Energy

    In SI the common units of thermal energy are 1. and kJ, (and kJlkg for specific

    quantities )

    In Imperial, the units of thermal energy a re British Thermal Units (Btu)

    Conversions

    I Btu = 1055 J

    1Btu = 778 ft lb

    Electrical Energy

    In SI the units of electrical energy are 1. k J a nd kilowatt hours kWh. In Imperial, the unit

    of electrical energy is the kWh

    Conversions

    I k\Vh = 3600 kJ

    I k\\ll 3412 Btu

    =

    2.66

    X

    10

    6

    ft-Ib

    Power

    - 62 -

    IW=I.-

    s

    In Im peria l, th e un its ar e:

    Mechanica l Power - (ft - lb) s, horsepower h.p.

    Thermal Power - Btu s

    Electrical Power - W.kW. or h.p.

    Conversions

    746W =Ih.p.

    ih.p. = 550

    ft

    -Ib

    s

    IkW

    = 0.948

    8m

    s

    Pressure

    A vector quantity. force per unit area

    In SI the basic units of pressure are pascals Pa and kPa

    lPa=l~

    m

    In Imperial, the basic unit is the pound per square inch, psi

    Atmospheric Pressure

    At sea level atmospheric pressure equals 101.3 kPa or 14.7 psi

    Pressure Conversions

    I psi = 6.895 kPa

    Pressure may be expressed in standard units, or in units of static fluid head, in both SI

    and Imperial systems

    Common equivalenc ies a re:

    1kPa = 0.294 in. mercury = 7.5 mm mercury

    1 kPa

    =

    4.02 in. water

    =

    102 mm water

    1 psi = 2.03 in. mercury = 51.7 mm mercury

    1 psi = 27.7 in. water = 703 mm water

    .1 m H20 = 9.81 kPa

    Other pressure unit conversions:

    1 bar

    =

    14.5 psi

    =

    100 kPa

    1 kg/ern

    2

    = 98.1 kPa = 14.2 psi = 0.981 bar

    - 63 -

    Formulas and Conversions

    01 atmosphere (atm) 10 1.3 kPa 14.7 psi

  • 7/25/2019 Engineering Hand Book

    34/42

    Simple Harmonic Motion

    Velocity ofP _

    li J J R 2 - - ; ;

    m

    s

    5.2.5 Stress, Strain And Modulus Of Elasticity

    Young's modulus and the breaking stress for selected materials

    Material

    Young modulus

    B reak ing stress

    x 10 Pa

    x 10 Pa

    Aluminium 0.70

    2.4

    Copper

    1.16

    4.9

    Brass 0.90 4.7

    Iron (wrought)

    1.93

    3.0

    Mild steel 2.10

    11.0

    Glass 0.55 10

    Tungsten 4.10 20

    Bone 0.17

    1.8

    5.3 Thermodynamics

    5.3.1 Laws ofThermodynamics

    oW =P(\V

    o(\U

    = Q -

    W

    o W = nR T InV v 'V ;

    oQ

    =

    C n( \T

    oCv= 312R

    oCp= 512R

    o

    C p lC

    v

    = y= 5/3

    o e = I - Qe /Q = W /Qh

    oe,

    =

    I-

    TelT

    o

    CO P

    =Q,

    W

    (refrigerators)

    o

    CO P

    =

    Qh

    W (heat pumps)

    o Wm ax= (I T ,nh)Qh

    o(\S = QrT

    -64-

    Formulas and Conversions

    5.3.2 Momentum

    op =

    mv

    oLF

    =

    (\pl (\t

    5.3.3 Impulse

    I ~ F.,A

    t ~

    rnv, -

    m v,

    5.3.4 Elastic and Inelastic collision

    rnjV + m2v2 ::;mtVf + m2v2f

    (2) mjVli2 + (' 2) m2V212::; 12 mlVl? + 12m2

    V

    2f

    2

    o m;vl; + m2v2;

    =

    (m 1 + m2)Vr

    5.3.5 Center of Mass

    Xcm~ L:mxIM

    oV'm~LmvlM

    Acm

    =

    ~malM

    o MAcm = Fn

  • 7/25/2019 Engineering Hand Book

    35/42

    Formulas and Conversions

    5.3.10 Standing Waves

    ofn= nfl

    of

    n

    = nv.Zl, (air column, string fixed both ends) n = 1.2,3,4...

    ofn = nval, (open at one end) n = 1,3,5.7 ..

    ol:

    r, =

    0

    ol: r

    = 0

    (any axis)

    5.3.8 Gravi ty

    of = Gmlmvr2

    oT =

    21 t1

    ..Jr

    3

    /GM,

    oG = 6.67

    x

    1O-

    II

    N_m

    2

    ikg

    2

    og = GME/R\

    oPE = - Gmlm,l r

    ov, = ..J2GM

    E

    IRE

    ov,=..JGME/r

    oME = 5.97 X 10

    24

    kg

    oRE = 6.37

    X

    10

    6

    m

    5.3.9 Vibrations &W aves

    of =-kx

    oPE, =' ,kx

    2

    ox = Acos9 = Acos(rot)

    e v = -Aesinnct)

    oa = -Aro

    2

    cos(rot)

    oro=

    vk

    m

    of=

    1 T

    oT = 21t..Jm k

    oE=',kA

    2

    -T

    = 21t..JL

    I

    g

    .V

    m ax

    =

    Am

    eam ax

    =

    Au /

    ov= Af v

    =..J FT /fl

    ofl = mIL

    01

    = PIA

    o P = IOlog(lII

    o

    )

    010

    =

    Ix

    10.

    12

    W/m'

    of = f[(1

    vJv)/(l

    +

    v,iv)]

    oSurface area of the sphere = 4m

    2

    oSpeed of sound waves = 343 mls

    5_3.11 Beats

    ofb ,= fl-f,

    oFluids

    oP'

    1n1

    = 1.0I x lO

    s

    Pa = 14.7 Ih/in2

    oFB= prVg = Wr(weight of the displaced fluid)

    o pJpr = V

    rN 0

    (floating object)

    o pweee = 1000 kg/rn

    3

    .W.=W-F.

    Equation of Continuity: Av = constant

    Bernoulli's equation: P + Y, pv

    2

    + pgy = 0

    5.3.12 Temperature and Heat

    oT,,= 9/5T

    c

    +32

    o

    T

    c=

    5/9(T F-3 2)

    o

    L '. T F

    =

    9/5L '.T

    c

    oT=Tc+273.15

    o p=

    mlv

    o L'.L= ctLoL'.

    oM= yAoL'.T

    oL'.V=PVoL'.Tp=3a

    oQ = mcL'.T

    oQ=mL

    olkcal=4186J

    o Heat Loss = Heat Gain

    o

    Q

    =

    (kM

    T)t/L,

    oH =

    Q/t

    =(kAL'.T)/L

    oQ = earAt

    -P>

    QII

    oP=aAer

    oP n.,= aAe(T4-Ts4)

    o a = 5.67

    x

    10-

    8

    W/m

    2K4

    5.3.13 Ideal Gases

    oPV=nRT

    -R

    = 8.31

    J/mol

    K

    oPV = NkT

    o

    NA

    = 6.02

    x

    1023molecules/mol

    ok = 1.38 x 10-

    23

    JIK

    oM=NAm

    o(KE)ov=(

    1/2mv2

    ).v= 312kT

    oU= 312NkT = 3/2nRT

    - 67 -

    - 66-

    Formulas and Conversions

    5.3.14 Elastic Deformation

    .P= F A

    .y

    = FL

    o

    A6L

  • 7/25/2019 Engineering Hand Book

    36/42

    .s =

    Fh/A~x

    .B=-V~/MV

    Volume of the sphere =

    4m .3

    3

    .1 atm = LOI x 10

    5

    Pa

    5.3.15 Temperature Scales

    .oC =

    5/9

    (OF-32)

    .oF

    =

    5/9

    (OC+ 32)

    .OR = of +

    460

    (R Rankine)

    K = C

    +

    273 (K Kelvin)

    5.3.16 Sensible Heat Equation

    .Q=mc~T

    .M=mass

    C=specific heat

    ~T=temperature chance

    5.3.17 Latent Heat

    Latent heat of fusion of ice = 335 kJlkg

    Latent heat of steam from and at lOOC= 2257 kJlkg

    .1

    tonne of r efrigeration = 335

    00 0

    kJ day = 233 kJ/min

    5.3.18 Gas Laws

    Boyle's Law

    When gas temperature is constant

    PV = constant or

    PlVl = P2V2

    Where P is absolute pressure and V is volume

    Charles' Law

    When gas pressure is constant,

    V

    -=consl.

    T

    or

    ~=v,

    T . ,

    T,

    where V is volume and T is absolute temperature

    - 68 -

    /

    Formulas and Conversions

    Gay-Lussac's Law

    When gas volume is constant,

    P

    -=consl.

    T

    or

    l=

    P,

    T, T,

    where P is absolute pressure and T is absolute temperature

    General Gas Law

    P,V,

    =

    P,V, const.

    T, T,

    P V

    =

    m R T wher e P = absolute pressure (kPa)

    V = volume (m')

    T = absolute temp (K)

    m = mass (kg)

    R

    =

    characteristic constant (kJ/kgK)

    Also

    PV = nRoT where P = absolute pressure (kPa)

    V = volume (m)

    T = absolute temperature K

    N = the number ofkmoles of gas

    Ro = the universal gas constant

    8.314

    kJ/kmollK

    5.3.19 Specific Heats Of Gases

    Specific Heat Specific Heat

    at Constant at Constant Ratio of

    GAS Pressure Volume

    Specific

    kl/kgK

    or

    kl/kgK

    or

    v =

    cp / cv

    kl/kg C kl/kg C

    Air

    1.005

    0.718

    1.40

    Ammonia

    2.060

    1.561

    1.32

    Carbon Dio xi d e 0.825 0.630

    1.31

    Carbon

    1.051

    0.751

    1.40

    Monoxide

    Formulas and Conversions

    Where rv=cylinder volume clearance volume

    k = absolute pressure at the end of constant V heating (combustion) absolute pressure at

    the beginning of constant V combustion

    ~ =

    volume at the end of constant P heating (combustion) / clearance

  • 7/25/2019 Engineering Hand Book

    37/42

    Fo rmu las and Conversions

    Specif ic Heat Specific Heat

    at Constant

    at Constant Ratio of

    GAS Pressure

    Volume

    Specific

    kl/kgK

    or

    kl/kgK or

    v= cp / cv

    kl/kg DC kl/kg DC

    Helium

    5.234 3.153

    1.66

    Hydrogen

    14.235

    10.096

    1.41

    Hydrogen

    1.105

    0.85

    1.30

    Sulphide

    Methane

    2.177

    1.675

    1.30

    Nitrogen

    1.043

    0.745

    1.40

    Oxygen

    0.913 0.652

    1.40

    Sulphur Dioxide 0.632

    0.451

    1.40

    5.3.20

    Efficiency of Heat Engines

    Carnot Cycle

    T,-T,

    1=--

    T,

    where T, and T2 are absolute temperatures of heat source and sink

    Air S tandard Eff iciencies

    Spark Ignition Gas and Oil Engines (Constant Volume Cycle)

    1

    1=1-0

    r.

    ro=

    compression ratio

    y

    = specific heat (constant pressure) I Specific heat (constant volume)

    Diesel Cycle

    1=1-

    Ry-I)

    r:-y(R-I)

    Where r = ratio of c ompression

    R

    =

    ratio of cut-off volume to clearance volume

    High Speed Diesel (Dual-Combustion) Cycle

    kpr

    -I

    I] - Ic; ;

    - -: [(k -1) + jk(P -I)]

    volume

    Gas Turbines (Constant Pressure or Brayton Cycle)

    1}=1__ I_

    (

    L: )

    rp ,

    where

    Fp

    = pressure ratio = compressor discharge pressure I compressor intake pressure

    5.3.21 Heat Transfer by Conduction

    Material

    Coeff icient o f Thermal

    Conduct ivity

    W/m c

    Air

    0.025

    Brass

    104

    Concrete

    0.85

    Cork

    0.043

    Glass

    1.0

    Iron, cast

    70

    Steel

    60

    Wallboard, 0.076

    paper

    Aluminum

    206

    Brick

    0.6

    Copper

    380

    Felt 0.038

    Glass, fibre

    0.04

    Plastic, cellu la r

    0.04

    Wood

    0.15

    - 71 -

    Formulas and Conversions

    5.3.22 Thermal Expansion of Solids

    Increase in length

    =

    L (l (T, - Tj)

    Where L = original length

    (l = coefficient of linear expansion

    : >

    0

    , 0

    ~c

    u '

    hMlh~

    '-----

    00

    .s

  • 7/25/2019 Engineering Hand Book

    38/42

    (T, - T.) = rise in temperature

    Increase in volume

    =

    V ~ (T, - T

    I

    Where V

    =

    original volume

    P

    =

    coefficient of volumetric expansion

    (T, - T.) = rise in temperature

    Coefficient of volumetric expansion =Coefficient of linear expansion x 3

    ~ = 30

    5.3.23 Chemical Heating Value ofa Fuel

    hemical Heating Value MJ per kg of fuel

    =

    33.7C + 144(H, _ 0,) + 9.3S

    8

    C is the mass of carbon per kg of fuel

    H, is the mass of hydrogen per kg of fuel

    0, is the mass of oxygen per kg of fuel

    S is the mass of sulphur per kg of fuel

    Theoretical Air Required to Burn Fuel

    . [ 8 ] 1 0 0

    lr(kgperkgoffuel)= 3C+8(H,-O,)+S 23

    Air Supplied from Analysis of Fl ue Gases

    Air in kg per kg offuel

    = N,

    xC

    33(CO, +CO)

    Boiler Form~lae

    . . m

    1 1 -11 )

    Equivalent evaporation

    =

    ,I ,

    22 57 kJ I kg

    ( -h)

    Factor of evaporation

    = '

    22 5 7kJ I kg

    Boi ler E ff iciency

    m,( ,

    -h,)

    mf x (calorific value)

    Where

    m,

    =

    mass flow rate of steam

    hi = enthalpy of steam produced in boiler

    h,

    =

    enthalpy offeedwater to boiler

    mr =mass flowrate of fuel

    - 72-

    >

    ~

    8

    :>

    ~

    Q : '

    o

    h-

    I

    8

    10

    ;

    .E t > -

    c'

    . . . .

    ., .,

    , c

    cc,

    u'

    I I

    0.

    :E

    II

    C

    o

    ~ D.

    . ,

    ,

    II: ~

    ~

    Ii .

    . E > -

    . ,E -

    , , , ,

    c. c

    , '

    cC

    u '

    . ,

    c

    o

    'C

    o f

    o

    ~

    1 1

    'C

    'C

    i

    : z :

    . ,

    c

    iij

    > 0

    'O~

    ., . ,

    E

    U

    ' f

    o.

    ~

    II.

    h-

    I

    8

    ~

    10

    ;

    h-

    I

    8

    ; : : ;

    ~:o~ -;}

    ~.- c c

    S ~ 8 8

    g?(;~~

    0 __

    ~~i

    0 '''0

    o

    0

    ~~~~

    'E

    QJ & . & .

    ca.. orl){I)

    ~ l; j II II

    OuJ J

    *

    Q)

    I =

    h-

    I

    8

    . .

    10

    Ii;

    h-

    I

    8

    - r

    Ii;

    ~

    o

    ';;

    :; ;

    ~

    o

    ()

    ~

    ~

    ~

    o

    II.

    hM

    I

    h-

    ~ T 1

    ,

    .

    ~T~

    ---J

    II

    h- Ih '

    .

    r:1~

    ---J

    II

    0.,-10;

    . . . .

    u ~

    .~ II s

    1ii

    > 6 : c

    ~ 8

    M

    .. .

  • 7/25/2019 Engineering Hand Book

    39/42

    Formulas and Conversions

    Specific Heat and Linear

    Mean Specific Heat between oe

    Coefficient of Linear Expansion

    Expansion of Solids

    and lOOe kl/kgK or kl/kge

    between

    oe

    and

    lOOe

    (mult ip ly by

    10-

    6

    )

    Aluminum 0.909 23.8

    Antimony 0.209 17.5

    Bismuth 0.125

    12.4

    Brass 0.383

    18.4

    Carbon 0.795 7.9

    Cobalt

    0.402

    12.3

    Copper

    0.388 16.5

    Glass 0.896 9.0

    Gold 0.130 14.2

    Ice (between -20C & OC) 2.135

    50.4

    Iron (cast)

    0.544

    10.4

    Iron (wrought)

    0.465

    12.0

    Lead 0.131 29.0

    Nickel

    0.452

    13.0

    Platinum

    0.134 8.6

    Silicon

    0.741 7.8

    Silver

    0.235 19.5

    Steel (mild)

    0.494

    12.0

    Tin

    0.230 26.7

    \

    Zinc 0.389

    16.5

    ~r

    - 75

  • 7/25/2019 Engineering Hand Book

    40/42

    C I l

    c

    o

    C])

    >

    c:

    o

    (J

    0

    c:

    I l

    ..

    : :J

    E

    &

    Formulas and Conversions

    5.4 F lu id Mechanics

    5.4.1 Discharge from an Ori fice

    Let A

    =

    cross-sectional area of the orifice

    =

    ..d '

    4

    And Ac = cross-sectional area of the jet at the vena

    d'

    conrtacta

    4 '

    Then Ac

    =

    CcA

    OrC

    = ~ = ( d ' r

    Ii d

    Where C, is the coefficient of contraction

    C I l

    0

    '5

    C

    :. :;

    e

    0

    ii i

    e

    10

    c . . . .

    )(.,

    Q j l

    E>

    :I Q

    =

    v

    N

    0 0

    :

    r-,

    0>

    . ..

    N

    co .co.

    N

    r v i

    >ii

    . .. . .. . ..

    . ..

    . , .

    0 >

    -

    o~

    :I

    c : : : E :

    Q j

    ' ij

    It

    8

    u

    u

    .

    . .

    CI

    1 0 . . . . . \1 :

    Qj U .....

    :1: . ~

    0

    , . . . . ,

    co

    , . . . . ,

    0 >

    , . . . . ,

    I L l

    , .. ..,

    0

    , ... .,

    ~e .

    r-- r--

    , . . . .,

    v

    , ... . ,

    , . . . ., ,.. .. ,

    0 >

    0

    co

    = N 0

    : :

    . ..

    ~

    . ..

    . ..

    =

    co

    . ..

    u ~

    N

    0

    . ..

    ,. . . . ,

    0

    . ..

    N N

    . ..

    v

    ~~ CI

    /I ~

    . ..

    ~

    C ])

    -0

    .

    'x

    E

    Q)

    C ])

    z -

    Q)

    c:

    0

    ;;;

    c:

    c:

    0

    0

    : : J

    c:

    :;:;

    . ..

    5

    .c:

    0

    'N

    0

    ::J

    Q)

    Q)

    0

    c:

    2 :

    c :r

    0..

    e

    C ])

    r o

    u

    c:

    II)

    :J

    ct

    E

    Q)

    0

    C ])

    0

    4 i

    r o

    1 : -

    :;:

    ct:

    co

    - e

    : :; :

    (,)

    : :J

    0-

    I-

    r o

    U

    .. .

    s

    c

    o

    'iij

    c:

    ~

    x

    W

    C])

    E

    ::J

    ~

    0

    c:

    o

    C ])

    :c

    o

    Ii:

    c

    ~

    e n

    h

    d

    \

    Ve na c on tr ac ta

    At the vena contracta, the volumetric flow rate Q of the fluid is given by

    o Q = area of the jet at the vena contracta . actual velocity = A,\'

    oOrQ= C

    c

    AC .,.j2 gh .

    o

    Typically, values for Cd vary between 0.6 and 0.65

    oCircular orifice:

    Q

    = 0.62 A 2gh

    o Where Q = flow (m

    3

    s) A area ( rn') h = head (m)

    o Rectangular notch: Q = 0.62 (B . H) 2/3 v2gh

    - 77-

    Formulas and Conversions

    . -

    Nominal

    Outside

    Inside

    Wall

    pipe size

    diameter

    diameter

    thickness

    Flow area

    (in)

    (mm)

    (mm)

    (mm)

    (m')

  • 7/25/2019 Engineering Hand Book

    41/42

    Formulas and Conversions

    Where B = breadth (m)

    H head (m above s ill)

    Triangular Right Angled Notch: Q = 2.635H'

    2

    Where H = head (m above sill)

    5.4.2 Bernoulli's Theory

    P

    v

    H=h.,.-+-

    W 2g

    H = total head (meters)

    w

    = force ofgravity on 1 m

    3

    of fluid (N)

    h = height above datum level (meters)

    v = velocity of water (meters per second)

    P = pressure (N/m

    2

    or Pal

    Loss of Head in Pipes Due to Friction

    L \.2

    Loss of head in meters =

    f--

    d 2g

    L = length in meters

    v = velocity of flow in meters per second

    d = diameter in meters

    f= constant value of 0.01 in large pipes to 0.02 in small pipes

    5.4.3 Actual pipe dimensions

    Nominal

    Outside

    Inside Wall

    Flow area

    p ip e s ize diameter

    diameter thickness

    (m ')

    (in) (mm)

    (mm) (mm)

    1/8

    10.3 6.8

    1.73

    3.660

    10.

    5

    1/4

    13.7

    9.2 2.24

    6717 . 10'5

    3/8

    17.1 12.5

    2.31 1.236

    10

    1/2

    21.3 15.8 2.77

    1.960

    10

    3/4

    26.7

    20.9 2.87

    3.437 . 10

    1

    33.4

    26.6 3.38 5.574

    10

    1I.

    42.2 35.1 3.56 9.653

    10

    1'12

    48.3 40.9 3.68

    1.314 10'3

    2

    60.3 52.5 3.91 2.168

    10'3

    - 78 -

    2'12

    73.0

    62.7

    5.16

    3.090

    10'3

    3

    88.9

    77.9

    5.49

    4.768

    10'3

    3'12

    101.6

    90.1

    5.74

    6.381

    10-

    3

    4

    114.3

    102.3

    6.02

    8.213

    10'3

    5

    141.3

    128.2

    6.55

    1.291

    10

    6

    168.3

    154.1

    7.11

    1.864

    10

    8

    219.1

    202.7

    8.18

    3.226

    10

    10

    273.1

    254.5

    9.27

    5.090

    10

    12

    323.9

    303.2

    10.31

    7.219

    10'2

    14

    355.6

    333.4

    11.10

    8.729

    10'2

    16

    406.4

    381.0

    12.70 0.1140

    18

    457.2

    428.7

    14.27

    0.1443

    20

    508.0

    477.9

    15.06

    0.1794

    24

    609.6

    574.7

    I

    17.45

    0.2594

    - 79 -

    . .

    Formu las and Conversions

    I J

  • 7/25/2019 Engineering Hand Book

    42/42

    References

    6.1 Periodic Table of El ements

    A

    1

    8A

    18

    ~

    r--

    1

    2

    H

    2A

    3A

    4A 5A 6A 7A

    He

    1.00

    2

    13

    14 15 16

    17

    4.00

    8

    3

    3 4 5 6 7 8 9 10

    U 8e

    8 C N

    0 F Ne

    6.94 9.01

    10.8 12.0 14.0 16.0

    19.0 20.1

    1

    2

    1

    1 1 0 0

    8

    11

    12

    13 14 15 16 17

    18

    Na

    Mg 3B 4B 5B

    68 78 88 8B 88 1B 2B

    AI 51 P

    5 CI Ar

    22.9 24.3

    3

    4

    5 6 7 8 9 10 11

    12 26.9

    28.0 30.9

    32.0

    35.4 39.9

    9

    1

    8

    9 7 7 5

    5

    19

    20 21 22 23 24

    25 26 27 28 29 30

    31 32 33 34

    35 36

    K

    Ca 5e Ti V

    Cr Mn Fe Co

    Ni

    Cu Zn

    Ga Ge As

    Se Br Kr

    39.1

    40.0

    44.9 47.9

    50.9 52.0

    54.9 55.8 58.9 58.7

    63.5 65.3 69.7 72.5

    74.9 78.9 79.9 83.8

    0

    8 6 0 4 0 4 5

    3 0 5 8 2

    9 2 6 0

    0

    37

    38 39 40 41 42 43 44

    45 46 47 48 49

    50 51 52

    53 54

    Rb

    Sr Y Zr Nb

    Mo Te Ru Rh Pd Ag

    Cd In Sn

    Sb

    Te

    I Xe

    85.4 87.6

    88.9

    91.2

    92.9 95.9 97.9

    101.

    102.

    106. 107. 112.

    114. 118.

    121.

    127. 126.

    131.

    7

    2 1 2 1 4 1

    9 4 9 4 8

    7 8 6 9 3

    55

    56 57

    72

    73 74

    75 76

    77

    78

    79 80 81 82 83 84

    85 86

    Cs

    Ba

    Le Hf Ta

    W Re Os lr Pt Au Hg

    TI Pb Bi Po

    At Rn

    132. 137. 138. 178. 180.

    183. 186.

    190.

    192. 195. 197. 200. 204. 207.

    209. (209) (210)

    (222)

    9

    3 9 5 9 8

    2 2 2 1 0 6 4

    2 0

    87

    88 89

    104 105 106

    107 108 109

    Fr

    Ra Ae Rf Db

    Sg 8h Hs Mt

    (223) 226. 227. (261) (262) (266) (264) (265) (268)

    0 0

    58

    59 60 61 62 63 64

    65 66 67 68

    69

    70 71

    Ce

    Pr

    Nd Pm Sm Eu

    Gd Tb Dy Ho Er Tm Yb

    Lu

    140. 140.

    144. (145)

    150.

    152.

    157.

    158. 162. 164.

    167. 168. 173. 175.

    1 9

    2

    4

    0 3 9 5

    9 3 9 0 0

    90 91

    92 93 94 95 96 97

    98 99

    100 101 102 103

    Th Pa

    U Np Pu Am

    Cm 8k Cf Es Fm Md No Lr

    232.

    23l.

    238. 237. (244) (243)

    (247) (247) (251) (252)

    (257) (258) (259) (262)

    0 0

    0 0

    - 80 -


Recommended