+ All Categories
Home > Documents > Engineering synthetic quantum materials with ultracold ...bqmc.upc.edu/pdfs/doc862.pdfArtificial...

Engineering synthetic quantum materials with ultracold ...bqmc.upc.edu/pdfs/doc862.pdfArtificial...

Date post: 21-Oct-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
34
Leticia Tarruell ICFO UPC – 11/11/2013 Engineering synthetic quantum materials with ultracold fermions in a tunable-geometry optical lattice
Transcript
  • Leticia Tarruell ICFO

    UPC – 11/11/2013

    Engineering synthetic quantum materials with ultracold fermions in a tunable-geometry optical lattice

  • - Interfering laser beams (optical lattice)

    Simulating materials with atoms and light

    - Crystalline structure (periodic potential) - Electrons (quantum degenerate fermions)

    - Ultracold fermionics atoms (40K)

    Fermions in optical lattices as condensed matter model systems

  • Also fermions in 3D optical lattices: Munich, Boston, Hamburg, Kyoto, Houston...

    x

    y

    z

  • Energy scales: eV vs. nK

    Simulating materials with atoms and light

    Free tunability: filling, t, U, T, band structure

    U t Fermi-Hubbard model

    Relation to solid state systems

    Local contact interactions

    Spin degree of freedom: atomic hyperfine states

    0.5 µm

  • Condensed matter model systems

    Strongly correlated materials (Mott insulators,

    high-Tc superconductors)

    Novel materials (graphene,

    topological insulators)

    Ultracold atoms in optical lattices

    Our approach: tunable-geometry optical lattice

    Spin systems (quantum phase transitions,

    frustration, spin-liquids)

  • An optical lattice of tunable geometry Engineering Dirac points in a honeycomb lattice Short-range quantum magnetism

    Outline

  • An optical lattice of tunable geometry Engineering Dirac points in a honeycomb lattice Short-range quantum magnetism

    Outline

  • The tunable-geometry optical lattice

    X and Y X and Y

    )cos()cos(2)(cos)(cos)2/(cos),( 222 kykxVVkyVkxVkxVyxV YXYXX αθ ++++=

    Setup Optical potential

    λ = 1064nm

    X and Y

    X and Y

    +

  • Other non-standard lattices: NIST, Munich, Bonn, Hamburg, Berkeley

    The tunable-geometry optical lattice

    V [E ] X R

    Chequerboard

    Triangular

    Dimer 1D chains

    Square

    V =0 X

    Honeycomb

    Dimer

  • An optical lattice of tunable geometry Engineering Dirac points in a honeycomb lattice Short-range quantum magnetism

    Outline

  • Deforming the band structure Honeycomb

    q x

    E q y

    x

    y

    Square

    ?

  • Probing the Dirac points Challenges: vanishing density of states

    small energy scales

    Probe energy splitting of the bands dynamically

    T. Salger et al., Phys. Rev. Lett. 99, 190405 (2007)

    Bloch oscillations + interband transitions

    + Pot. Gradient ≙ Force

    Passing through Dirac point: transfer to 2nd band

    Passing away from Dirac point: stay in lowest band

    Observable: quasi-momentum distribution

  • Transfer to 2nd band at the position of the Dirac points

    Interband transitions

    After a Bloch cycle: t=TB

    qx

    qy

    Spin-polarized 40K gas

    Force

    E

    qx

    Quantitative measurements Higher band fraction

    Ν( ) Ν( ) ξ =

    + Ν( )

  • Cone shape

    Engineering Dirac points Tunability

    Position

    A B

    Tools Inversion symmetry Tunneling imbalance

    vs.

    Gap Merging

  • Breaking inversion symmetry

    sub-lattice offset sub-lattice offset

    A B

  • Merging Dirac points

    qx

    qy

    Topological Transition Lifshitz transition, Sov. Phys. JETP 11, 1130 (1960)

    Dirac points No Dirac points

    qy

    E

    Laser power

  • The topological transition V =1.8 E Y R

  • Engineering Dirac points

    L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger, Nature 483, 302 (2012) T. Uehlinger, D. Greif, G. Jotzu, L. Tarruell, T. Esslinger, L. Wang and M. Troyer, EPJ ST 217, 121 (2013)

    Outlook

    Artificial gauge fields to engineer topologically protected states

    Combination of honeycomb lattice and interactions (Mott insulator) T. Uehlinger, G. Jotzu, M. Messer, D. Greif, U. Bissbort, W. Hoffstetter and T. Esslinger, Phys. Rev. Lett. 111, 185307 (2013).

  • An optical lattice of tunable geometry Engineering Dirac points in a honeycomb lattice Short-range quantum magnetism

    Outline

  • Magnetism: a temperature challenge U > 0 t

    Fermi-Hubbard model

    U>>t

    J=4t2/U

    ener

    gy

    T > U: metallic behaviour

    T < U: Mott insulator

    T

    T < J: spin ordering T

    R. Jördens et al., Phys. Rev. Lett. 104, 180401 (2010)

  • Magnetism: a temperature challenge U > 0 t

    Fermi-Hubbard model

    S. Trotzky et al., Science 319, 295-299 (2008) S. Nascimbène et al., Phys. Rev. Lett. 108, 205301 (2012) J. Simon et al., Nature 472, 307-312 (2011) J. Struck et al., Science 333, 996-999 (2011)

    State of the art Isolated double-wells or plaquettes (Munich)

    Mappings Ising spin chain (Harvard) Classical magnets (Hamburg)

    Dipolar interactions (JILA, Paris)

    U>>t

    J=4t2/U

    ener

    gy

    T

    R. Jördens et al., Phys. Rev. Lett. 104, 180401 (2010)

  • t ➡ J td ➡ Jd > J

    J < kBT < Jd

    T J

    Dimerized lattice

    ener

    gy

    Reaching magnetism: an energy trick

    ts ➡ Js > J

    Anisotropic lattice

    Jd,s

    singlet

    triplet Jd,s

    Probing: neighboring sites

    kBT < Jd,s : NS > NT

    Reaching magnetic correlations:

    Jd

  • Detecting magnetic correlations

    singlet

    or

    triplet t0

    singlet triplet t0

  • Dimerized lattice

  • Singlet-Triplet Imbalance

    Singlet-Triplet Oscillations: S. Trotzky et al., Phys. Rev. Lett. 105, 265303 (2010)

    Measuring singlets and triplets

    𝑝𝑆

    𝑝𝑡𝑡

    Sin

    glet

    s Tr

    iple

    ts

    Merging neighboring sites Singlet-triplet oscillations

  • Theory: second order high-temperature series expansion of coupled dimers

    Dimerization dependence

    s=1.7 kB

    isotropic strongly dimerized

  • Anisotropic cubic lattice

    transverse spin correlator ⟺ population difference

    AFM correlations along x

  • Dependence on geometry

    isotropic strongly anisotropic

    VY,Z = 11.0(3) ER s = 1.8 kB

  • Dependence on entropy

    tS /t=7.3

  • Comparison with theory

    Theory (DCA+LDA): J. Imriška, M. Iazzi, L. Wang, E. Gull, and M. Troyer

  • Quantum magnetism

    Outlook

    Explore short range correlations in other geometries (2D, triangular...)

    D. Greif, T. Uehlinger, G. Jotzu, L. Tarruell, and T. Esslinger, Science 340, 1307 (2013)

    Nearest-neighbor magnetic correlations in thermalized ensembles

    Quantitative comparison with more advanced theory J. Imriška, M. Iazzi, L. Wang, E. Gull, D. Greif, T. Uehlinger, G. Jotzu, L. Tarruell, T. Esslinger, and M. Troyer, arXiv:1309.7362

  • The ETH lattice team (2011-2012)

    Gregor Jotzu Daniel Greif L. T. Thomas Uehlinger Tilman Esslinger

  • Towards optical lattices at ICFO

    Pierrick Cheiney Manel Bosch César Cabrera

    Thank you for your attention!

  • Engineering synthetic quantum materials with ultracold �fermions in a tunable-geometry optical latticeSlide Number 2Slide Number 3Slide Number 4Slide Number 5OutlineOutlineThe tunable-geometry optical latticeThe tunable-geometry optical latticeOutlineSlide Number 11Probing the Dirac pointsInterband transitionsEngineering Dirac pointsBreaking inversion symmetryMerging Dirac pointsThe topological transitionEngineering Dirac pointsOutlineMagnetism: a temperature challengeMagnetism: a temperature challengeReaching magnetism: an energy trickDetecting magnetic correlationsDimerized latticeMeasuring singlets and tripletsDimerization dependenceAnisotropic cubic latticeDependence on geometryDependence on entropyComparison with theoryQuantum magnetismThe ETH lattice team (2011-2012)Towards optical lattices at ICFOSlide Number 34


Recommended