+ All Categories
Home > Documents > Enhanced Optimal Control For Uncertain Spacecraft Tracking...

Enhanced Optimal Control For Uncertain Spacecraft Tracking...

Date post: 07-May-2018
Category:
Upload: duongque
View: 227 times
Download: 1 times
Share this document with a friend
26
Enhanced Optimal Control For Uncertain Spacecraft Tracking Problem AIAA Houston Annual Technical Symposium 17 May 2013 NASA/JSC, Gilruth Center, Houston, Tx. Ahmad Bani-Younes James Turner ---------------------------------------------------------------------------------------------------------------------- ATS 2013 Ahmad Bani Younes 815-AHMADBY, [email protected]
Transcript

Enhanced Optimal Control For Uncertain Spacecraft Tracking Problem

AIAA Houston Annual Technical Symposium17 May 2013

NASA/JSC, Gilruth Center, Houston, Tx.

Ahmad Bani-Younes James Turner

----------------------------------------------------------------------------------------------------------------------ATS 2013 Ahmad Bani Younes 815-AHMADBY, [email protected]

Spacecraft Tracking Problem Geometric & Dynamic Errors Formulations

Model and parameter variations in the real system

Closing the Gaps Build Geometric & Dynamic Error Models That do not truncate effects

Computational Differentiation

Problem Formulation Gaps

In addition to using robust controller designs, can we develop means to adjust gains to compensate for model parameter revisions?

Outline

Problem Definition Sensitivity Calculation: Scalar problem

Sensitivity Calculation: Vector problem

Computational Differentiation: Automates Calculations for High-Order Derivatives

Reference Motion and Error Dynamics Optimal Reference Motion

Motion Error Dynamics

Optimal Tracking Control Formulation and Sensitivity Calculations Open-loop solution

Closed-loop solution

Future Work and Conclusion

Sensitivity Calculation

Sensitivity calculations begin with a differential equation thatdescribes the response of a system to external Loads Two classesof simulation are important:

Prediction of the future state motion

Motion uncertainty predictions due to the variations in the problem initial conditions and model parameter values

There is a possible way to accommodate parametric changes on control gains => Develop implicit function to relate the state feedback gain to the plant parameters over a large family of neighboring designs

Sensitivity Calculations!!

Sensitivity Calculation

Scalar Problem Optimal Closed Loop Control

0

2 2 21 1min

2 2

ft

f ft

J s x t qx ru d

0

subject to:

( ) ( ) ( )x t a x t bu t

20 2

optimal gain satisfies nonlinear scalar Ricatti Eq:

2b

s a s s qr

0 0

0 0

2

2

2

2

20

20

1, , ...

2!

1, , ...

2!

a a a a

a a a a

s a t s a t a a

x

s sa a

x xa t x a t a a

a a

0 given, fixedfx t t

Assume

Varies by

s(a,t) = ?

a

a

Vector Problem Optimal Closed Loop Control

• The state Eq. And the control is

• Riccati Eq.

• Computational Differentiation

Sensitivity Calculation

Assume

Varies

a

0A B x x u 1 Tt R B S t t u x

1 1 1 1 1 1 2 2 3 4 3 4

1

1

T T

ij j i j j ij j j ij j j j j j j j j ij

S A S SA SBR B S Q

s a s s a s b r b s q

0

ij ij ija a a

6 5 1 1 6 5 1 2 2 3 4 3 4 1 1 2 2 3 4 3

5

1 1 1 4

5 6 5 6 5 6 56 6

1 1ij

ij j j j i j j jj ij j j j j j j j j ij j j j

j j ij ij j j

j

j j j

j j j j j j jj j

s s sss a a s b r b s s b r b

s

a a a aa

2 3 4: , , , ,S S S S S S

4

1

1

1( )

!

Denotes an -th order tensor product for the parameter variations

T n n

n

n

t R B S S p tn

p n

u x

Computational Differentiation

Computational Differentiation (CD) First Developed in the 1960’s for 1st Order applications

Critical Need for Nth Order Partial Derivative Capabilities Turner’s Object-Oriented Coordinate Embedding Algorithm (OCEA) provides

Arbitrarily complex partial derivative models Supported

OCEA uses the programmer’s math model as a template:

Fortran Complier Uses Language Extensions for deriving, coding, and generating thesimulation and sensitivity models

All Results are Exact: No symbolic or finite difference tools used .

Analyst Freed from Derivation and Coding for Complex Partials

2 3 4: , , , ,f f f f f f

Minimize

Subject to

Angular Velocity Dynamics:

Attitude Kinematics:

Invoking the standard Pontryagin necessary condition for optimality

 f ω

[ ]I I ω ω ω u

Optimal Reference Motion

0

2

ft

T T T

t

J Q Q R dt ωω ω+ u u

1[ ] [( ) ]T

T

IQ II

Q

ω ω ωλ λ λω f ω ω

f ωλ λ

11 1( )I IR R ω ωu λ λ

Open-Loop Optimal Control Problem

Optimal Reference Motion

(0) = [-0.07, -0.25, 0.118] rad/sec

(0) = [-0.03, 0.15, 0.482]

ω

3 3Q Q R I ω

2( ) [3.64, 3.40, 4.41 .]I diag Kg m

3 3 (Identity)Q Q R I ω

Angular Velocity Error Dynamics (Tracking Control Formulation)

The desired motion is defined in terms of the open-loop reference angular velocity

Motion Error Dynamics

1 1 1 1[ ] [( )

[

]

]

] [ ] [r r

r

r

r r r r

r

r rI I I I I I I I

I I

ω ω ω ω ω ω u ω

ω

ω

ω ω

ω

Angular Velocity Error Vector

Full Nonlinear Angular Velocity Error Dynamics Rate

For An Exact Kinematic Model This Equation Predicts Arbitrarily Large Motion Angular Velocity Error Vector Estimates (no linearization)

Quaternion Error

Motion Error Kinematics

Key Step Rate Valid for

Large Changes

1

r q q q1 1

r r q q q q q

1 1( )

02 2

[ ]

0

ωq q q ω q

ω

1

( ) ( )2

r q ω ω q

1 1 11 1( )

02 2

r

r r r r

q q ω q

1 1

( ) ( ) ( ) ( )2 2

r r r q ω+ω ω q ω ω q

4

1 ]

0

]

2

[ 2[ vr

T q

qω ω ωq

ω

Build on Nonlinear Plant & Quaternion Error Models

Build New Variable Mapping Eqns

General Procedure to Build LargeMotion Error Models

1 Exact Erroˆ , r Models q q q q f q

,

Exact Error Mapping

Exact Error Mod l

e s, Kinematics

g q

h q q

KEY INSIGHT: Exploit Exact Quaternion Error Model in Transformation of NewVariable Sets. Leads to Models without Truncation Error for Large & Rapid Motions

Nonlinear Model Development

Quaternion Reference & Current State

Exact Quaternion Error Kinematics

Classical Rodrigues Parameters Modified Rodrigues

Parameters

Euler Angles

Principal Axis/ Angle

Cayley Klein Parameters Classical Rodrigues

ParametersA General Purpose Transformation is Presented

Motion Error Kinematics

[1] Bani Younes, A., Mortari, D., Turner, J.D., and Junkins, J.L. "Attitude Error Kinematics," AIAA Journal of Guidance, Control, and Dynamics, accepted for

publication.

[2] P.C. Hughes. Spacecraft attitude dynamics. J. Wiley, 1986.

Optimal Tracking Control

Optimal Open-Loop Control Formulation

Minimize

Subject to

The Penalties

Tracking Error Dynamics/Kinematics

0

1( , ( ), ( ))

1(

2, , , )

2

ft

t

f f f L t dtJ t t t u

[ ] ( , , )T T T x f u

1 2

3 4

and

( ,

( , ( ), ( )

, ,

)

)

f f f f

T T

t t t t

T T T

f f ft t t Q

L

Q

t Q Q R

u u u

1 1 1 1[ ] [( ) ] [ ] [ ]

( ) [ ]

r r r r r

r

I I I I I I I I

f

ω ω ω ω ω ω u ω ω ω

ω

Optimal Tracking Control

Optimal Open-Loop Control Formulation

Co-states

Control

1

4

3

[ ] [( ) ] [ ] [( ) ]

[ ]

T

r r

T

T

r

I I I IQ f I

Q

ω ωλ λ λ

λ λ

ω ω ω ω ω

f ω ω λ

1 1 1( )RR I I

ω ωu λ λ

Optimal Tracking Control

Optimal Open-Loop Control Sensitivity Calculations

Optimal Control:

If we assume the system experiences some dynamics errors due to thespacecraft moment of inertia, the resulting perturbation will subsequentlyinfluence the control calculation. To handle the gain perturbation induced bythe parameter variations we assume the new “perturbed” plant parameter isgiven by

Where the nominal value is

1( )IR

ωu λ

*I I I

*I I

Optimal Tracking Control

Optimal Open-Loop Control Sensitivity Calculations

Computational Differentiation (OCEA) automates

The extrapolated sensitivity feedback gain is calculated from the truncated Taylor Series expansion:

The implemented feedback control is defined by

2 3 4

2 3 4

: , , , ,

: , , , ,

ω ω ω ω ω ωλ λ λ λ λ λ

λ λ λ λ λ λ

4 4

1

* *

1

1 1. , and .

! !

n

n

n

n

n nI In n

ω ωω λλ λλ λ λ

4

1

1

Denotes an -th order tensor product for the parameter variations

1( ))

!(

n

n n

n

I n

t IIRn

ωωλ λu

Optimal Tracking Control

Optimal Closed-Loop Control Formulation

Minimize

Subject to

Co-states

Co-states (assumed form)

The Control Gains:

3 4 3 4 5 6 5 6

0

1( , ( ))

2

1

2

ft

j j j j j j j jf i f

t

q xJ t x t x r u u dt

1 1 2 2i ij j ijkl j k l imn m n i ij jx a x c x x x t x x d b u

4 4 1 1 1 1 1 1 1i ij j i i i i jki j k i jil j l i ikl k l i mi m i in nq x a c x x c x x c x x t x t x

1

1

, ( ) 0

, ( )

i ij j ij jk lk ml m n ni i f

ij kj ki il lm nm on oj il lj ij r rji r rij ij f f

p k d k b r b p p a p t

k k a k b r b k k a q p t p t k t

4 4 8 8 4i i j j ik x p

Optimal Tracking Control

Optimal Closed-Loop Control Sensitivity Calculations

Optimal Control

If we assume the system experiences some dynamics errors due to thespacecraft moment of inertia, the resulting perturbation will subsequentlyinfluence the control calculation. To handle the gain perturbation induced bythe parameter variations we assume the new “perturbed” plant parameter isgiven by

Where the nominal value is

1

l ml im ij j iu r b k x p

*I I I

*I I

Optimal Tracking Control

Optimal Closed-Loop Control Sensitivity Calculations

Computational Differentiation (OCEA) automates

The extrapolated sensitivity feedback gain is calculated from the truncated Taylor Series expansion:

The implemented feedback control is defined by

2 3 4

2 3 4

: , , , ,

: , , , ,

ij ij ij ij ij ij

i i i i i i

k k k k k k

p p p p p p

4 4* *

1 1

1 1. , and .

! !

n n

n

n n

n

K K I p pK p In n

4 41

1 1

Denotes an -th order tensor product for the parameter variations

1 1( )

! !

n

n nn n

l ml im ij j i

n n

ij i

I n

u t r b k Ik px p In n

Closed-Loop Optimal Control Problem

Optimal Tracking Control

(0) = [0.1, 0.2, 0.3] rad / sec, (0) = [- 2.4142, 0, 0]ω

3 3Q Q R I ω

2([0.5, 0.6, 1.0]) .I diag Kg m

3 3 (Identity)Q Q R I ω

0 and

0 if i jwhere

1 if i j

i ij ij

ij

ij

p k

Closed-Loop Optimal Control Problem

Optimal Tracking Control

(0) = [0.1, 0.2, 0.3] rad / sec, (0) = [- 2.4142, 0, 0]ω

3 3Q Q R I ω

2([0.5, 0.6, 1.0]) .I diag Kg m

3 3 (Identity)Q Q R I ω

0 and

0 if i jwhere

1 if i j

i ij ij

ij

ij

p k

Optimal spacecraft maneuver strategies are presented for both open-and closed-loop problem formulations

Several innovations are introduced Coordinate variable transformations are identified that enable errorkinematics models to be developed for arbitrarily large rigid bodyrotational motion Large rotational motion models are presented for several frequentlyused sets of attitude variables Large angular rate dynamics models are presented for supportingclosed-loop tracking problem formulations A generalized Taylor-series based approach is introduced for aTacking feedback control formulation that accounts for very largechanges in the spacecraft mode parameters

Numerical simulation results are presented that demonstrate that thenew control gain sensitivity-based approach can easily accommodatemoment of inertia uncertainties as large as 25% and still achieve thespacecraft maneuver objectives

Conclusion & Future Work

The generalized sensitivity approach is expected to be broadly useful, because it replaces a need for re-computing the optimal solution for each parameter gain change or introducing a gain scheduling strategy, with a pre-computed gain calculation for handling a large family of model parameter changes

The OCEA (Object Oriented Coordinate Embedding) computational differentiation toolbox is used for automatically generating the first-through fourth-order partial derivatives required for the generalized control sensitivity differential equation

Future Extensions Study other parameter changes; such as uncertain initial conditions Apply the same methodology on other optimal control problems(Enhanced Optimal Control Solution) Discrete time problemsTerminal Constraint problems

Conclusion & Future Work

26

Thank You!

Thanks for

listening …!!

AHMAD BANIYOUNES

[email protected]


Recommended