+ All Categories
Home > Documents > Enterprise Data Management Optimization Dr. Boris Zibitsker BEZ Systems [email protected] St. Louis...

Enterprise Data Management Optimization Dr. Boris Zibitsker BEZ Systems [email protected] St. Louis...

Date post: 04-Jan-2016
Category:
Upload: ross-york
View: 217 times
Download: 0 times
Share this document with a friend
Popular Tags:
61
Enterprise Data Management Optimization Dr. Boris Zibitsker BEZ Systems [email protected] www.bez.com St. Louis CMG
Transcript

Enterprise DataManagementOptimization

Dr. Boris ZibitskerBEZ [email protected]

St. Louis CMG

Outline

Enterprise Data Management with Moving Target Enterprise Data Management Options and Tradeoffs Role of Modeling in EDM Optimization

– How to use performance prediction models to evaluate and justify enterprise data management alternatives, set performance expectations, verify results and organize a continuous proactive EDM process

Examples Illustrating the Best Practice of EDM Proactive Performance Management During Application and Information Life Cycle

Applying Modeling for Optimizing EDM Strategic Decisions– How to justify enterprise data warehouse– How to justify master data management

Applying Modeling for Optimizing EDM Tactical Decisions– How to reduce time of loading growing volume of data– How to reduce data access time– How to predict the impact of new application implementation

Applying Modeling for Optimizing EDM Operational Decisions– Predicting how change of the workload’s priority will affect performance– Comparison of actual results vs. expected and organizing continuous proactive

service level management

Summary

2© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

Challenges of Enterprise Data Management

3

DataData

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

• Changing business demand• Loading more data• Increasing number of user• Implementing new applications• Upgrading hardware and software• How to optimize EDM to provide accurate and timely information

with minimum cost and with moving target

4

Scaling Tradeoffs in a Multi-tier Distributed Environment

Distribution: Adding more

servers, nodes

Centralization: Server consolidation

Data compression

More:CPUs/Server, JVM/Server

Disks/Server Reduce Queueing Time

Faster CPUs, Disks

Reduce Service Time

Parallelization

Concurrency DBMS Servers

Web Servers

Application Servers

Storage Subsystem

EDW

Sales Marketing HR

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

Optimization of Strategic, Tactical and Operational Enterprise Data Management

DecisionStrategic Decisions (Yearly)

Architecture: Centralized EDW vs. Distributed DW and DM vs. Master Data Management

Where to place data Where to run applications

Tactical Decisions (Weekly/Monthly)

Dormant data Indexes Partitioning Compression

Operational Decisions (Hourly) Concurrency Parallelism Priority Resource reallocation

Compare different options Select criteria of comparison,

like cost, response time, throughput, availability, accuracy, consistency, manageability, flexibility

Define relative importance/weight of each criteria

Build models showing relationship between different parameters and each criteria for each option

Find an optimum option/solution as a compromise between different criteria

5© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

Wrong EDM Decisions Can Delay Action Time and Negatively Affect Business

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008 6

ETL

Data Access

Action Time

Val

ue

lost

Bus Event

Bu

sin

es

s V

alu

e

Time

How Long Will it Take to Load and

Aggregate More Data?

How Long Will It Take to Access

More Data?

How Can the Accuracy and Timeliness of Information

Be Improved?

Information Action

Difference Between Efficiency and Effectiveness of EDM Decisions

Effectiveness Accurate and timely

information Ability to make right

decisions Impact on the

bottom line

Efficiency Cost Performance Scalability Availability Consistency

7

Str

ateg

y

Op

erat

ion

s Tac

tics

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

InputWorkloadsHardwareSoftware

Prediction Engine

Performance Prediction & Optimization

OutputRecommendation& ExpectationsBy Workload

OptionsHardwareSoftware

DBMS

PlanWorkload Growth

Database Size GrowthHardware Upgrade

Software ParametersNew Application

Server Consolidation

DBMS WizardsIndex AdviserMV Adviser

Data PartitioningData Compression

OptimizationEngine

8© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

OSDBMSServer

Applica-tion

Server

9

Simplified Model of 3-tier Architecture

Max?Max?

1

2

n

CPUCPU

DiskDisk

MemoryMemory

Max?

1

2

n

CPUCPU

DiskDisk

MemoryMemory

ActiveSessions

Threadsor Active Sessions

Rejected Requests

Arriving requests

No

Rejected Requests DBMS

Servers

NetNet

Max?Max?

7575

1

2

n

CPUCPU

DiskDisk

MemoryMemory

Active Sessions

Rejected Requests

Users

Arriving Requests

Network Web Servers

NetNet

Client

200 125

75

60

15 5025

25

# of Threads & Active Sessions Control Concurrency

Memory Limitation

Level of Parallelism Affects Performance

Application Servers

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

Workload Characterization

Each Workload Has Unique Performance, Data & Resource Utilization Profiles

Table 1Table 1

Table 3Table 3 Table mTable m

Table 2Table 2

ApplAppl ApplAppl

SQ

L

UserUserUserUser UserUser UserUser

…… CPUCPU

DiskDisk

DiskDisk

CPUCPU

DiskDisk

UserUser

UserUser

Business Process

Workloads

Resource Utilization

Data

11© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

Verification and ControlTrend Analysis, Baseline Analysis for Fixed/Rolling Period • Trend Analysis

Period-to-Period Comparisons & Change ValidationProactive Corrective Actions & New Expectations

Workload Centric Approach to Service Level Management

Operational DecisionsProblem Isolation

Current and Predicted Service BreachBusiness to Infrastructure Drill down

Zoom In / Out • Include / Exclude FiltersPerformance • Utilization • Data Access

Scheduling, Workload Management

Strategic Decisions Justification of Architecture: Setting Realistic SLO and SLACapacity Planning New Application Implementation Virtualization Consolidations

Tactical Decisions Concurrency Control Priority Database Tuning Index Creation Memory Adjustments Partitioning Compression Appl. Server Tuning #JVM & #JVM Threads Connection Pool Size

12© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

13

Typical Steps of Applying Modeling During Application and Information Life Cycle

Application Life Cycle Feasibility study New application

implementation Performance

management Capacity planning Disaster recovery Application

consolidation

Information Life Cycle

Data loading (ETL) Data modeling Database tuning Data growth Backup and restore Data replication Data consolidation Enterprise data

management Information

integration

Measu

re

Ch

ara

cte

rize

Pla

n

Ad

vis

e

Man

ag

e

Mod

el &

Op

tim

ize

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

Example of Configuration Planning Tasks for Multi-tier Distributed Environment

For each workload, identify how many users can be supported by one JVM

How many JVMs will be required to support each of the workloads

The number of servers required to support all workloads

The optimum number of CPUs per server

CPU type and speed Server memory size Number of host channels Storage subsystem type

Control unit cache size Number of disk channels Number of disks per server Maximum number of active

sessions within DBMS server per workload

Dispatching priority for each workload

Maximum degree of parallelism

Indexing Materialized views Partitioning Data compression

14© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

Performance Prediction

Predicting Impact of Workload Growth

  This Month

Next Month

In 2 Months

In 3 Months

In 4 Months

           Arrival Rate (Req/sec)

5 6 7 8 9Service Time (sec) 0.1 0.12 0.14 0.16 0.18Utilization (%) 0.5 0.6 0.7 0.8 0.9Response Time (sec) 0.2 0.3 0.46  0.8 1.8

A = 5 Req / sec Scpu = 0.1 sec

Utilization Law U=A*SUcpu = 5 Req/sec * 0.1sec = 0.5

Response Time law R=S/(1-U)Rcpu = 0.1 sec / (1 - 0.5) = 0.2 sec

Little’s Law N = A * R

CPU

Based on expected workload growth of 20% per month, predict when the system will not be able to meet SLO (0.6 sec).

What will be the impact of doubling CPU speed?

How long will the system satisfy SLO?

16© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

Predicting Impact of Doubling CPU Speed

  This Month

Next Month

In 2 Months

In 3 Months

In 4 Months

           Arrival Rate (Req/sec)

5 6 7 8 9Service Time (sec) 0.1 0.12 0.14 0.16 0.18Utilization (%)

0.5 0.6 0.7 0.8 0.9Response Time (sec) 0.2 0.3 0.46 0.8 1.8Doubling CPU Speed 0.06 0.09 0.13 0.22 0.47

Based on expected workload growth of 20% per month, predict when the system will not be able to meet SLO (0.6 sec).

What will be the impact of doubling CPU speed?

How long will the system satisfy SLO?

17© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008 18

Example of Planning (see spreadsheet)

PlanAPPLICATION SERVER Now Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Arrival Rate (Tr/Sec) 2.50 3.00 3.50 4.00 4.50 3.00 3.50 4.00 4.50CPU Service Time per TR (MS) 120.00 120.00 120.00 120.00 120.00 120.00 60.00 60.00 60.00Number of I/Os per Tr 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00Number of I/Os to Disk 1 per TR 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00Number of I/Os to Disk 2 per TR 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00CPU Utilization (0-1) 0.30 0.36 0.42 0.48 0.54 0.36 0.21 0.24 0.27 Disk1 Service Time (ms) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00Disk 2 Service Time (ms) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00DBMS SERVER

Arrival Rate (Tr/Sec) 2.50 3.00 3.50 4.00 4.50 3.00 3.50 4.00 4.50CPU Service Time per TR (MS) 160.00 160.00 160.00 160.00 160.00 160.00 160.00 160.00 160.00Number of I/Os per Tr 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00Number of I/Os to Disk 1 per TR 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00Number of I/Os to Disk 2 per TR 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00CPU Utilization (0-1) 0.40 0.48 0.56 0.64 0.72 0.48 0.56 0.64 0.72 Disk1 Service Time (ms) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00Disk 2 Service Time (ms) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Workload Growth is 20% per Quarter Doubling AS CPU Speed Q2

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008 19

Workload Characterization & Forecasting

Plan

APPLICATION SERVER Now Q1 Q2 Q3 Q4 Now Q1 Q2 Q3 Q4

Arrival Rate (Tr/Sec) 2.50 3.00 3.50 4.00 4.50 2.50 3.00 3.50 4.00 4.50

CPU Service Time per TR (MS) 120.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00Number of I/Os per Tr 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

Number of I/Os to Disk 1 per TR 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Number of I/Os to Disk 2 per TR 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00CPU Utilization (0-1) 0.30 0.36 0.42 0.48 0.54 0.30 0.36 0.42 0.48 0.54 Disk1 Service Time (ms) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00Disk 2 Service Time (ms) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00DBMS SERVER

Arrival Rate (Tr/Sec) 2.50 3.00 3.50 4.00 4.50 2.50 3.00 3.50 4.00 4.50

CPU Service Time per TR (MS) 160.00 160.00 160.00 160.00 160.00 160.00 160.00 80.00 80.00 80.00Number of I/Os per Tr 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00

Number of I/Os to Disk 1 per TR 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00

Number of I/Os to Disk 2 per TR 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00CPU Utilization (0-1) 0.40 0.48 0.56 0.64 0.72 0.40 0.48 0.28 0.32 0.36 Disk1 Service Time (ms) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00Disk 2 Service Time (ms) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Workload Growth is 20% per Quarter Doubling DBMS server CPU Speed Q2

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008 20

Modeling AS Hardware Upgrade Impact

Performance PredictionApplication Server Now Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Performance PredictionScpu(ms) per Visit to CPU 24.000 24.000 24.000 24.000 24.000 24.000 12.000 12.000 12.000UCPU 0.300 0.360 0.420 0.480 0.540 0.360 0.210 0.240 0.270UDisk1 0.050 0.060 0.070 0.080 0.090 0.060 0.070 0.080 0.090UDisk2 0.050 0.060 0.070 0.080 0.090 0.060 0.070 0.080 0.090

CPU RT/Visit to CPU (sec) 0.034 0.038 0.041 0.046 0.052 0.038 0.015 0.016 0.016AS CPU RT per transaction 0.171 0.188 0.207 0.231 0.261 0.188 0.076 0.079 0.082Disk 1 Resp Time per Visit 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011

Disk 1 AS Time per Transaction 0.021 0.021 0.022 0.022 0.022 0.021 0.022 0.022 0.022Disk 2 Resp Time per Visit 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011Disk 2 AS Time per Transaction 0.021 0.021 0.022 0.022 0.022 0.021 0.022 0.022 0.022AS Response Time 0.214 0.230 0.250 0.274 0.305 0.230 0.119 0.122 0.126Relative AS RT Improvement 0.000 110.077 124.012 141.642DBMS Server Perf predictionScpu(ms) per Visit to CPU 5.161 5.161 5.161 5.161 5.161 5.161 5.161 5.161 5.161UCPU 0.400 0.480 0.560 0.640 0.720 0.480 0.560 0.640 0.720UDisk1 0.500 0.600 0.700 0.800 0.900 0.600 0.700 0.800 0.900UDisk2 0.250 0.300 0.350 0.400 0.450 0.300 0.350 0.400 0.450

CPU Resp Time for 1 Visit(sec) 0.009 0.010 0.012 0.014 0.018 0.010 0.012 0.014 0.018DBMS CPU RT/Req 0.267 0.308 0.364 0.444 0.571 0.308 0.364 0.444 0.571Disk 1 I/O Resp Time 0.020 0.025 0.033 0.050 0.100 0.025 0.033 0.050 0.100Disk 2 I/O Resp Time 0.013 0.014 0.015 0.017 0.018 0.014 0.015 0.017 0.018Disk 1 DBMS Time 0.400 0.500 0.667 1.000 2.000 0.500 0.667 1.000 2.000Disk 2 DBMS Time 0.133 0.143 0.154 0.167 0.182 0.143 0.154 0.167 0.182

DBMS Server Response Time 0.800 0.951 1.184 1.611 2.753 0.951 1.184 1.611 2.753Total Response Time 1.014 1.181 1.434 1.885 3.058 1.181 1.303 1.734 2.879Relative RT Improvement 0.000 10.049 8.758 6.205

Workload Growth is 20% per Quarter

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008 21

Predicted AS Upgrade Impact

Predicted Response Time for Sales (sec)

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

1 2 3 4 5

Quarter

AS Response Time DBMS Server Response Time

AS CPU Upgrade Impact on RT

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

1 2 3 4

Quarter

AS Response Time DBMS Server Response Time

Predicted DBMS Server Response Time Components for Sales

0.000

0.500

1.000

1.500

2.000

2.500

3.000

1 2 3 4 5

Quarter

DBMS CPU RT/Req Disk 1 DBMS Time Disk 2 DBMS Time

AS Response Time

0.000

0.050

0.100

0.150

0.200

0.250

1 2 3 4

Quarter

AS Response Time

AS Response Time Components for Sales

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

1 2 3 4 5

Quarter

AS CPU RT per transaction Disk 1 AS Time per Transaction

Disk 2 AS Time per Transaction

Relative AS RT Improvement

0.000

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

1 2 3 4

Quarter

Relative AS RT Improvement

Relative RT Improvement

0.000

2.000

4.000

6.000

8.000

10.000

12.000

1 2 3 4

Quarter

Relative RT Improvement

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008 22

Modeling DBMS Server Upgrade Impact

Plan

APPLICATION SERVER Now Q1 Q2 Q3 Q4 Now Q1 Q2 Q3 Q4

Arrival Rate (Tr/Sec) 2.50 3.00 3.50 4.00 4.50 2.50 3.00 3.50 4.00 4.50

CPU Service Time per TR (MS) 120.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00Number of I/Os per Tr 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

Number of I/Os to Disk 1 per TR 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Number of I/Os to Disk 2 per TR 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00CPU Utilization (0-1) 0.30 0.36 0.42 0.48 0.54 0.30 0.36 0.42 0.48 0.54 Disk1 Service Time (ms) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00Disk 2 Service Time (ms) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00DBMS SERVER

Arrival Rate (Tr/Sec) 2.50 3.00 3.50 4.00 4.50 2.50 3.00 3.50 4.00 4.50

CPU Service Time per TR (MS) 160.00 160.00 160.00 160.00 160.00 160.00 160.00 80.00 80.00 80.00Number of I/Os per Tr 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00

Number of I/Os to Disk 1 per TR 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00

Number of I/Os to Disk 2 per TR 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00CPU Utilization (0-1) 0.40 0.48 0.56 0.64 0.72 0.40 0.48 0.28 0.32 0.36 Disk1 Service Time (ms) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00Disk 2 Service Time (ms) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Workload Growth is 20% per Quarter Doubling DBMS server CPU Speed Q2

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008 23

Modeling DBMS Server Upgrade Impact

Performance Prediction

Application Server Now Q1 Q2 Q3 Q4 Now Q1 Q2 Q3 Q4

Performance PredictionScpu(ms) per Visit to CPU 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000UCPU 0.300 0.360 0.420 0.480 0.540 0.300 0.360 0.420 0.480 0.540UDisk1 0.050 0.060 0.070 0.080 0.090 0.050 0.060 0.070 0.080 0.090UDisk2 0.050 0.060 0.070 0.080 0.090 0.050 0.060 0.070 0.080 0.090

CPU Resp Time for 1 Visit to CPU (sec) 0.034 0.038 0.041 0.046 0.052 0.034 0.038 0.041 0.046 0.052AS CPU RT/Req 0.171 0.188 0.207 0.231 0.261 0.171 0.188 0.207 0.231 0.261Disk 1 Resp Time 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011Disk 1 AS Time 0.021 0.021 0.022 0.022 0.022 0.021 0.021 0.022 0.022 0.022Disk 2 Resp Time 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011Disk 2 AS Time 0.021 0.021 0.022 0.022 0.022 0.021 0.021 0.022 0.022 0.022AS Response Time 0.214 0.230 0.250 0.274 0.305 0.214 0.230 0.250 0.274 0.305

DBMS Server Perf predictionScpu(ms) per Visit to CPU 5.161 5.161 5.161 5.161 5.161 5.161 5.161 2.581 2.581 2.581UCPU 0.400 0.480 0.560 0.640 0.720 0.400 0.480 0.280 0.320 0.360UDisk1 0.500 0.600 0.700 0.800 0.900 0.500 0.600 0.700 0.800 0.900UDisk2 0.250 0.300 0.350 0.400 0.450 0.250 0.300 0.350 0.400 0.450

CPU Resp Time for 1 Visit(sec) 0.009 0.010 0.012 0.014 0.018 0.009 0.010 0.004 0.004 0.004DBMS CPU RT/Req 0.267 0.308 0.364 0.444 0.571 0.267 0.308 0.111 0.118 0.125Disk 1 I/O Resp Time 0.020 0.025 0.033 0.050 0.100 0.020 0.025 0.033 0.050 0.100Disk 2 I/O Resp Time 0.013 0.014 0.015 0.017 0.018 0.013 0.014 0.015 0.017 0.018Disk 1 DBMS Time 0.400 0.500 0.667 1.000 2.000 0.400 0.500 0.667 1.000 2.000Disk 2 DBMS Time 0.133 0.143 0.154 0.167 0.182 0.133 0.143 0.154 0.167 0.182

DBMS Server Response Time 0.800 0.951 1.184 1.611 2.753 0.800 0.951 0.932 1.284 2.307Total Response Time 1.014 1.181 1.434 1.885 3.058 1.014 1.181 1.182 1.559 2.612Relative RT Improvement 0.000 0.000 21.373 20.968 17.094

Workload Growth is 20% per Quarter Doubling DBMS CPU Speed

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008 24

Predicted DBMS Server Upgrade Impact

Predicted Response Time for Sales (sec)

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

1 2 3 4 5

Quarter

AS Response Time DBMS Server Response Time

Predicted DBMS Server Response Time Components for Sales

0.000

0.500

1.000

1.500

2.000

2.500

3.000

1 2 3 4 5

Quarter

DBMS CPU RT/Req Disk 1 DBMS Time Disk 2 DBMS Time

Application Server Response Time Components for Sales

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

1 2 3 4 5

Quarter

AS CPU RT/Req Disk 1 AS Time Disk 2 AS Time

DBMS Server CPU Upgrade Impact

0.000

0.500

1.000

1.500

2.000

2.500

3.000

1 2 3 4 5

Quarter

AS Response Time DBMS Server Response Time

Relative RT Improvement

0.000

5.000

10.000

15.000

20.000

25.000

1 2 3 4 5

Relative RT Improvement

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008 25

Predicted Parallel Processing Impact

PlanAPPLICATION SERVER Now Q1 Q2 Q3 Q4 Now Q1 Q2 Q3 Q4

Arrival Rate (Tr/Sec) 2.50 3.00 3.50 4.00 4.50 2.50 3.00 3.50 4.00 4.50

CPU Service Time per TR (MS) 120.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00Number of I/Os per Tr 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00# of I/Os to Disk 1 per TR 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00# of I/Os to Disk 2 per TR 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00CPU Utilization (0-1) 0.30 0.36 0.42 0.48 0.54 0.30 0.36 0.42 0.48 0.54 Disk1 Service Time (ms) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00Disk 2 Service Time (ms) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00DBMS SERVER

Arrival Rate (Tr/Sec) 2.50 3.00 3.50 4.00 4.50 2.50 3.00 3.50 4.00 4.50

CPU Service Time per TR (MS) 160.00 160.00 160.00 160.00 160.00 160.00 160.00 160.00 160.00 160.00Number of I/Os per Tr 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00# of I/Os to Disk 1 per TR 20.00 20.00 20.00 20.00 20.00 20.00 15.00 15.00 15.00 15.00# of I/Os to Disk 2 per TR 10.00 10.00 10.00 10.00 10.00 10.00 15.00 15.00 15.00 15.00CPU Utilization (0-1) 0.40 0.48 0.56 0.64 0.72 0.40 0.48 0.56 0.64 0.72 Disk1 Service Time (ms) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00Disk 2 Service Time (ms) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Workload Growth is 20% per Quarter Parallel Processing and Balancing Disk Utilization

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008 26

Predicted Parallel Processing Impact

Performance PredictionApplication Server Now Q1 Q2 Q3 Q4 Now Q1 Q2 Q3 Q4

Performance PredictionScpu(ms) per Visit to CPU 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000UCPU 0.300 0.360 0.420 0.480 0.540 0.300 0.360 0.420 0.480 0.540UDisk1 0.050 0.060 0.070 0.080 0.090 0.050 0.060 0.070 0.080 0.090UDisk2 0.050 0.060 0.070 0.080 0.090 0.050 0.060 0.070 0.080 0.090

CPU Resp Time for 1 Visit to CPU (sec) 0.034 0.038 0.041 0.046 0.052 0.034 0.038 0.041 0.046 0.052AS CPU RT/Req 0.171 0.188 0.207 0.231 0.261 0.171 0.188 0.207 0.231 0.261Disk 1 Resp Time 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011Disk 1 AS Time 0.021 0.021 0.022 0.022 0.022 0.021 0.021 0.022 0.022 0.022Disk 2 Resp Time 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011Disk 2 AS Time 0.021 0.021 0.022 0.022 0.022 0.021 0.021 0.022 0.022 0.022AS Response Time 0.214 0.230 0.250 0.274 0.305 0.214 0.230 0.250 0.274 0.305

DBMS Server Perf prediction

Scpu(ms) per Visit to CPU 5.161 5.161 5.161 5.161 5.161 5.161 5.161 5.161 5.161 5.161UCPU 0.400 0.480 0.560 0.640 0.720 0.400 0.480 0.560 0.640 0.720UDisk1 0.500 0.600 0.700 0.800 0.900 0.500 0.450 0.525 0.600 0.675UDisk2 0.250 0.300 0.350 0.400 0.450 0.250 0.450 0.525 0.600 0.675

CPU Resp Time for 1 Visit(sec) 0.009 0.010 0.012 0.014 0.018 0.009 0.010 0.012 0.014 0.018DBMS CPU RT/Req 0.267 0.308 0.364 0.444 0.571 0.267 0.308 0.364 0.444 0.571Disk 1 I/O Resp Time 0.020 0.025 0.033 0.050 0.100 0.020 0.018 0.021 0.025 0.031Disk 2 I/O Resp Time 0.013 0.014 0.015 0.017 0.018 0.013 0.018 0.021 0.025 0.031Disk 1 DBMS Time 0.400 0.500 0.667 1.000 2.000 0.400 0.273 0.316 0.375 0.462Disk 2 DBMS Time 0.133 0.143 0.154 0.167 0.182 0.133 0.273 0.316 0.375 0.462

DBMS Server Response Time 0.800 0.951 1.184 1.611 2.753 0.800 0.427 0.498 0.597 0.747Total Response Time 1.014 1.181 1.434 1.885 3.058 1.014 0.657 0.748 0.871 1.052Relative Improvement RT 0.0 79.8 91.8 116.3 190.7

Workload Growth is 20% per Quarter Parallel Processing and Balancing Disk Utilization

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008 27

Predicted Parallel Processing Impact

Predicted Response Time for Sales (sec)

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

1 2 3 4 5

Quarter

AS Response Time DBMS Server Response Time

Relative Improvement due to Paralleism

0.0

50.0

100.0

150.0

200.0

250.0

1 2 3 4 5

Series1

Predicted Parallel Processing Impact

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1 2 3 4 5

AS Response Time DBMS Server Response Time

Strategic Decisions

How to Justify Enterprise Data Warehouse

Master Data ManagementHardware

DBMS

Optimization of Placement Data and Applications

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

Very Large Disks

LargeDisks

SmallDisks

Tapes Solid State

Data

EDWDW

AS AS AS

HubHub

Applications

29

EDW

Justification of EDWPredicting How EDW Will Affect ETL and Information Access Time

DataMart 3Data

Mart 3

DataMart 4Data

Mart 4

DataMart 2Data

Mart 2

DataMart 5Data

Mart 5

DataMart 1Data

Mart 1Source

SourceSource

Source ETL ETL

SourceSource

Information Access Time (DM)

SourceSource

SourceSource

SourceSource

Extract Extract Standard

Transform Standard

Transform

StageStage

StageStage

Data Mart Transform

Data Mart Transform

ETL(DM) Time

ETL (EDW)

DataMart 4Data

Mart 4

DataMart 5Data

Mart 5

Data Mart 3

Data Mart 3

DataMart 2Data

Mart 2

DataMart 1Data

Mart 1

DataMart 6Data

Mart 6

AA

BB CC∑(A,B)∑(A,B)

Information Access Time (EDW)

Factors Affecting EDW Justification:• Hardware cost• Software licenses• ETL process• Support personnel

30© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

31

What Is the Best Architecture and Hardware Configuration for Specific EDW Workloads?

DB2 UDB vs. Oracle RAC vs. Teradata

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

Differences Between Parallel Processing on Teradata and Oracle

Limited # of Available AMP Worker Tasks

32© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

Modeling Scaling Out

33© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

Predicting Impact of Different Hardware Platforms and Configurations

34© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

Prediction Results Show That Increase in # of Oracle RAC Nodes Will Reduces CPU Utilization, Improve Response Time

and Throughput, but Will Increase Contention for Disk

35© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

I/O Rate * 10

36

Master Data Store (MDS)―Planning and Managing Challenges

What are the performance implications of supporting centralized Master Data Store vs. distributed repositories of Master Data?

ODS

EDW

DM

MDS MD

MD

MD

Current

Historical

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

37

What Are the Performance Implications of Supporting Centralized MDM vs. Distributed Repositories for

MDM? (Hub vs. Spoke Architectures)

HubHub

Start with hub and when frequency of accesses increases, consider spoke

Start with hub and when frequency of accesses increases, consider spoke

MDSCurrent & Historical Data

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

Tactical Decisions

How to Reduce Time to Load Growing Volume of Data

How to Reduce Data Access Time

How to Predict the Impact of New Application Implementation

39

Technology

Processes

Workload

Data

Increase in Volume of Data and Change of Pattern Accessing Data Affects Each Workload’s

Performance

Increase in volume of data and pattern of data access affects:

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

PredictFuture

Bottleneck

PredictFuture

Bottleneck

Identify Critical

WorkloadUsers, SQL

Tables, WhichWill CauseProblems

Identify Critical

WorkloadUsers, SQL

Tables, WhichWill CauseProblems

UseDBMS

Wizardsto Find Tuning

Options

UseDBMS

Wizardsto Find Tuning

Options

UseModeling to

Justify Change &

Verify Results

UseModeling to

Justify Change &

Verify Results

• ETL Time• Disk utilization• Aggregation and summarization time• Data access time• Session, thread usage time• Buffer utilization and hit ratio• DBMS server and application server CPU utilization• Internode communication utilization• Enterprise service bus utilization• Response time and throughput

• ETL Time• Disk utilization• Aggregation and summarization time• Data access time• Session, thread usage time• Buffer utilization and hit ratio• DBMS server and application server CPU utilization• Internode communication utilization• Enterprise service bus utilization• Response time and throughput

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008 40

Predicting Database Tuning Impact Creation of the Index – See Spreadsheet

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008 41

Predicting Database Tuning Impact

Plan

APPLICATION SERVER Now Q1 Q2 Q3 Q4 Now Q1 Q2 Q3 Q4

Arrival Rate (Tr/Sec) 2.50 3.00 3.50 4.00 4.50 2.50 3.00 3.50 4.00 4.50

CPU Service Time per TR (MS) 120.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00Number of I/Os per Tr 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

Number of I/Os to Disk 1 per TR 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Number of I/Os to Disk 2 per TR 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00CPU Utilization (0-1) 0.30 0.36 0.42 0.48 0.54 0.30 0.36 0.42 0.48 0.54 Disk1 Service Time (ms) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00Disk 2 Service Time (ms) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00DBMS SERVER

Arrival Rate (Tr/Sec) 2.50 3.00 3.50 4.00 4.50 2.50 3.00 3.50 4.00 4.50

CPU Service Time per TR (MS) 160.00 160.00 160.00 160.00 160.00 160.00 160.00 160.00 160.00 160.00Number of I/Os per Tr 30.00 30.00 30.00 30.00 30.00 30.00 20.00 20.00 20.00 20.00

Number of I/Os to Disk 1 per TR 20.00 20.00 20.00 20.00 20.00 20.00 10.00 10.00 10.00 10.00

Number of I/Os to Disk 2 per TR 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00CPU Utilization (0-1) 0.40 0.48 0.56 0.64 0.72 0.40 0.48 0.56 0.64 0.72 Disk1 Service Time (ms) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00Disk 2 Service Time (ms) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Workload Growth is 20% per Quarter Database Tuning

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008 42

Predicting Database Tuning Impact

Performance Prediction

Application Server Now Q1 Q2 Q3 Q4 Now Q1 Q2 Q3 Q4

Performance PredictionScpu(ms) per Visit to CPU 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000UCPU 0.300 0.360 0.420 0.480 0.540 0.300 0.360 0.420 0.480 0.540UDisk1 0.050 0.060 0.070 0.080 0.090 0.050 0.060 0.070 0.080 0.090UDisk2 0.050 0.060 0.070 0.080 0.090 0.050 0.060 0.070 0.080 0.090

CPU Resp Time for 1 Visit to CPU (sec) 0.034 0.038 0.041 0.046 0.052 0.034 0.038 0.041 0.046 0.052AS CPU RT/Req 0.171 0.188 0.207 0.231 0.261 0.171 0.188 0.207 0.231 0.261Disk 1 Resp Time 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011Dist 1 AS Time 0.021 0.021 0.022 0.022 0.022 0.021 0.021 0.022 0.022 0.022Disk 2 Resp Time 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011Disk 2 AS Time 0.021 0.021 0.022 0.022 0.022 0.021 0.021 0.022 0.022 0.022AS Response Time 0.214 0.230 0.250 0.274 0.305 0.214 0.230 0.250 0.274 0.305

DBMS Server Perf predictionScpu(ms) per Visit to CPU 5.161 5.161 5.161 5.161 5.161 5.161 7.619 7.619 7.619 7.619UCPU 0.400 0.480 0.560 0.640 0.720 0.400 0.480 0.560 0.640 0.720UDisk1 0.500 0.600 0.700 0.800 0.900 0.500 0.300 0.350 0.400 0.450UDisk2 0.250 0.300 0.350 0.400 0.450 0.250 0.300 0.350 0.400 0.450

CPU RT/1 Visit(sec) 0.009 0.010 0.012 0.014 0.018 0.009 0.015 0.017 0.021 0.027DBMS CPU RT/Req 0.267 0.308 0.364 0.444 0.571 0.267 0.308 0.364 0.444 0.571Disk 1 I/O Resp Time 0.020 0.025 0.033 0.050 0.100 0.020 0.014 0.015 0.017 0.018Disk 2 I/O Resp Time 0.013 0.014 0.015 0.017 0.018 0.013 0.014 0.015 0.017 0.018Disk 1 DBMS Time 0.400 0.500 0.667 1.000 2.000 0.400 0.143 0.154 0.167 0.182Disk 2 DBMS Time 0.133 0.143 0.154 0.167 0.182 0.133 0.143 0.154 0.167 0.182

DBMS Server Response Time 0.800 0.951 1.184 1.611 2.753 0.800 0.593 0.671 0.778 0.935Total Response Time 1.014 1.181 1.434 1.885 3.058 1.014 0.823 0.921 1.052 1.240Relative Improvement RT 0.000 43.371 55.667 79.212 146.641

Database TuningWorkload Growth is 20% per Quarter

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008 43

Predicting Database Tuning Impact

Predicted Response Time for Sales (sec)

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

1 2 3 4 5

Quarter

AS Response Time DBMS Server Response Time

Database Tuning Impact

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1 2 3 4 5

Quarter

AS Response Time DBMS Server Response Time

Relative Improvement RT

DB Tuning

0.000

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

1 2 3 4 5

Relative Improvement RT

44

Example: Can I load growing volume of data on time, and how will data load affect other workloads?

It will take 6 times longer to load growing volume of

data in 10 months. RT for HR application will increase almost 2 times & throughput for ETL will be

reduced almost 2 times

It will take 6 times longer to load growing volume of

data in 10 months. RT for HR application will increase almost 2 times & throughput for ETL will be

reduced almost 2 times

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

Transform

Extract

LoadTransform

Transport

ETL Source ETL Target

45

What is the Minimum Hardware Upgrade Required to Load Growing Volume of Data on Time?

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

46

What if we Increase the Number of Parallel ETL Utilities Loading Data in Parallel Starting Next Month (p2) and

Upgrade Hardware (p5)?

Increase in # of loads will allow significant

reduction of load time, but there will be very

significant elongation of the RT for HR, Marketing

and Sales workloads

Increase in # of loads will allow significant

reduction of load time, but there will be very

significant elongation of the RT for HR, Marketing

and Sales workloads

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

47

Predicted Impact of the Implementation of Parallel Processing Based on Oracle 10g RAC

Implementation of parallel processing

will improve response time for complex queries almost 2 times

Implementation of parallel processing

will improve response time for complex queries almost 2 times

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008 48

Example Showing How Modeling Results Identify Potential Bottlenecks and SQL That Will

Cause Problems in the Future by Workload

When will SLO not be met?What will cause the problem?Who will cause the problem?How do you fix the problem?

What are database and application tuning alternatives?What are the expected savings?

DBAdvice

Capacity PlanningRecommendations

Processing SQL through SQL/DBMS Access Advisor gives a list of recommendations

49© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

Example Showing Predicted Impact of Recommended Indexes

50© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

Predicted Data Compression Impact on Different Workloads

Data compression will have different impact on different

workloads. DW workloads with primarily SELECT type of requests

will benefit more.

Data compression will have different impact on different

workloads. DW workloads with primarily SELECT type of requests

will benefit more.

51© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

Data partitioning will have a positive impact on performance

for all workloads.

Data partitioning will have a positive impact on performance

for all workloads.

Predicted Impact of Data Partitioning

52© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

Performance Prediction Results Based on Oracle Memory Advisor Reflect the Impact of the Workload Growth and

Memory Pool Size Change

53© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

Predicted Impact of Adding a New Application Set up realistic expectations and reduce risk of surprises

Prediction on how new application will perform in production environment

Prediction on how new application will perform in production environment

Prediction on how new application will affect

performance of existing applications

Prediction on how new application will affect

performance of existing applications

TestProductionAlternatives

In a futureDatabase Replay

54© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

Predicting New HR Application Implementation Impact

55© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

Modeling Results Help Customers to Set Up Realistic SLO and Negotiate SLA for Major Workload

Hardware Configuration & TCO

SL

O

Users and IT select SLO level that will provide acceptable

performance with acceptable Total Cost of Ownership

(TCO)

Prediction results allow customers to negotiate SLA

between business and IT

For expected workload and database size growth, IT

guarantees delivery of a certain level of responsiveness and

throughput

Expected workload & DB growth

Predicted RT for one of the Workloads

SLA

56© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

Operational Decisions

Workload Priority SchedulingOrganizing Continuous Proactive Performance

ManagementVirtual Tape Library

58

Predicting How Change of the Workload’s Priority Will Affect Performance

Sales workload priority increase will

improve Sales RT, but other workloads will

suffer

Sales workload priority increase will

improve Sales RT, but other workloads will

suffer

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

Comparison of Actual Results vs. Expected and Organizing Continuous Proactive Service Level Management

• Find difference between predicted results or expectations (red line) and actual measurement data

• Track how often the actual results do not meet expectation (SLA)

• When number of exceptions exceeds the threshold, generate alert

• Explain difference and develop new corrective recommendations

59© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

• Identify when SLO will not be met for each workload

• Identify what will be a bottleneck

• Identify which workload will cause the performance degradation

60

Summary

Use modeling to evaluate options and justify EDM strategic, tactical and operational decisions to satisfy contradictive business requirements for timeliness and flexibility, accuracy, acceptable performance and minimum cost

Organize a continuous process of applying models for justifying EDM decisions, setting expectations, verifying results and finding effective proactive corrections during application and information life cycle

Workload characterization and modeling allow identification of which data and applications are used by individual lines of business and business processes, and focus EDM decisions and efforts on proactively addressing the most important strategic, tactical and operational IT issues

© Boris Zibitsker, BEZ, St Louis CMG - Feb 12, 2008

Thank You! Questions?Dr. Boris [email protected]


Recommended