+ All Categories
Home > Documents > Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten...

Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten...

Date post: 27-Jul-2020
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
42
Entropy and geometric measure theory Tuomas Sahlsten Advances on Fractals and Related Topics The Chinese University of Hong Kong, 11.12.2012 joint work with Ville Suomala and Pablo Shmerkin
Transcript
Page 1: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille

Entropy and geometric measure theory

Tuomas Sahlsten

Advances on Fractals and Related TopicsThe Chinese University of Hong Kong, 11.12.2012

joint work with Ville Suomala and Pablo Shmerkin

Page 2: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille

• M. Hochman, P. Shmerkin: Local entropy averages and projectionsof fractal measures, Ann. of Math. (2), 175(3):1001–1059, 2012

• P. Shmerkin: The dimension of weakly mean porous measures: aprobabilistic approach, Int. Math. Res. Not. IMRN, (9):2010–2033,2012• T. S., P. Shmerkin, V. Suomala: Dimension, entropy and the local

distribution of measures, J. London Math. Soc., appeared online, 2012

Page 3: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille

• M. Hochman, P. Shmerkin: Local entropy averages and projectionsof fractal measures, Ann. of Math. (2), 175(3):1001–1059, 2012• P. Shmerkin: The dimension of weakly mean porous measures: a

probabilistic approach, Int. Math. Res. Not. IMRN, (9):2010–2033,2012

• T. S., P. Shmerkin, V. Suomala: Dimension, entropy and the localdistribution of measures, J. London Math. Soc., appeared online, 2012

Page 4: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille

• M. Hochman, P. Shmerkin: Local entropy averages and projectionsof fractal measures, Ann. of Math. (2), 175(3):1001–1059, 2012• P. Shmerkin: The dimension of weakly mean porous measures: a

probabilistic approach, Int. Math. Res. Not. IMRN, (9):2010–2033,2012• T. S., P. Shmerkin, V. Suomala: Dimension, entropy and the local

distribution of measures, J. London Math. Soc., appeared online, 2012

Page 5: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille

Local entropy averages

Let Qk,x be the dyadic cube of generation k ∈ N containing x ∈ Rd.• The 2a-adic entropy in Qk,x of a measure µ in Rd is

Ha(µ,Qk,x) =∑

Q is a generation k+a

dyadic subcube of Qk,x

− µ(Q)µ(Qk,x)

log µ(Q)µ(Qk,x)

.

Page 6: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille

Local entropy averages

Let Qk,x be the dyadic cube of generation k ∈ N containing x ∈ Rd.

• The 2a-adic entropy in Qk,x of a measure µ in Rd is

Ha(µ,Qk,x) =∑

Q is a generation k+a

dyadic subcube of Qk,x

− µ(Q)µ(Qk,x)

log µ(Q)µ(Qk,x)

.

Page 7: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille

Local entropy averages

Let Qk,x be the dyadic cube of generation k ∈ N containing x ∈ Rd.• The 2a-adic entropy in Qk,x of a measure µ in Rd is

Ha(µ,Qk,x) =∑

Q is a generation k+a

dyadic subcube of Qk,x

− µ(Q)µ(Qk,x)

log µ(Q)µ(Qk,x)

.

Page 8: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille

Local entropy averages

Let Qk,x be the dyadic cube of generation k ∈ N containing x ∈ Rd.• The 2a-adic entropy in Qk,x of a measure µ in Rd is

Ha(µ,Qk,x) =∑

Q is a generation k+a

dyadic subcube of Qk,x

− µ(Q)µ(Qk,x)

log µ(Q)µ(Qk,x)

.

Page 9: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille

Local entropy averages

Let Qk,x be the dyadic cube of generation k ∈ N containing x ∈ Rd.• The 2a-adic entropy in Qk,x of a measure µ in Rd is

Ha(µ,Qk,x) =∑

Q is a generation k+a

dyadic subcube of Qk,x

− µ(Q)µ(Qk,x)

log µ(Q)µ(Qk,x)

.

Page 10: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille

Local entropy averages

Let Qk,x be the dyadic cube of generation k ∈ N containing x ∈ Rd.• The 2a-adic entropy in Qk,x of a measure µ in Rd is

Ha(µ,Qk,x) =∑

Q is a generation k+a

dyadic subcube of Qk,x

− µ(Q)µ(Qk,x)

log µ(Q)µ(Qk,x)

.

Page 11: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille

Local entropy averages

Let Qk,x be the dyadic cube of generation k ∈ N containing x ∈ Rd.• The 2a-adic entropy in Qk,x of a measure µ in Rd is

Ha(µ,Qk,x) =∑

Q is a generation k+a

dyadic subcube of Qk,x

− µ(Q)µ(Qk,x)

log µ(Q)µ(Qk,x)

.

Page 12: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille

Local entropy averages

Let Qk,x be the dyadic cube of generation k ∈ N containing x ∈ Rd.• The 2a-adic entropy in Qk,x of a measure µ in Rd is

Ha(µ,Qk,x) =∑

Q is a generation k+a

dyadic subcube of Qk,x

− µ(Q)µ(Qk,x)

log µ(Q)µ(Qk,x)

.

Page 13: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille

Local entropy averages

Let Qk,x be the dyadic cube of generation k ∈ N containing x ∈ Rd.• The 2a-adic entropy in Qk,x of a measure µ in Rd is

Ha(µ,Qk,x) =∑

Q is a generation k+a

dyadic subcube of Qk,x

− µ(Q)µ(Qk,x)

log µ(Q)µ(Qk,x)

.

Lemma (Llorente, Nicolau; Hochman, Shmerkin; Peres)

Let µ be a measure on Rd and a ∈ N. Then at µ almost every x ∈ Rd:

lim infr↘0

logµ(B(x, r))

log r= lim inf

N→∞

1

Na log 2

N∑k=1

Ha(µ,Qk,x);

lim supr↘0

logµ(B(x, r))

log r= lim sup

N→∞

1

Na log 2

N∑k=1

Ha(µ,Qk,x).

Page 14: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille

Local entropy averages

Let Qk,x be the dyadic cube of generation k ∈ N containing x ∈ Rd.• The 2a-adic entropy in Qk,x of a measure µ in Rd is

Ha(µ,Qk,x) =∑

Q is a generation k+a

dyadic subcube of Qk,x

− µ(Q)µ(Qk,x)

log µ(Q)µ(Qk,x)

.

Lemma (Llorente, Nicolau; Hochman, Shmerkin; Peres)

Let µ be a measure on Rd and a ∈ N.

Then at µ almost every x ∈ Rd:

lim infr↘0

logµ(B(x, r))

log r= lim inf

N→∞

1

Na log 2

N∑k=1

Ha(µ,Qk,x);

lim supr↘0

logµ(B(x, r))

log r= lim sup

N→∞

1

Na log 2

N∑k=1

Ha(µ,Qk,x).

Page 15: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille

Local entropy averages

Let Qk,x be the dyadic cube of generation k ∈ N containing x ∈ Rd.• The 2a-adic entropy in Qk,x of a measure µ in Rd is

Ha(µ,Qk,x) =∑

Q is a generation k+a

dyadic subcube of Qk,x

− µ(Q)µ(Qk,x)

log µ(Q)µ(Qk,x)

.

Lemma (Llorente, Nicolau; Hochman, Shmerkin; Peres)

Let µ be a measure on Rd and a ∈ N. Then at µ almost every x ∈ Rd:

lim infr↘0

logµ(B(x, r))

log r= lim inf

N→∞

1

Na log 2

N∑k=1

Ha(µ,Qk,x);

lim supr↘0

logµ(B(x, r))

log r= lim sup

N→∞

1

Na log 2

N∑k=1

Ha(µ,Qk,x).

Page 16: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille

Local entropy averages

Let Qk,x be the dyadic cube of generation k ∈ N containing x ∈ Rd.• The 2a-adic entropy in Qk,x of a measure µ in Rd is

Ha(µ,Qk,x) =∑

Q is a generation k+a

dyadic subcube of Qk,x

− µ(Q)µ(Qk,x)

log µ(Q)µ(Qk,x)

.

Lemma (Llorente, Nicolau; Hochman, Shmerkin; Peres)

Let µ be a measure on Rd and a ∈ N. Then at µ almost every x ∈ Rd:

lim infr↘0

logµ(B(x, r))

log r= lim inf

N→∞

1

Na log 2

N∑k=1

Ha(µ,Qk,x);

lim supr↘0

logµ(B(x, r))

log r= lim sup

N→∞

1

Na log 2

N∑k=1

Ha(µ,Qk,x).

Page 17: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille

Local entropy averages

Let µ be a measure on Rd and a ∈ N. Then at µ almost every x ∈ Rd:

dimloc(µ, x) = limN→∞

1

Na log 2

N∑k=1

Ha(µ,Qk,x).

The Problem: Relating dimension to local distribution

HeuristicsIf the dimension of a measure µ is “large”, then the distribution of µ is“spread out” and “flat” at many scales.

Page 18: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille

Local entropy averages

Let µ be a measure on Rd and a ∈ N. Then at µ almost every x ∈ Rd:

dimloc(µ, x) = limN→∞

1

Na log 2

N∑k=1

Ha(µ,Qk,x).

The Problem: Relating dimension to local distribution

HeuristicsIf the dimension of a measure µ is “large”, then the distribution of µ is“spread out” and “flat” at many scales.

Page 19: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille

Local entropy averages

Let µ be a measure on Rd and a ∈ N. Then at µ almost every x ∈ Rd:

dimloc(µ, x) = limN→∞

1

Na log 2

N∑k=1

Ha(µ,Qk,x).

The Problem: Relating dimension to local distribution

Heuristics

If the dimension of a measure µ is “large”, then the distribution of µ is“spread out” and “flat” at many scales.

Page 20: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille

Local entropy averages

Let µ be a measure on Rd and a ∈ N. Then at µ almost every x ∈ Rd:

dimloc(µ, x) = limN→∞

1

Na log 2

N∑k=1

Ha(µ,Qk,x).

The Problem: Relating dimension to local distribution

HeuristicsIf the dimension of a measure µ is “large”, then the distribution of µ is“spread out” and “flat” at many scales.

Page 21: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille
Page 22: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille
Page 23: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille
Page 24: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille
Page 25: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille
Page 26: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille
Page 27: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille
Page 28: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille
Page 29: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille
Page 30: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille
Page 31: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille
Page 32: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille
Page 33: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille
Page 34: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille
Page 35: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille
Page 36: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille

Time is running out!

As a sample, one of the results in the plane:

Theorem (S., Shmerkin, Suomala 2012)

For s ∈ (1, 2) and α ∈ (0, 1) there exist p > 0 and c > 0 such that

• if a measure µ in R2 satisfies dimH µ > s, then at µ-a.e. x ∈ R2:

lim infN→∞

∣∣∣{k = 1, . . . , N : inf`

µ(C(x,`,α,2−k))µ(B(x,2−k))

> c}∣∣∣

N> p. (1)

• if dimp µ > s, then same holds with lim inf replaced by lim sup in (1).

C(x, `, α, r) := {y ∈ B(x, r) : dist(y − x, `) < α|y − x|, (y − x) · ` > 0}.

Page 37: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille

Time is running out! As a sample, one of the results in the plane:

Theorem (S., Shmerkin, Suomala 2012)

For s ∈ (1, 2) and α ∈ (0, 1) there exist p > 0 and c > 0 such that

• if a measure µ in R2 satisfies dimH µ > s, then at µ-a.e. x ∈ R2:

lim infN→∞

∣∣∣{k = 1, . . . , N : inf`

µ(C(x,`,α,2−k))µ(B(x,2−k))

> c}∣∣∣

N> p. (1)

• if dimp µ > s, then same holds with lim inf replaced by lim sup in (1).

C(x, `, α, r) := {y ∈ B(x, r) : dist(y − x, `) < α|y − x|, (y − x) · ` > 0}.

Page 38: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille

Time is running out! As a sample, one of the results in the plane:

Theorem (S., Shmerkin, Suomala 2012)

For s ∈ (1, 2) and α ∈ (0, 1) there exist p > 0 and c > 0 such that

• if a measure µ in R2 satisfies dimH µ > s, then at µ-a.e. x ∈ R2:

lim infN→∞

∣∣∣{k = 1, . . . , N : inf`

µ(C(x,`,α,2−k))µ(B(x,2−k))

> c}∣∣∣

N> p. (1)

• if dimp µ > s, then same holds with lim inf replaced by lim sup in (1).

C(x, `, α, r) := {y ∈ B(x, r) : dist(y − x, `) < α|y − x|, (y − x) · ` > 0}.

Page 39: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille

Time is running out! As a sample, one of the results in the plane:

Theorem (S., Shmerkin, Suomala 2012)

For s ∈ (1, 2) and α ∈ (0, 1) there exist p > 0 and c > 0 such that

• if a measure µ in R2 satisfies dimH µ > s,

then at µ-a.e. x ∈ R2:

lim infN→∞

∣∣∣{k = 1, . . . , N : inf`

µ(C(x,`,α,2−k))µ(B(x,2−k))

> c}∣∣∣

N> p. (1)

• if dimp µ > s, then same holds with lim inf replaced by lim sup in (1).

C(x, `, α, r) := {y ∈ B(x, r) : dist(y − x, `) < α|y − x|, (y − x) · ` > 0}.

Page 40: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille

Time is running out! As a sample, one of the results in the plane:

Theorem (S., Shmerkin, Suomala 2012)

For s ∈ (1, 2) and α ∈ (0, 1) there exist p > 0 and c > 0 such that

• if a measure µ in R2 satisfies dimH µ > s, then at µ-a.e. x ∈ R2:

lim infN→∞

∣∣∣{k = 1, . . . , N : inf`

µ(C(x,`,α,2−k))µ(B(x,2−k))

> c}∣∣∣

N> p. (1)

• if dimp µ > s, then same holds with lim inf replaced by lim sup in (1).

C(x, `, α, r) := {y ∈ B(x, r) : dist(y − x, `) < α|y − x|, (y − x) · ` > 0}.

Page 41: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille

Time is running out! As a sample, one of the results in the plane:

Theorem (S., Shmerkin, Suomala 2012)

For s ∈ (1, 2) and α ∈ (0, 1) there exist p > 0 and c > 0 such that

• if a measure µ in R2 satisfies dimH µ > s, then at µ-a.e. x ∈ R2:

lim infN→∞

∣∣∣{k = 1, . . . , N : inf`

µ(C(x,`,α,2−k))µ(B(x,2−k))

> c}∣∣∣

N> p. (1)

• if dimp µ > s, then same holds with lim inf replaced by lim sup in (1).

C(x, `, α, r) := {y ∈ B(x, r) : dist(y − x, `) < α|y − x|, (y − x) · ` > 0}.

Page 42: Entropy and geometric measure theory · Entropy and geometric measure theory Tuomas Sahlsten AdvancesonFractalsandRelatedTopics TheChineseUniversityofHongKong,11.12.2012 jointworkwithVille

Time is running out! As a sample, one of the results in the plane:

Theorem (S., Shmerkin, Suomala 2012)

For s ∈ (1, 2) and α ∈ (0, 1) there exist p > 0 and c > 0 such that

• if a measure µ in R2 satisfies dimH µ > s, then at µ-a.e. x ∈ R2:

lim infN→∞

∣∣∣{k = 1, . . . , N : inf`

µ(C(x,`,α,2−k))µ(B(x,2−k))

> c}∣∣∣

N> p. (1)

• if dimp µ > s, then same holds with lim inf replaced by lim sup in (1).

C(x, `, α, r) := {y ∈ B(x, r) : dist(y − x, `) < α|y − x|, (y − x) · ` > 0}.


Recommended