+ All Categories
Home > Documents > Environmentally Benign EnergyEnvironmentally Benign Energy ...,,UNIBZ,90,68.pdf · Equipment at...

Environmentally Benign EnergyEnvironmentally Benign Energy ...,,UNIBZ,90,68.pdf · Equipment at...

Date post: 27-Jan-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
61
Environmentally Benign Energy Environmentally Benign Energy Technologies Marco J. Castaldi D fE h&E i lE i i Department of Earth & Environmental Engineering Henry Krumb School of Mines, Columbia University Presentation to Free University of Bolzano Bolzano, Italy November, 11,2010 FUB – Nov 2010
Transcript
  • Environmentally Benign EnergyEnvironmentally Benign Energy Technologies

    Marco J. Castaldi D f E h & E i l E i iDepartment of Earth & Environmental EngineeringHenry Krumb School of Mines, Columbia University

    Presentation to Free University of Bolzano

    Bolzano, ItalyNovember, 11,2010

    FUB – Nov 2010

  • Marco J Castaldi - IntroductionChemical Engineering Background

    Ph.D. UCLA in high temperature chemical kineticsEPA Pollution Prevention Fellowship

    M f F l P D l~ 10 Years Industrial Experience

    • Manager of Fuel Processor Development• Research Engineer, Catalytic Combustor Development• 8 patents awarded to date

    Technology Development with:Technology Development with:

    Solar Turbines

    C l bi U i i R h & D l I

    A Caterpillar Company

    FUB – Nov 2010

    Columbia University Research & Development Interests• Catalysis and Combustion• Environmentally Benign Energy Technologies

  • Central Park

    FUB – Nov 2010

  • •Founded 1754 – King’s College (Colony of New York)•Renamed Columbia University after American Revolution•Engineering•Engineering

    School of Mines founded in 1864; Origins of Engineering School1964 Renamed Henry Krumb School of Mines (HKSM)1997 Renamed Earth & Environmental Engineering1997 Renamed Earth & Environmental Engineering

    First mining and metallurgy school in the U.S. Part of Manhattan Project (WWII)Prominent Researchers: Enrico Fermi, Richard Feynman

    FUB – Nov 2010

  • Environmental Stresses

    Phys & Chem

    Earth & Environmental Engineer

    Ch EMech Eng

    Ci il EBio

    FUB – Nov 2010

    Chem Eng Civil EngGeo Phys&Chem

  • EAEE Department

    Integrated analysis and managementof the Earth System

    • Sustainable Energy

    • Materials, Mineral Processing & Manufacturing, g g

    • Water Quantity/Quality and Climate Risks

    • Environmental Health Engineering

    FUB – Nov 2010

  • Enrollment Trends

    60

    70total

    40

    50

    60

    dent

    s

    totaljuniors&seniors

    20

    30

    40

    # of

    stu

    d

    0

    10

    09-10 junior class size reflects declared SEAS sophomores

    2000 2002 2004 2006 2008 2010 2012

    year

    FUB – Nov 2010

    09-10 junior class size reflects declared SEAS sophomoresbut not include incoming 3-2 Combined Plan students

  • Equipment at Combustion and Catalysis Laboratory (CCL)Catalysis Laboratory (CCL)

    Netzch 409 PC Thermo-gravimetric Analyzer

    Agilent 6890 GC/ 5973 MS system5973 MS system

    •Concentrations•Spatial, Temporal

    •Mass changes•Volume change•Fundamental High Temperature Kinetic

    FUB – Nov 2010

    Portable micro GC(field testing)

  • Columbia University Working Collaboratively on Fundamental and Applied y g y ppResearch Studies

    Advanced, Combustion, Materials and Energy Test Complex

    FUB – Nov 2010

  • Validation Testing

    • 3 random grab samples• Results show biomass content

    66%, 68% and 66%• Biocarbon emission = 0.19 MTCE/ton MSW• Fossil based emission = 0 08 MTCE/ton MSW

    FUB – Nov 2010

    • Fossil based emission = 0.08 MTCE/ton MSW• 10% - 36% reduction of CO2 emissions compared to landfill

  • FUB – Nov 2010

  • FUB – Nov 2010

  • Energy

    • Two-fold increase in energy consumption (demand)gy p ( )• From 472 exajoules to 791-1107 over next 40 years

    • The world is sensitive to energy supply (new paradigm)− Security, Procurement supply chain disruptions

    • CO2 atmospheric concentrations are rising (environment)− Prevent carbon dioxide emissions sequester create valuePrevent carbon dioxide emissions sequester, create value

    FUB – Nov 2010

  • Biomass Energy

    Source: IEA

    Total mass of living matter (including moisture) - 2000 billion ton d i i l biEnergy stored in terrestrial biomass 25 000 EJ

    Net ann. Prod. terrestrial biomass - 400 000 million ton

    Rate of energy storage by land biomass - 3000 EJ/y (95 TW) i f f f 400 / (12 )

    FUB – Nov 2010

    Total consumption of all forms of energy - 400 EJ/y (12 TW) Biomass energy consumption - 55 EJ/y ( 1. 7 TW)

  • BioenergyS i bl b l h d h i l f d k• Sustainable carbon neutral power, heat and chemical feedstocks.

    • Potential to provide ~ 15% of energy demand.• Gasification

    • Lower PM NO and SO than combustion• Lower PM, NOx, and SO2, than combustion• Steam addition – Increased concentration of H2• CO2 usage – enhanced char conversion and less residue for landfill.• Provides reagents (CO & H2) for synthetic fuel/chemical production

    Estimations vary widelyEstimations vary widely due to land availability and crop yields.

    One piece of the alternative energy future technologies

    FUB – Nov 2010

  • •Energy sector is inefficient

    What is the Problem?Energy sector is inefficient

    • ~60% of energy is wasted!

    World Energy Consumption 5 1020 J (2008)5x1020 J (2008)

    Remaining Fossil Fuel 0.4x1024 J (800x)

    Fossil + hydrate 2x1024 J (4000x)

    FUB – Nov 2010

  • Conversion Problem

    90

    100 Heating Rate = 10oC min-1

    90

    100 Heating Rate = 10oC min-1

    (%) 70

    80

    90

    (%) 70

    80

    90Determining and Understanding Reaction Mechanisms allows design of more efficient and selective processes and technologies

    Res

    idua

    l Mas

    s

    40

    50

    60

    Res

    idua

    l Mas

    s (

    40

    50

    60 and technologies.

    R

    10

    20

    30

    R

    10

    20

    30Unprocessed residual

    Reactor Temperature (oC)

    0 200 400 600 800 10000

    10

    Reactor Temperature (oC)

    0 200 400 600 800 10000

    10

    Completely processed to desired outcome

    FUB – Nov 2010

    p ( )

  • Atom Economy : Carbon DioxideEnergy production & Environment

    CO2 CH4Energy conversion & Efficiency

    BiomassCxHy

    Fuel (e g C2H OH)

    Energy conversion & Efficiency

    Biomass + H2O CO + H2 ηatom =100%Biomass + CO2 CO + H2 ηatom =100%

    MSWCoal

    Fuel (e.g. C2H5OH)

    Biomass CO2 CO H2 ηatom 100%• Energy and water savings

    20% of 2008 total transportation energy demand incorporates CO2

    FUB – Nov 2010

    f p gy p 2•Remove 308 million vehicles from the road•Eliminate CO2 emissions from 57 - 1000 MW coal-fired power plants.

  • Combustion & Catalysis Lab (CCL)Air

    H2

    CO2 CH4 H2OElec.

    H2 + CO2

    Air

    FuelReforming

    Fuel CellOther fuelsFuelCell

    This presentation

    Alternative CH4/CO2source – Landfill gas

    CH4HydratesCO2

    This presentation•Hydrates•GHG Reforming•WTE

    CO/H2 – engine application

    sou ce a d gas

    CO2 capture &GHG reforming

    To market or community. Stock: plastic furniture

    C2H2

    plastics or raw materials

    Biomas andWaste to Energy

    electricity

    CO2 household etcWaste to Energy (WTE)

    Resources for energy production will continue to be in demand

    FUB – Nov 2010

    “The nature of environmental issues is changing from a regulatory to a resource focus” R. MacLean, Env. Protec. April 2003, P.12

    Resources for energy production will continue to be in demand

  • Gasification or Combustion

    • Sub stoichiometric air • Excess air• Lower total volumetric flow• Lower fly ash carry over• Pollutants in reduced form (H2S,

    • Higher volumetric flowrate• Fly ash carry over• Pollutants in oxidized form (SOx,

    COS)• Char – Low T• Slag – vitrification – high T

    NOx, etc)• Bottom ash

    FUB – Nov 2010

  • Gasification status• 163 commercial gasification projects worldwide consisting of• 163 commercial gasification projects worldwide consisting of

    a total of 468 gasifiers. DOE survey reported for 2003• ~ 120 plants began operations between 1960 and 2000p g p

    – majority (more than 72 plants) commissioned after 1980. Currently ~34 new plants are at various stages of planning and construction.

    h j i f h i i l d i d d• The majority of the existing plants were designed and constructed to produce a synthetic gas, consisting primarily of H2 and COH2 and CO

    • Ethanol – EnerChem/City of Edmonton – 2008• Energos (Sweden, UK) building plants @

  • Chemicals From Waste News

    • Military MISER programT h/Bi /S lid h d b t f l– Trash/Biomass/Solid hydrocarbons to fuels

    • American Chemical Society (ACS)American Chemical Society (ACS)– Letters to the editor – “chemicals from waste”

    • C&EN April 2006

    • Discover Magazine –– “DATA” Section : The Ultimate Garbage Disposalg p

    • How to turn trash into clean energy – Geoplasma Unit– 160 MW by 2009, St. Lucie County, Florida

    FUB – Nov 2010

  • Attractive features of Gasification

    • Produce consistent productgeneration of electricity– generation of electricity

    – primary building blocks: chemicals and transportation fuels.• Remove contaminants in the feedstock and to produce a clean

    syngas product.• Process range of feedstocks

    – coal, heavy oils, petroleum coke, heavy refinery– residuals, refinery wastes, hydrocarbon contaminated– soils, biomass, and agricultural wastes.soils, biomass, and agricultural wastes.

    • Convert wastes or low-value products to higher value products.• Minimize the amount of solid waste requiring landfill disposal. • Solid by-products have a market value can be used as fuel or

    construction material, and are non-hazardous.

    FUB – Nov 2010

  • FUB – Nov 2010

  • Fuel + air + steam CO + H O

    Fuel + air + steam CO + H CO2 + H2OCO + H2

    ΔH > 0 ΔH < 0

    If perfectly balanced – reaction should occur at T = 298K (25oC)

    ∏−

    = RTE

    CeARact

    α

    FUB – Nov 2010

    ∏=i

    iCeAR

  • C ( ) +

    • Most HC fuels (CxHyOzNaSb) exist above lines

    • Need oxygen source or hydrogen to get below C (s) + gashydrogen to get below

    (CO2, O2, air H2O, H2)

    Gas only – no C(s)

    FUB – Nov 2010M. J. Prins et al. / Chemical Engineering Science 58 (2003) 1003 – 1011

  • Stiochiometry & Equilibrium

    C + O2 CO2 + 2H2ODeep Ox 2H2 + COC + O2

    Partial Ox

    0.4 2500H2

    0.3

    0.35

    2000

    C )

    H2

    Temperature

    0 15

    0.2

    0.25

    ompo

    sitio

    n

    1000

    1500

    pera

    ture

    ( o C

    H2O CO

    0 05

    0.1

    0.15Co

    500

    1000

    Tem

    p

    CO2

    0

    0.05

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

    CH4/Air

    0

    C / Air

    FUB – Nov 2010 Ref: STANJAN calculationsNet effect: Temp rise; Reactive partial ox. products (CO, H2)

    CH4/AirC / Air

  • Exergy (Entropy) Analysis

    26

    27

    27

    • More oxygen in fuel, more exergy• Higher heating value – more exergyRelated to arrangement of molecules and

    h t ti t h i l

    24

    25

    25

    26

    26 heat generation or capture as chemical energy

    23

    23

    24

    24

    0 0.5 1 1.5 2 2.5

    FUB – Nov 2010 Source: M. J. Prins et al. / Chemical Engineering Science 58 (2003) 1003 – 1011

  • Total energy is constant

    Once all carbon is converted,Once all carbon is converted, more air does not help

    Begin combustion reactions regime

    Rearrangement (chemical

    g

    Rearrangement (chemical Exergy)

    Heating (physical Exergy)

    FUB – Nov 2010

  • Total energy increases –addition of steam

    Once all carbon is converted, only energy from steam

    Excess steam -no reaction

    Rearrangement (chemicalRearrangement (chemical Exergy)

    Heating (physical Exergy)

    FUB – Nov 2010

  • CO & H2 --------- CO2 & H2O

    Transitioning from chemical rearrangement to heat generation, thus Carnot cycle comes into play

    FUB – Nov 2010

  • Catalytically Controlled Reaction GasifierCatalytically Controlled Reaction Gasifier (CRG Process)

    O2

    COsplit

    O2

    CoalH O2

    CO2(optional)

    H2H2CO H2

    COout

    H2

    COH O2

    AshH2

    AshSeparator

    H OSep.

    2

    CO+O to CO2 2CO2

    SOFCCO2

    Biomass2

    COH OAsh

    2

    H O2 CO

    Ashto waste stream H O2 CO2

    recycle2

    FUB – Nov 2010

    H O Make up (optional)2

  • CRG Aspen™ Simulation

    CO PROD

    CO-SPLIT

    CO-ELECCMBSTOR

    O2-COMB

    COMBOUT

    CO2RECYL

    CO2EXHST

    CO-PRODCO-COMB

    CO2RETRN

    C-IN

    REF-PROD

    H2-SEP

    COOLDOWN COOLPRODH2O-PROD

    REFORMERWATER-IN

    H2-PROD

    FUB – Nov 2010

  • Biomass constituents

    • Typical C6H12O6 – S~1.8%, N~2%Typical C6H12O6 S 1.8%, N 2%– Sulfur – likely to bind with hydrogen– Some water – another source of hydrogeny g– Nitrogen – likely to form NH3– Ash is variable depending on biomass

    • Spruce – near zero• Alfalfa – significant

    FUB – Nov 2010

  • 1.2H2 Production, basis:0.5 kmol/hr C

    ate

    (kg/

    hr)

    0.8

    1.0s/c:1.0, r:0

    Baseline simulation results of energy balance and hydrogen

    H2 F

    low

    ra

    0 2

    0.4

    0.6generation for CCRG process

    Conventional Gasifier

    0.0

    0.2

    10

    20

    Energy Requirements

    H2O/C = s/c, CO2 recyc = rConventional Gasifier

    H2 0.7 kg/hrCO2 ~ 15%

    CCRG

    y (M

    J/hr

    )

    0

    10Energy req'd by gasifierbalanced by CO combustion

    CCRGH2 0.85 kg/hrCO2 ~ 1.5%

    e- ~13 kW/kmol C

    Ene

    rgy

    -20

    -10s/c:1.0, r:0CO Combustion ~48%

    FUB – Nov 2010 CO Split (to combustor)

    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9-30

  • 1.0

    1.2H2 Production, basis:0.5 kmol/hr C

    s/c:1.0, r:0.25

    Flow

    rate

    (kg/

    hr)

    0.6

    0.8s/c:1.0, r:0

    H2 F

    0.2

    0.4

    H2O/C = s/c, CO2 recyc = r

    Comparison of baseline and 25% CO2 recycle to the

    reformer0.0

    10

    20

    Energy Requirements

    Energy req'd by gasifierCCRG

    H 0 95 kg/hr

    nerg

    y (M

    J/hr

    )

    -10

    0

    s/c:1.0, r:0

    balanced by CO combustionH2 0.95 kg/hrCO2 ~ 1.5%

    e- ~13 kW/kmol CCO Combustion ~42%

    E

    -20

    s/c:1.0, r:0.25

    FUB – Nov 2010

    CO Split (to combustor)

    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9-30

  • 1.0

    1.2H2 Production, basis:0.5 kmol/hr C

    s/c:1.0, r:0.25

    owra

    te (k

    g/hr

    )

    0.6

    0.8s/c:1.0, r:0

    s/c: 1.0, r:0.5

    H2 F

    lo

    0.2

    0.4

    H2O/C = s/c, CO2 recyc = rCO recycle comparison for0.0

    10

    20

    Energy Requirements

    H2O/C s/c, CO2 recyc r

    Energy req'd by gasifier

    CO2 recycle comparison for steam to carbon ratio of 1.0.

    Tradeoff: energy neutral vs

    nerg

    y (M

    J/hr

    )

    -10

    0

    s/c:1.0, r:0

    balanced by CO combustionH2 production

    En

    -20

    10

    s/c:1.0, r:0.25s/c:1.0, r:0.5

    FUB – Nov 2010

    CO Split (to combustor)

    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9-30

    s/c:1.0, r:0.5

  • Comparison of CO Evolution for Woods vs. GrassesComparison of CO Evolution for Woods vs. Grasses

    • Steam gasification, (0%CO2)

    b i i d0 00090.00120.00150.0018

    Frac

    tion

    Alfalfa

    • Carbonization and gaseous CO evolution as a transition between pyrolysis regimes, i e 400oC ( h i f li i

    00.00030.00060.0009

    0 200 400 600 800 1000

    CO

    Mol

    e F

    Oak

    i.e. 400oC (mechanisms for lignin decomposition: Kawamoto (2003) and Demirbas (2000))

    • Boudouard reactions

    0 200 400 600 800 1000

    Furnace Temperature (oC)

    0.0025

    0.003

    • Boudouard reactions dominant above 800oC, enhanced CO production

    Th id l b l0.001

    0.0015

    0.002

    0.0025

    Mol

    e Fr

    actio

    n

    Beachgrass

    • The residual carbonyl groups in the char are decarboxylated to CO and CO2

    0

    0.0005

    0 200 400 600 800 1000

    CO

    Pine

    FUB – Nov 2010

    Furnace Temperature ( o C)

  • Comparison of H2 Evolution for Woods vs. Grassesp 2•Steam gasification, (0%CO2)

    •WGS reaction dominates 500-600oC0.00260.00325

    0.0039

    on

    •Dehydrogenation reactions are

    continuously occurring during0 000650.0013

    0.00195

    H2 M

    ole

    Frac

    tio

    Beachgrass

    continuously occurring during

    decomposition and devolatilization

    •H2 consumption ceases sooner for

    0

    0.00065

    400 500 600 700 800 900 1000

    Furnace Temperature ( o C)

    Spruce

    H2 consumption ceases sooner for

    cellulosic material that thermally

    degrades sooner, resulting in H20.00260.00325

    0.0039

    actio

    n

    evolution rise earlier for cellulosic

    material (mechanism for cellulose 0.000650.0013

    0.00195

    H2

    Mol

    e Fr

    a

    Pine Needles

    Maple

    FUB – Nov 2010

    decomposition Demirbas (2000))0400 500 600 700 800 900 1000

    Furnace Temperature ( o C)

    Maple

  • Comparison of CH4 Evolution for Woods vs. Grasses

    •Steam gasification, (0%CO2)

    •350 500oC highest rate of lignin0 00030.00040.00050.0006

    Frac

    tion

    •350-500oC highest rate of lignin decomposition

    •CO available in reactor combines i h H f WGS i

    00.00010.00020.0003

    0 200 400 600 800 1000

    CH

    4 Mol

    e Pine Needles

    Pine

    with H2 from WGS reaction to produce elevated CH4 levels from low To methanation reactions

    0 200 400 600 800 1000

    Furnace Temperature ( o C)

    •Degradation of levoglucosan via hydrogenolysis involves repeated consumption of H2 in several steps,

    0 0003

    0.0004

    0.0005

    0.0006

    Frac

    tion

    Beachgrass

    thus decreasing competing CH4production near ~300oC (mechanism of cellulose decomposition Demirbas (2000))

    0

    0.0001

    0.0002

    0.0003

    0 200 400 600 800 1000

    CH

    4 Mol

    e F

    Oak

    FUB – Nov 2010

    (2000)) 0 200 400 600 800 1000Furnace Temperature ( o C)

  • Waste Gasification 100 Heating Rate = 10

    oC min-1

    0.12

    al M

    ass (

    %)

    50

    60

    70

    80

    90

    100 Heating Rate = 10 C min

    0.08

    0.1

    ctio

    n 20%30%

    40%50%

    Res

    idua

    0

    10

    20

    30

    40

    50

    0.04

    0.06

    O M

    ole

    Frac 10%

    5%

    % CO2 injectedReactor Temperature (oC)

    0 200 400 600 800 1000

    0

    0.02

    CO

    0%

    500 600 700 800 900 1000

    Furnace Temperature ( oC )

    • Enhanced CO production with CO

    FUB – Nov 2010

    • Enhanced CO production with CO2• Production begins to level off above 20% CO2

  • Value: CO2 Enhanced Char Burnout

    • Identical time on stream, reaction

    temperature profile total flow ratetemperature profile, total flow rate

    • Physical evidence of more efficient

    Walnut Shells: 0% CO2 Walnut Shells: 30% CO2

    y f ff

    gasification with CO2

    Douglas Fir: 0% CO2 Douglas Fir: 30% CO2

    ~20% biomass

  • C C i COChar Pore Development- Enhanced Char Burnout With CO2

    LigninLigninLignin Lignin

    100% CO21oC/min

    Lignin

    100% CO21oC/min

    Lignin

    0% CO2 -H2O/N21oC/min,

    FUB – Nov 2010

    22-930oC 22-860oC 22-860oC

  • SEM - Douglas Fir Char Fiber Enhanced i d i ifi imicropore structure during steam gasification

    Increased porosity following thermalthermal treatment

    FUB – Nov 2010

  • CO2 impact on gasification productsCO2 impact on gasification products

    1.00CO2 Variation

    0.020CO2 Variation

    0-1 ) 0 40

    0.60

    0.80 0% 5%10%15%20%30%

    40%

    2

    1 )

    0.015

    0% 5%10%15%20%40%50%

    CO2 Variation

    Mol

    e Fr

    actio

    n (1

    0

    0.04

    0.20

    0.40 40%50%

    ole

    Frac

    tion

    (10-

    1

    0.010

    Increasing CO2

    Increasing CO2

    CO

    M

    0 01

    0.02

    0.03

    H2 M

    o0.005

    Increasing CO2

    Reactor Temperature (oC)

    200 400 800 900 10000.00

    0.01

    R T (oC)

    600 700 800 900 10000.000

    FUB – Nov 2010

    Reactor Temperature ( C)Fi 1 H d i i h CO ifi i

    Reactor Temperature (oC)

    CO increases with CO2 H2 decreases with CO2

  • H2/CO (Syngas) Tuning

    4.5

    5

    5.5• Fuels • Chemicals• Combustion

    SOFC operation

    3

    3.5

    4

    in g

    asifi

    er

    • Fuel cellsGas Turbine Combustion – Low NOx operation/good stability

    2

    2.5

    3

    CO

    pro

    duce

    d

    Fisher Tropsch – diesel fuels

    Fisher Tropsch – Fe & Co-based

    0 5

    1

    1.5H2/C Catalyst processes

    specialty chemicals

    0

    0.5

    0% 10% 20% 30% 40% 50%

    % CO dd d t ifi ti i fl t

    FUB – Nov 2010

    % CO2 added to gasification influent

  • Major Gasification Reactions

    Water Gas Shift Steam GasificationLow Temperature High TemperatureWater Gas Shift

    CO + H2O ⇋ CO2 + H2M th ti

    C + H2O ⇋ H2 + CO

    BoudouardMethanation

    C + 2H2 ⇋ CH4C + CO2 ⇋ 2CO

    2CO + 2H2 ⇋ CH4 + CO2CO + 3H2 ⇋ CH4 + H2O

    Char Burnout: O (Biomass/Steam)C + ½O2 ⇋ CO

    Steam GasificationC + H2O ⇋ H2 + CO

    Reverse Water Gas ShiftCO + H ⇋ CO + H O

    FUB – Nov 2010

    C H2O H2 CO CO2 + H2 ⇋ CO + H2O

  • CO2 Impact on Coal

    • Decrease in H2production with COproduction with CO2

    • Increase in CO production with CO2

    FUB – Nov 2010

  • MSW DATA

    Mass % vs Temp for Varius Amounts of CO2100

    80 20

    25Area  1: water volatilization

    20

    25

    Area 2: biomass  degradation

    ass %

    605

    10

    15

    5

    10

    15

    Ma

    40

    20% CO210% CO2

    700 750 800 850 900 950 10000

    Area 3:

    700 750 800 850 900 950 10000

    0

    20 5% CO22.5% CO2Inert1% CO2

    Area  3: petrochemical degradation

    Area  4: boudouard reaction (C O2 +  C   2C O)

    FUB – Nov 2010

    Temperature (oC)0 200 400 600 800 1000

    0

  • Gasification and Combustion: Operating facilityp g y

    Current conditions found in combustors

    Air atmosphere (20% O2, 80% N2)

    Gasification/ pyrolysis (100% N2)

    p ( 2, 2)

    Lean atmosphere (6% O2, 94% N2)

    FUB – Nov 2010

  • Mass Decomposition Curve•Bulk mass loss between 250-400oC

    1.00

    Bulk mass loss between 250-400 C through devolatilization and pyrolitic decomposition

    Li ll l i d iti d

    0.60

    0.80

    actio

    n

    Grasses

    •Ligno-cellulosic decomposition due to gasification between 400-700oC

    •High temperature reaction between Grasses

    0.40

    Mas

    s Fra 700-900oC as oxygen in the biomass,

    steam and recycle CO2 aid in char burnout

    0 00

    0.20

    Woods•By 950oC nearly all of the biomass samples slowly heated at 10oC/min completed their mass burnout Woods0.00

    0 200 400 600 800 1000

    Temperature oC•Biomass samples having lower lignin content (alfalfa, maple bark and grasses) yield higher mass percent

    FUB – Nov 2010

    grasses) yield higher mass percent gasification residues

  • Combustion Comparisonswaste tires

    40

    O

    30

    6.9% - O2Air30% - O2

    O

    H2C CH2Epoxyethane

    Mas

    s (%

    )

    20

    M

    10

    30% O2 Air

    350 400 450 500 550 6000

    6.9% O2

    FUB – Nov 2010

    Temperature (oC)

    350 400 450 500 550 600

  • Experiment & Simulation Comparison

    Combustion Gasification

    Experiment & Simulation Comparison

    Combustion Gasification

    Model

    Model

    Model

    FUB – Nov 2010

  • Experiment & Simulation “Scale Up”

    TGA (~20 mg)TGA ( 20 mg)

    O2/Coal=0.6

    Image Source: Tondu Corporation, Houston, Texas 77079Plant Simulation (ASPEN ®)

    O2/Coal=0.9O2/Coal=0.9CO2 Recycle

    CO2 Recycle

    FUB – Nov 2010

    O2/Coal=0.6

    Drop tube (~ 2 g/min)

  • Ballistic Heating @ ~700oC min-1

    Mass Loss and Temperature continuously measured

    Δt for test (~100 seconds)

    Temperature (centigrade) achieved for test

    FUB – Nov 2010

    p g

  • Online gas analysis capability

    Chemical Species with Ballistic Heating @ ~700oC min-1

    Online gas analysis capabilityH2: MW = 2 g gmol-1C4’s HC: MW = 58 g gmol-1

    Major Species

    %) 75

    80

    Con

    cent

    ratio

    n (%

    15

    20

    70

    Minor Species

    1

    hem

    ical

    Spe

    cies

    C

    5

    10

    Con

    cent

    ratio

    n (%

    )

    0.1

    1

    Temperature (oC)

    200 400 800 825 850 875 900 925 950 975 1000

    Ch

    0

    Che

    mic

    al S

    peci

    es C

    0.01

    Collection T(*C) vs N2 Collection T(*C) vs O2 Collection T(*C) vs CO Collection T(*C) vs CO2 Temperature (oC)

    200 300 400 500 800 825 850 875 900 925 950 975 1000

    C

    0.001

    Collection T(*C) vs H2

    FUB – Nov 2010

    Collection T( C) vs H2 Collection T(*C) vs CH4 Collection T(*C) vs Ethylene Collection T(*C) vs Ethane Collection T(*C) vs Acetylene Collection T(*C) vs Propylene Collection T(*C) vs Propane Collection T(*C) vs Butane

  • 5 2 5

    Major Chemical Species Results

    3

    4

    5

    ntra

    tion

    (%)

    1000oCH2

    1.5

    2.0

    2.5

    entr

    atio

    n (%

    )

    800oC

    O2

    0

    1

    2

    0 200 400 600 800 1000

    H2 C

    once

    800oC

    0.0

    0.5

    1.0

    0 200 400 600 800 1000

    O2 C

    once

    1000oC

    0 200 400 600 800 1000

    Temperature (oC)

    0 200 400 600 800 1000

    Temperature (oC)

    7.5

    9.0

    (%) 1000

    oCCO2.5

    3.0

    (%) 1000oC

    CH4

    3.0

    4.5

    6.0

    O C

    once

    ntra

    tion

    800oC

    1.0

    1.5

    2.0

    4 Con

    cent

    ratio

    n ( 1000 C

    800oC

    0.0

    1.5

    0 200 400 600 800 1000

    Temperature (oC)

    CO

    0.0

    0.5

    0 200 400 600 800 1000

    Temperature (oC)

    CH

    4

    FUB – Nov 2010

    • Increased H2 & similar CO productions with higher final temperature• Similar or increased O2 consumption

  • Fuel Synthesis: Aromatic Adjustment

    N1 5

    Peak Identification

    20.7 16.66

    15.6020.03

    N

    CH3

    CH

    2

    36

    FUB – Nov 2010

    CH3

    4 7

  • Summary• Reaction Mechanism Development Focused on Carbon

    – New processes – Better conversion

    • Carbon neutral energy production

    • CO2 utilization

    – New Technologies – Atom Economy

    • Modification of renewable fuels with CO2

    • Reforming of GHG – (e.g. LFG, stranded NG)

    • Nano-dipersed CaO for equilibrium constrained reactionsreactions

    • Fundamental understanding enables technology development

    FUB – Nov 2010

  • Acknowledgments• Collaborators

    – Tuncel Yegulalp, Columbia Univ.

    – Robert Farrauto BASF Catalysts LLC

    • Visiting Scholars – John Dooher, Adelphi University

    – Zhixiao Zhang, Hangzhou University

    • Post-DocsRobert Farrauto, BASF Catalysts, LLC.

    • Students– Forrest Zhou

    N i Kli h ff

    Post Docs – Eilhann Kwon

    – Heidi Butterman

    – Maik Eichlebaum

    Phili G– Naomi Klinghoffer

    – Alexander McCurdy

    – McKenzie Primerano

    – Philipp Gruene

    – Brian Wiess (ugrad)

    – Kelly Westby (ugrad)

    You, the audience for listening

    FUB – Nov 2010

    Please visit CCLlabs.org

  • • Industry Award: World’s Best Waste‐to‐Energy facilities: 

    • 2006 – ASM Brescia, Italy

    • Industry Award: World’s Best Waste‐to‐Energy facilities: 

    • 2006 – ASM Brescia, Italy

    http://www.seas.columbia.edu/earth/wtert/index.html

    • 2004 – Martin GmbH, Germany

    • Education Award: Person who has advanced Integrated Waste Management globally:

    • 2004 – Martin GmbH, Germany

    • Education Award: Person who has advanced Integrated Waste Management globally:

    FUB – Nov 2010

    • 2006 – Prof. Paul H. Brunner, Technical University of Vienna

    • 2004 – Prof. George Tchobanoglous, University of California‐ Davis

    • 2006 – Prof. Paul H. Brunner, Technical University of Vienna

    • 2004 – Prof. George Tchobanoglous, University of California‐ Davis


Recommended