+ All Categories
Home > Documents > EP06 Hardware Design - AURORA EVERNET

EP06 Hardware Design - AURORA EVERNET

Date post: 16-Oct-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
57
EP06 Hardware Design LTE-A Module Series Rev. EP06_Hardware_Design_V1.2 Date: 2019-01-31 Status: Released www.quectel.com
Transcript
Page 1: EP06 Hardware Design - AURORA EVERNET

EP06 Hardware Design

LTE-A Module Series

Rev. EP06_Hardware_Design_V1.2

Date: 2019-01-31

Status: Released

www.quectel.com

Page 2: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 1 / 56

Our aim is to provide customers with timely and comprehensive service. For any

assistance, please contact our company headquarters:

Quectel Wireless Solutions Co., Ltd.

7th Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China

Tel: +86 21 5108 6236

Email: [email protected]

Or our local office. For more information, please visit:

http://www.quectel.com/support/sales.htm

For technical support, or to report documentation errors, please visit:

http://www.quectel.com/support/technical.htm

Or email to: [email protected]

GENERAL NOTES

QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION

PROVIDED IS BASED UPON CUSTOMERS’ REQUIREMENTS. QUECTEL MAKES EVERY EFFORT

TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT

MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT

ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR

RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO

CHANGE WITHOUT PRIOR NOTICE.

COPYRIGHT

THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF

QUECTEL WIRELESS SOLUTIONS CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION

AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE

FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF

DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR

REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2019. All rights reserved.

Page 3: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 2 / 56

About the Document

History

Revision Date Author Description

1.0 2018-06-25 Vae LIU/

Wison HE Initial

1.1 2018-08-07 Vae LIU Updated the extended temperature range in

Table 2 and 27.

1.2 2019-01-31

Ewent LU/

Xavier XIA/

Reed WANG

1. Deleted EP06-APAC and all the related

information and added EP06-CN and the

related information.

2. Updated the supported bands and 2×CA

combination of EG06-A in Table 1.

3. Updated the names of pins 8, 10, 12 and 14

of USIM1 interface.

4. Updated the Reference Circuit of USB 2.0 &

3.0 Interface in Figure 5.

5. Added Chapter 4 GNSS Receiver and

updated the GNSS Performance in Table

14.

6. Updated the description of antenna

connectors and antenna requirements in

Chapter 5.

7. Updated EP06-E and EP06-A Conducted

RF Receiving Sensitivity in Chapter 6.4.

8. Updated EP06-E and EP06-A Current

Consumption in Chapter 6.7.

Page 4: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 3 / 56

Contents

About the Document ................................................................................................................................... 2

Contents ....................................................................................................................................................... 3

Table Index ................................................................................................................................................... 5

Figure Index ................................................................................................................................................. 6

1 Introduction .......................................................................................................................................... 7

1.1. Safety Information...................................................................................................................... 8

2 Product Concept .................................................................................................................................. 9

2.1. General Description ................................................................................................................... 9

2.2. Key Features ........................................................................................................................... 10

2.3. Functional Diagram ................................................................................................................. 13

2.4. Evaluation Board ..................................................................................................................... 13

3 Application Interfaces ....................................................................................................................... 14

3.1. Pin Assignment ........................................................................................................................ 14

3.2. Pin Description ......................................................................................................................... 15

3.3. Power Supply ........................................................................................................................... 18

3.4. (U)SIM Interfaces..................................................................................................................... 19

3.5. USB Interface .......................................................................................................................... 20

3.6. PCM and I2C Interfaces .......................................................................................................... 22

3.7. Control and Indicator Signals .................................................................................................. 25

3.7.1. WAKE_N Signal* ............................................................................................................ 25

3.7.2. W_DISABLE_N Signal*.................................................................................................. 26

3.7.3. RESET_N Signal ............................................................................................................ 26

3.7.4. WWAN_LED_N Signal ................................................................................................... 27

3.8. Tunable Antenna Control Interface* ........................................................................................ 28

4 GNSS Receiver ................................................................................................................................... 29

4.1. General Description ................................................................................................................. 29

4.2. GNSS Performance ................................................................................................................. 29

4.3. Layout Guidelines .................................................................................................................... 30

5 Antenna Connection .......................................................................................................................... 31

5.1. Main/Rx-diversity Antenna Connectors ................................................................................... 31

5.1.1. Description of Main/Rx-diversity Antenna Connectors .................................................. 31

5.1.2. Operating Frequency ..................................................................................................... 32

5.2. GNSS Antenna Connector....................................................................................................... 34

5.3. Antenna Connectors and Mating Plugs ................................................................................... 35

5.4. Antenna Requirements ............................................................................................................ 36

6 Electrical, Reliability and Radio Characteristics ............................................................................ 38

6.1. General Description ................................................................................................................. 38

6.2. Absolute Maximum Ratings ..................................................................................................... 38

Page 5: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 4 / 56

6.3. Power Supply Requirements ................................................................................................... 39

6.4. RF Characteristics ................................................................................................................... 39

6.5. Operation and Storage Temperatures ..................................................................................... 41

6.6. Electrostatic Discharge ............................................................................................................ 41

6.7. Current Consumption .............................................................................................................. 42

6.8. Thermal Consideration ............................................................................................................ 47

7 Mechanical Dimensions .................................................................................................................... 50

7.1. Mechanical Dimensions of EP06 Module ................................................................................ 50

7.2. Standard Dimensions of Mini PCI Express ............................................................................. 51

7.3. Design Effect Drawings of EP06 Module ................................................................................ 52

7.4. Packaging ................................................................................................................................ 53

8 Appendix References ........................................................................................................................ 54

Page 6: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 5 / 56

Table Index

TABLE 1: FREQUENCY BANDS AND GNSS TYPES OF EP06 SERIES MODULE ......................................... 9

TABLE 2: KEY FEATURES OF EP06 ................................................................................................................ 10

TABLE 3: DEFINITION OF I/O PARAMETERS ................................................................................................. 15

TABLE 4: PIN DESCRIPTION ........................................................................................................................... 15

TABLE 5: DEFINITION OF VCC AND GND PINS............................................................................................. 18

TABLE 6: PIN DEFINITION OF (U)SIM INTERFACES ..................................................................................... 19

TABLE 7: PIN DEFINITION OF USB INTERFACE ........................................................................................... 21

TABLE 8: PIN DEFINITION OF PCM AND I2C INTERFACES ......................................................................... 22

TABLE 9: PIN DEFINITION OF CONTROL AND INDICATOR SIGNALS ......................................................... 25

TABLE 10: RF FUNCTION STATUS ................................................................................................................. 26

TABLE 11: INDICATIONS OF NETWORK STATUS (AT+QCFG="LEDMODE", 0, DEFAULT SETTING) ........ 27

TABLE 12: INDICATIONS OF NETWORK STATUS (AT+QCFG="LEDMODE", 2) .......................................... 27

TABLE 13: PIN DEFINITION OF TUNABLE ANTENNA CONTROL INTERFACE* .......................................... 28

TABLE 14: GNSS PERFORMANCE ................................................................................................................. 29

TABLE 15: DESCRIPTION OF MAIN/RX-DIVERSITY ANTENNA CONNECTORS ......................................... 31

TABLE 16: EP06-E OPERATING FREQUENCIES ........................................................................................... 32

TABLE 17: EP06-A OPERATING FREQUENCIES ........................................................................................... 33

TABLE 18: DESCRIPTION OF GNSS ANTENNA CONNECTOR .................................................................... 34

TABLE 19: GNSS FREQUENCY ....................................................................................................................... 34

TABLE 20: ANTENNA REQUIREMENTS .......................................................................................................... 36

TABLE 21: ABSOLUTE MAXIMUM RATINGS .................................................................................................. 38

TABLE 22: EP06 POWER SUPPLY REQUIREMENTS .................................................................................... 39

TABLE 23: RF OUTPUT POWER ..................................................................................................................... 39

TABLE 24: EP06-E CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 39

TABLE 25: EP06-A CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 40

TABLE 26: OPERATION AND STORAGE TEMPERATURES .......................................................................... 41

TABLE 27: ELECTROSTATIC DISCHARGE CHARACTERISTICS (TEMPERATURE: 25°C, HUMIDITY: 45%)

................................................................................................................................................................... 42

TABLE 28: EP06-E CURRENT CONSUMPTION ............................................................................................. 42

TABLE 29: EP06-A CURRENT CONSUMPTION .............................................................................................. 45

TABLE 30: RELATED DOCUMENTS ................................................................................................................ 54

TABLE 31: TERMS AND ABBREVIATIONS ...................................................................................................... 54

Page 7: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 6 / 56

Figure Index

FIGURE 1: FUNCTIONAL DIAGRAM ............................................................................................................... 13

FIGURE 2: EP06 PIN ASSIGNMENT ................................................................................................................ 14

FIGURE 3: REFERENCE DESIGN OF POWER SUPPLY ............................................................................... 19

FIGURE 4: REFERENCE CIRCUIT OF (U)SIM CARD INTERFACE WITH A 6-PIN (U)SIM CARD

CONNECTOR ............................................................................................................................................ 20

FIGURE 5: REFERENCE CIRCUIT OF USB 2.0 & 3.0 INTERFACE ............................................................... 21

FIGURE 6: PRIMARY MODE TIMING .............................................................................................................. 23

FIGURE 7: AUXILIARY MODE TIMING ............................................................................................................ 24

FIGURE 8: REFERENCE CIRCUIT OF PCM APPLICATION WITH AUDIO CODEC ...................................... 24

FIGURE 9: WAKE_N BEHAVIOR ...................................................................................................................... 25

FIGURE 10: TIMING OF RESETTING MODULE ............................................................................................. 26

FIGURE 11: WWAN_LED_N SIGNAL REFERENCE CIRCUIT DIAGRAM ...................................................... 27

FIGURE 12: ANTENNA CONNECTORS ON THE MODULE ........................................................................... 31

FIGURE 13: DIMENSIONS OF THE ANTENNA CONNECTORS (UNIT: MM) ................................................. 35

FIGURE 14: MECHANICALS OF U.FL-LP MATING PLUGS ........................................................................... 35

FIGURE 15: SPACE FACTOR OF MATING PLUGS (UNIT: MM) ..................................................................... 36

FIGURE 16: REFERENCED HEATSINK DESIGN ........................................................................................... 48

FIGURE 17: REFERENCED THERMAL PAD DESIGN .................................................................................... 48

FIGURE 18: MECHANICAL DIMENSIONS OF EP06 MODULE ...................................................................... 50

FIGURE 19: STANDARD DIMENSIONS OF MINI PCI EXPRESS ................................................................... 51

FIGURE 20: DIMENSIONS OF THE MINI PCI EXPRESS CONNECTOR (MOLEX 679100002) .................... 52

FIGURE 21: TOP VIEW OF THE MODULE ...................................................................................................... 52

FIGURE 22: BOTTOM VIEW OF THE MODULE .............................................................................................. 53

Page 8: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 7 / 56

1 Introduction

This document defines EP06 module and describes its air interface and hardware interfaces which are

connected with customers’ applications.

This document can help customers quickly understand the interface specifications, electrical and

mechanical details, as well as other related information of EP06 module. To facilitate its application in

different fields, reference design is also provided for customers’ reference. Associated with application

note and user guide, customers can use the module to design and set up mobile applications easily.

Page 9: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 8 / 56

1.1. Safety Information

The following safety precautions must be observed during all phases of operation, such as usage, service

or repair of any cellular terminal or mobile incorporating EP06 module. Manufacturers of the cellular

terminal should send the following safety information to users and operating personnel, and incorporate

these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for

customers’ failure to comply with these precautions.

Full attention must be given to driving at all times in order to reduce the risk of an

accident. Using a mobile while driving (even with a handsfree kit) causes

distraction and can lead to an accident. Please comply with laws and regulations

restricting the use of wireless devices while driving.

Switch off the cellular terminal or mobile before boarding an aircraft. The operation

of wireless appliances in an aircraft is forbidden to prevent interference with

communication systems. If the device offers an Airplane Mode, then it should be

enabled prior to boarding an aircraft. Please consult the airline staff for more

restrictions on the use of wireless devices on boarding the aircraft.

Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities.

Cellular terminals or mobiles operating over radio signals and cellular network

cannot be guaranteed to connect in all possible conditions (for example, with

unpaid bills or with an invalid (U)SIM card). When emergent help is needed in such

conditions, please remember using emergency call. In order to make or receive a

call, the cellular terminal or mobile must be switched on in a service area with

adequate cellular signal strength.

The cellular terminal or mobile contains a transmitter and receiver. When it is ON, it

receives and transmits radio frequency signals. RF interference can occur if it is

used close to TV set, radio, computer or other electric equipment.

In locations with potentially explosive atmospheres, obey all posted signs to turn

off wireless devices such as your phone or other cellular terminals. Areas with

potentially explosive atmospheres include fuelling areas, below decks on boats,

fuel or chemical transfer or storage facilities, areas where the air contains

chemicals or particles such as grain, dust or metal powders, etc.

Page 10: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 9 / 56

2 Product Concept

2.1. General Description

EP06 is a series of LTE-A/UMTS/HSPA+ wireless communication module with receive diversity. It

provides data connectivity on LTE-FDD, LTE-TDD, DC-HSDPA, HSPA+, HSDPA, HSUPA and WCDMA

networks with PCI Express Mini Card 1.2 standard interface.

EP06 supports embedded operating systems such as Windows CE, Linux and Android, and also provides

GNSS1) and voice functionality2) to meet customers’ specific application demands. EP06 contains four

variants: EP06-E, EP06-A, EP06-LA3) and EP06-CN3). Customers can select a dedicated type based on

the region or operator.

The following table shows the frequency bands and GNSS types of EP06 series module.

Table 1: Frequency Bands and GNSS Types of EP06 Series Module

Mode EP06-E EP06-A EP06-LA3) EP06-CN3)

LTE-FDD

(with

Rx-diversity)

B1/B3/B5/B7/B8/

B20/B28/B324)

B2/B4/B5/B7/B12/

B13/B25/B26/B294)/

B30/B66

B2/B3/B4/B5/B7/

B8/B20/B28 B1/B3/B5/B8

LTE-TDD

(with

Rx-diversity)

B38/B40/B41 Not supported Not supported B34/B39/B40/B41

2×CA

B1+B1/B5/B8/B20/

B28;

B3+B3/B5/B7/B8/

B20/B28;

B7+B5/B7/B8/B20/

B28;

B20+B324);

B38+B38;

B40+B40;

B41+B41

B2+B2/B5/B12/B13/

B294);

B4+B4/B5/B12/B13/

B294);

B7+B5/B7/B12/

B26/;

B25+B5/B12/B25/

B26;

B30+B5/B12/B294);

B66+B5/B12/B13/

B294)/B66

B2+B2/B5/B8/B20/

B28;

B3+B3/B5/B7/B8/

B20/B28;

B4+B4/B5/B8/B20/

B28;

B7+B5/B7/B8/B20/

B28

B1+B3/B5/B8;

B3+B5/B8;

B39+B39;

B39+B41;

B40+B40;

B41+B41

Page 11: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 10 / 56

1. 1) GNSS function is optional.

2. 2) EP06 series module contains Telematics version and Data-only version. Telematics version

supports voice and data functions, while Data-only version only supports data function.

3. 3) EP06-LA and EP06-CN are under planning.

4. 4) LTE-FDD B29 and B32 support Rx only, and in 2×CA they are only for secondary component carrier.

EP06 module can be applied in the following fields:

⚫ Rugged Tablet PC

⚫ Remote Monitor System

⚫ Vehicle System

⚫ Wireless POS System

⚫ Smart Metering System

⚫ Wireless Router and Switch

⚫ Other Wireless Terminal Devices

2.2. Key Features

The following table describes the detailed features of EP06 module.

Table 2: Key Features of EP06

WCDMA

(with

Rx-diversity)

B1/B3/B5/B8 B2/B4/B5 B2/B3/B4/B5/B8 B1/B8

GNSS

GPS,

GLONASS,

BeiDou/Compass

Galileo,

QZSS

GPS,

GLONASS,

BeiDou/Compass

Galileo,

QZSS

GPS,

GLONASS,

BeiDou/Compass

Galileo,

QZSS

GPS,

GLONASS,

BeiDou/Compass

Galileo,

QZSS

Feature Details

Functional Interface PCI Express Mini Card 1.2 Standard Interface

Power Supply Supply voltage: 3.1V~4.4V

Typical supply voltage: 3.3V

Transmitting Power Class 3 (23dBm±2dB) for LTE-FDD bands

Class 3 (23dBm±2dB) for LTE-TDD bands

NOTES

Page 12: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 11 / 56

Class 3 (24dBm+1/-3dB) for WCDMA bands

LTE Features

Support up to LTE Cat 6

Support 1.4 to 40MHz (DL 2×CA) RF bandwidth

Support 2×2 MIMO in DL direction

FDD: Max 300Mbps (DL)/50Mbps (UL)

TDD: Max 226Mbps (DL)/28Mbps (UL)

UMTS Features

Support 3GPP R8 DC-HSDPA, HSPA+, HSDPA, HSUPA and WCDMA

Support QPSK, 16-QAM and 64-QAM modulation

DC-HSDPA: Max 42Mbps

HSUPA: Max 5.76Mbps

WCDMA: Max 384Kbps (DL)/Max 384Kbps (UL)

Internet Protocol Features

Support PPP/QMI/TCP*/UDP*/FTP*/HTTP*/NTP*/PING*/HTTPS*/SMTP*/

MMS*/FTPS*/SMTPS*/SSL* protocols

Support PAP (Password Authentication Protocol) and CHAP (Challenge

Handshake Authentication Protocol) protocols usually used for PPP

connections

SMS

Text and PDU mode

Point to point MO and MT

SMS cell broadcast

SMS storage: ME by default

(U)SIM Interface

Support (U)SIM card: 1.8V, 3.0V

Include USIM1 and USIM2 interfaces

Support Dual SIM Single Standby

Audio Feature

Support one digital audio interface: PCM interface

WCDMA: AMR/AMR-WB

LTE: AMR/AMR-WB

Support echo cancellation and noise suppression

PCM Interface

Used for audio function with external codec

Support 16-bit linear data formats

Support long frame synchronization and short frame synchronization

Support master and slave mode, but must be the master in long frame

synchronization

USB 2.0&3.0 Interface

Compliant with USB 3.0 and 2.0 specifications, with maximum transmission

rates up to 5Gbps on USB 3.0 and 480Mbps on USB 2.0.

Used for AT command communication, data transmission, firmware

upgrade, software debugging, GNSS NMEA sentence output and voice

over USB*

Support USB serial drivers for: Windows 7/8/8.1/10, Windows CE

5.0/6.0/7.0*, Linux 2.6/3.x/4.1~4.14, Android 4.x/5.x/6.x/7.x/8.x

Antenna Interface Include main antenna, diversity antenna and GNSS antenna interfaces

Rx-diversity Support LTE/WCDMA Rx-diversity

Page 13: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 12 / 56

1. "*" means under development.

2. 1) Within operating temperature range, the module is 3GPP compliant.

3. 2) Within extended temperature range, proper mounting, heating sinks and active cooling may be

required to make certain functions of the module such as voice, SMS, data transmission, emergency

call to be realized. Only one or more parameters like Pout might reduce in their value and exceed the

specified tolerances. When the temperature returns to normal operating temperature levels, the

module will meet 3GPP specifications again.

GNSS Features Gen8C Lite of Qualcomm

Protocol: NMEA 0183

AT Commands Compliant with 3GPP TS 27.007, 27.005 and Quectel enhanced AT

commands

Physical Characteristics Size: (30.0±0.2)mm × (50.95±0.2)mm × (4.3±0.1)mm

Weight: approx. 6.0g

Temperature Range

Operation temperature range: -35°C ~ +75°C1)

Extended temperature range: -40°C ~ +85°C2)

Storage temperature range: -40°C ~ +90°C

Firmware Upgrade USB interface and DFOTA

RoHS All hardware components are fully compliant with EU RoHS directive

NOTES

Page 14: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 13 / 56

2.3. Functional Diagram

The following figure shows the block diagram of EP06.

Baseband

NAND

DDR2

SDRAM

ANT_MAIN ANT_DIVANT_GNSS

APT

19.2M

XO

Control

IQ Control

Tx PRx DRx

Mini PCI Express Interface

VCC USB 2.0&

USB 3.0

W_DISABLE_

N*

PCM&

I2C

USIM1&

USIM2GPIOsWAKE

_N*

Baseband

RESET_N WWAN_

LED_N

Power

Power

Power

Power

Power

Power

Tx/Rx BlocksPower

PMIC

Transceiver

Figure 1: Functional Diagram

"*" means under development.

2.4. Evaluation Board

In order to help customers develop applications conveniently with EP06, Quectel supplies an evaluation

board (EPXX EVB), USB Type-C cable, USB to RS-232 converter cable, earphone, antenna and other

peripherals to control or test the module. For more details, please refer to document [1].

NOTE

Page 15: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 14 / 56

3 Application Interfaces

The physical connections and signal levels of EP06 comply with PCI Express Mini CEM specifications.

This chapter mainly describes definition and application of the following EP06 interfaces and signals:

⚫ Power supply

⚫ (U)SIM interfaces

⚫ USB interface

⚫ PCM and I2C interfaces

⚫ Control and indicator signals

⚫ Tunable antenna control interface*

⚫ Antenna interfaces

3.1. Pin Assignment

The following figure shows the pin assignment of EP06 module. The top side contains EP06 module and

antenna connectors.

Pin No.Pin Name1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

Pin No. Pin Name

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

44

46

48

50

52

42

WAKE_N*ANTCTL0*

ANTCTL1*USIM2_RST

GND

TOP BOT

VCC

NCUSIM1_VDD

GND USIM1_DATAVREF_1.8V USIM1_CLK

USIM2_VDD USIM1_RST

GND NC

USIM2_CLK GND

USIM2_DATA W_DISABLE_N*

GND RESET_NUSB3.0_TX- VCCUSB3.0_TX+ GND

GND NCGND I2C_SCL

USB3.0_RX- I2C_SDA

USB3.0_RX+ GNDGND USB_D-GND USB_D+

VCC GNDVCC WWAN_LED_N

GND ANTCTL2*PCM_CLK ANTCTL3*

PCM_DOUTPCM_DIN

NCGND

PCM_SYNC VCC

PIN 1

PIN 51

PIN 2

PIN 52

Figure 2: EP06 Pin Assignment

Page 16: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 15 / 56

3.2. Pin Description

The following tables show the pin definition and description of EP06 module.

Table 3: Definition of I/O Parameters

Table 4: Pin Description

Type Description

AI Analog Input

AO Analog Output

DI Digital Input

DO Digital Output

IO Bidirectional

OC Open Collector

OD Open Drain

PI Power Input

PO Power Output

Pin

No.

Mini PCI

Express

Standard Name

EP06 Pin Name I/O Description Comment

1 WAKE# WAKE_N* OD Output signal to wake up the

host

2 3.3Vaux VCC PI 3.3V DC power supply

Vmin=3.1V

Vnorm=3.3V

Vmax=4.4V

3 COEX1 ANTCTL0* DO Tunable antenna control 1.8V power

domain

4 GND GND Ground

5 COEX2 ANTCTL1* DO Tunable antenna control 1.8V power

domain

6 1.5V NC Not connected

Page 17: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 16 / 56

7 CLKREQ# USIM2_RST DO Reset signal of (U)SIM2 card 1.8V/3.0V

8 UIM_PWR USIM1_VDD PO Power supply for (U)SIM1

card 1.8V/3.0V

9 GND GND Ground

10 UIM_DATA USIM1_DATA IO Data signal of (U)SIM1 card 1.8V/3.0V

11 REFCLK- VREF_1.8V PO 1.8V reference voltage

output

12 UIM_CLK USIM1_CLK DO Clock signal of (U)SIM1 card 1.8V/3.0V

13 REFCLK+ USIM2_VDD PO Power supply for (U)SIM2

card 1.8V/3.0V

14 UIM_RESET USIM1_RST DO Reset signal of (U)SIM1 card 1.8V/3.0V

15 GND GND Ground

16 UIM_VPP NC Not connected

17 RESERVED USIM2_CLK DO Clock signal of (U)SIM2 card 1.8V/3.0V

18 GND GND Ground

19 RESERVED USIM2_DATA IO Data signal of (U)SIM2 card 1.8V/3.0V

20 W_DISABLE# W_DISABLE_N* DI Airplane mode control 1.8V power domain

21 GND GND Ground

22 PERST# RESET_N DI System reset Active low

23 PERn0 USB3.0_TX- AO USB 3.0 transmit data (-)

24 3.3Vaux VCC PI 3.3V DC power supply

Vmin=3.1V

Vnorm=3.3V

Vmax=4.4V

25 PERp0 USB3.0_TX+ AO USB 3.0 transmit data (+)

26 GND GND Ground

27 GND GND Ground

28 1.5V NC Not connected

29 GND GND Ground

30 SMB_CLK I2C_SCL DO I2C serial clock Externally pulled

up to 1.8V

31 PETn0 USB3.0_RX- AI USB 3.0 receive data (-)

32 SMB_DATA I2C_SDA IO I2C serial data Externally pulled

Page 18: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 17 / 56

up to 1.8V

33 PETp0 USB3.0_RX+ AI USB 3.0 receive data (+)

34 GND GND Ground

35 GND GND Ground

36 USB_D- USB_D- AI/A

O USB 2.0 differential data (-)

37 GND GND Ground

38 USB_D+ USB_D+ AI/A

O USB 2.0 differential data (+)

39 3.3Vaux VCC PI 3.3V DC power supply

Vmin=3.1V

Vnorm=3.3V

Vmax=4.4V

40 GND GND Ground

41 3.3Vaux VCC PI 3.3V DC power supply

Vmin=3.1V

Vnorm=3.3V

Vmax=4.4V

42 LED_WWAN# WWAN_LED_N OD

It is an open collector and

active low signal.

It allows the module to

provide RF status indication

via LED devices provided by

the system.

43 GND GND Ground

44 LED_WLAN# ANTCTL2* DO Tunable antenna control 1.8V power

domain

45 RESERVED PCM_CLK DI/D

O PCM clock signal

46 LED_WPAN# ANTCTL3* DO Tunable antenna control 1.8V power

domain

47 RESERVED PCM_DOUT DO PCM data output

48 1.5V NC Not connected

49 RESERVED PCM_DIN DI PCM data input

50 GND GND Ground

51 RESERVED PCM_SYNC DI/D

O

PCM frame synchronization

signal

In master mode,

it is an output

signal.

In slave mode, it

Page 19: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 18 / 56

1. Keep all NC and unused pins unconnected.

2. "*" means under development.

3.3. Power Supply

The following table shows pin definition of VCC pins and ground pins.

Table 5: Definition of VCC and GND Pins

The typical supply voltage of EP06 is 3.3V. The power supply must be able to provide sufficient current up

to 2A at least, and a bypass capacitor of no less than 470µF with low ESR should be used to prevent the

voltage from dropping.

The following figure shows a reference design of power supply. The precision of resistor R2 and R3 is

recommended to be 1%, and the capacitor C3 needs a low ESR.

is an input signal.

52 3.3Vaux VCC PI 3.3V DC power supply

Vmin=3.1V

Vnorm=3.3V

Vmax=4.4V

Pin No. Pin Name I/O Power Domain Description

2, 24, 39,

41, 52 VCC PI 3.1V~4.4V 3.3V typical DC power supply

4, 9, 15,

18, 21, 26,

27, 29, 34,

35, 37, 40,

43, 50

GND Ground

NOTES

Page 20: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 19 / 56

LDO_IN

C1 C2

MIC29302WU U1

IN OUT

EN

GN

D

AD

J

2 4

1 3 5

VCC

100nF C3

470uF

C4

100nF

R2

82K 1%

47K 1%

R3

470uF

470R

51K R4

R1

MCU_POWER

_ON/OFF 47K

4.7KR5

R6

C5 C6

33pF 10pF

TVS

D1

Figure 3: Reference Design of Power Supply

3.4. (U)SIM Interfaces

The (U)SIM interface circuitry meets ETSI and IMT-2000 requirements. Both 1.8V and 3.0V (U)SIM cards

are supported, and Dual SIM Single Standby function is supported.

The following table shows the pin definition of (U)SIM interfaces.

Table 6: Pin Definition of (U)SIM Interfaces

The following figure shows a reference design for (U)SIM card interface with a 6-pin (U)SIM card

Pin No. Pin Name I/O Power Domain Description

8 USIM1_VDD PO 1.8V/3.0V Power source for (U)SIM1 card

10 USIM1_DATA IO 1.8V/3.0V Data signal of (U)SIM1 card

12 USIM1_CLK DO 1.8V/3.0V Clock signal of (U)SIM1 card

14 USIM1_RST DO 1.8V/3.0V Reset signal of (U)SIM1 card

13 USIM2_VDD PO 1.8V/3.0V Power source for (U)SIM2 card

19 USIM2_DATA IO 1.8V/3.0V Data signal of (U)SIM2 card

17 USIM2_CLK DO 1.8V/3.0V Clock signal of (U)SIM2 card

7 USIM2_RST DO 1.8V/3.0V Reset signal of (U)SIM2 card

Page 21: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 20 / 56

connector.

GND

USIM_RST

USIM_CLK

USIM_DATA22R

22R

22R

100nF

(U)SIM Card Connector

GND

VCC

RST

CLK IO

VPP

GND

15KModule

USIM_VDD

USIM_VDD

Figure 4: Reference Circuit of (U)SIM Card Interface with a 6-pin (U)SIM Card Connector

In order to enhance the reliability and availability of the (U)SIM card in customers’ applications, please

follow the criteria below in (U)SIM circuit design:

⚫ Keep placement of (U)SIM card connector to the module as close as possible. Keep the trace length

as less than 200mm as possible.

⚫ Keep (U)SIM card signals away from RF and power supply traces.

⚫ Keep the trace width of ground and USIM_VDD no less than 0.5mm to maintain the same electric

potential. The decoupling capacitor of USIM_VDD should be less than 1uF and must near to (U)SIM

card connector.

⚫ To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and

shield them with surrounded ground.

⚫ In order to offer good ESD protection, it is recommended to add a TVS diode array with parasitic

capacitance not exceeding 50pF. The 22Ω resistors should be added in series between the module

and the (U)SIM card so as to suppress EMI spurious transmission and enhance ESD protection.

Please note that the (U)SIM peripheral circuit should be close to the (U)SIM card connector.

⚫ The pull-up resistor on USIM_DATA line can improve anti-jamming capability when long layout trace

and sensitive occasion are applied, and should be placed close to the (U)SIM card connector.

3.5. USB Interface

EP06 provides one integrated Universal Serial Bus (USB) interface which complies with the USB 3.0/2.0

specifications and supports super speed (5Gbps) on USB 3.0, high speed (480 Mbps) and full speed (12

Mbps) modes on USB 2.0. The USB interface is used for AT command communication, data transmission,

GNSS NMEA output, software debugging, firmware upgrade and voice over USB*.

Page 22: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 21 / 56

The following table shows the pin definition of USB interface.

Table 7: Pin Definition of USB Interface

For more details about the USB 2.0 & 3.0 specifications, please visit http://www.usb.org/home.

The USB interface is recommended to be reserved for firmware upgrade in customers’ designs. The

following figure shows a reference circuit of USB 2.0 & 3.0 interface.

GND

USB3.0_TX-

USB3.0_TX+

GND

USB3.0_RX-

USB3.0_RX+

USB3.0_RX-

USB3.0_RX+

USB3.0_TX-

USB3.0_TX+

C3

C4

USB_DP

USB_DMR1

R2

0R

0R

USB_D-

USB_D+

C1

C2

ESD Array

100nF

100nF

100nF

100nF

Module MCU

R3

R4

NM_0R

NM_0R

Test PointsMinimize these stubs

Figure 5: Reference Circuit of USB 2.0 & 3.0 Interface

In order to ensure the signal integrity of USB data lines, C1 and C2 have been placed inside the module,

C3 and C4 should be placed close to the MCU, and R1, R2, R3 and R4 should be placed close to the

Pin No. Pin Name I/O Power Domain Description Comment

36 USB_D- AI/AO Compliant with

USB 2.0 standard

specification

USB 2.0 differential data

(-) Require differential

impedance of 90Ω 38 USB_D+ AI/AO

USB 2.0 differential data

(+)

23 USB3.0_TX- AO

Compliant with

USB 3.0 standard

specification

USB 3.0 transmit data (-)

Require differential

impedance of 90Ω

25 USB3.0_TX+ AO USB 3.0 transmit data (+)

31 USB3.0_RX- AI USB 3.0 receive data (-)

33 USB3.0_RX+ AI USB 3.0 receive data (+)

Page 23: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 22 / 56

module and also close to each other. The extra stubs of trace must be as short as possible.

The following principles of USB interface design should be complied with, so as to meet USB 2.0 & USB

3.0 specifications.

⚫ It is important to route the USB signal traces as differential pairs with total grounding. The impedance

of USB differential trace is 90Ω.

⚫ For USB 2.0 signal traces, the trace length difference of the differential pair should be less than 2mm.

⚫ For USB 3.0 signal traces, the trace length difference of each differential pair (TX/RX) should be less

than 0.7mm.

⚫ Do not route signal traces under crystals, oscillators, magnetic devices or RF signal traces. It is

important to route the USB 2.0 & 3.0 differential traces in inner-layer with ground shielding on not

only upper and lower layers but also right and left sides.

⚫ If a USB connector is used, please keep the ESD protection components to the USB connector as

close as possible. Pay attention to the influence of junction capacitance of ESD protection

components on USB 2.0 & 3.0 data lines. The capacitance value of ESD protection components

should be less than 2.0pF for USB 2.0, and less than 0.4pF for USB 3.0.

⚫ If possible, reserve a 0Ω resistor on USB_D+ and USB_D- lines, respectively.

"*" means under development.

3.6. PCM and I2C Interfaces

EP06 module supports audio communication via Pulse Code Modulation (PCM) digital interface and I2C

interface.

The following table shows the pin definition of PCM and I2C interfaces which can be applied on audio

codec designs.

Table 8: Pin Definition of PCM and I2C Interfaces

Pin No. Pin Name I/O Power Domain Description Comment

45 PCM_CLK DI/D

O 1.8V PCM clock signal

47 PCM_DOUT DO 1.8V PCM data output

49 PCM_DIN DI 1.8V PCM data input

NOTE

S

Page 24: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 23 / 56

The PCM interface supports the following modes:

⚫ Primary mode (short frame synchronization, works as either master or slave)

⚫ Auxiliary mode (long frame synchronization, works as master only)

In primary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising

edge. The PCM_SYNC falling edge represents the MSB. In this mode, the PCM interface supports

256kHz, 512kHz, 1024kHz or 2048kHz PCM_CLK at 8kHz PCM_SYNC, and also supports 4096kHz

PCM_CLK at 16kHz PCM_SYNC.

In auxiliary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising

edge. The PCM_SYNC rising edge represents the MSB. In this mode, PCM interface operates with a

256kHz PCM_CLK and an 8kHz, 50% duty cycle PCM_SYNC only.

EP06 supports 16-bit linear data format. The following figures show the primary mode’s timing

relationship with 8kHz PCM_SYNC and 2048kHz PCM_CLK, as well as the auxiliary mode’s timing

relationship with 8kHz PCM_SYNC and 256kHz PCM_CLK.

PCM_CLK

PCM_SYNC

PCM_DOUT

MSB LSB MSB

125us

1 2 256255

PCM_DIN

MSBLSBMSB

Figure 6: Primary Mode Timing

51 PCM_SYNC DI/D

O 1.8V

PCM frame

synchronization

signal

In master mode, it is an

output signal.

In slave mode, it is an input

signal.

30 I2C_SCL DO 1.8V I2C serial clock Externally pulled up to 1.8V.

32 I2C_SDA IO 1.8V I2C serial data Externally pulled up to 1.8V.

Page 25: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 24 / 56

PCM_CLK

PCM_SYNC

PCM_DOUT

MSB LSB

PCM_DIN

125us

MSB

1 2 3231

LSB

Figure 7: Auxiliary Mode Timing

Clock and mode can be configured by AT+QDAI command, and the default configuration is master mode

using short frame synchronization format with 2048kHz PCM_CLK and 8kHz PCM_SYNC. In addition,

the module’s firmware has integrated the configuration on some PCM codec’s application with I2C

interface. Please refer to document [2] for details about the AT+QDAI command.

The following figure shows a reference design of PCM interface with an external codec IC.

PCM_DIN

PCM_DOUT

PCM_SYNC

PCM_CLK

I2C_SCL

I2C_SDA

CodecModule

1.8V

2.2

K

2.2

K

BCLK

FS

DACIN

ADCOUT

SCLK

SDIN

BIA

S

MIC_BIAS

MIC+

MIC-

SPKOUT+

SPKOUT-

Figure 8: Reference Circuit of PCM Application with Audio Codec

1. It is recommended to reserve an RC (R=22Ω, C=22pF) circuit on the PCM lines, especially for

PCM_CLK.

2. EP06 works as a master device pertaining to I2C interface.

NOTES

Page 26: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 25 / 56

3.7. Control and Indicator Signals

The following table shows the pin definition of control and indicator signals.

Table 9: Pin Definition of Control and Indicator Signals

"*" means under development.

3.7.1. WAKE_N Signal*

The WAKE_N signal is an open collector signal, but a host pull-up resistor and

AT+QCFG="risignaltype","physical" command are required. When a URC returns, a low level pulse

will be outputted. The state of WAKE_N signal is shown as below.

URC return

TBDmsHigh

Low

(external

pull-up)

Figure 9: WAKE_N Behavior

Pin No. Pin Name I/O Power

Domain Description Comment

1 WAKE_N* OD Output signal to wake up the host.

20 W_DISABLE_N* DI 1.8V Airplane mode control Active low.

22 RESET_N DI 1.8V System reset. Active low.

42 WWAN_LED_N OD

It is an open collector and active

low signal.

It allows the module to provide RF

status indication via LED devices

provided by the system.

Active low.

NOTE

Page 27: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 26 / 56

3.7.2. W_DISABLE_N Signal*

EP06 module provides a W_DISABLE_N signal to disable or enable the RF function (not include GNSS).

W_DISABLE_N for RF function control is disabled by default, and AT+QCFG="airplanecontrol",1 can

be used to enable the function.

The W_DISABLE_N pin is pulled up by default. Driving it to low level will let the module enter into airplane

mode.

Table 10: RF Function Status

"*" means under development.

3.7.3. RESET_N Signal

The RESET_N signal can be used to force a hardware reset of the module. Customers can reset the

module by driving the RESET_N to a low level voltage within the time frame of 250ms~600ms and then

releasing it. The reset scenario is illustrated in the following figure.

VIL≤0.5V

VIH≥1.3V

VCC

≥250ms

ResettingModule

StatusRunning

RESET#

Restart

≤600ms

Figure 10: Timing of Resetting Module

W_DISABLE_N Level AT Commands RF Function Status

High Level AT+CFUN=1 Enabled

High Level AT+CFUN=0

AT+CFUN=4 Disabled

Low Level

AT+CFUN=0

AT+CFUN=1

AT+CFUN=4

Disabled

NOTE

Page 28: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 27 / 56

3.7.4. WWAN_LED_N Signal

The WWAN_LED_N signal of EP06 module is used to indicate the network status of the module and its

maximum sink current is 40mA. As shown in the following circuit, in order to reduce the current of the LED,

a resistor must be placed in series with the LED. The LED is emitting light when the WWAN_LED_N

output signal is active low.

WWAN_LED_NVCC

R

Figure 11: WWAN_LED_N Signal Reference Circuit Diagram

There are two indication modes for WWAN_LED_N signal to indicate network status, which can be

switched through the following AT commands:

⚫ AT+QCFG="ledmode",0 (Default setting)

⚫ AT+QCFG="ledmode",2

The following tables show the detailed network status indications of the WWAN_LED_N signal.

Table 11: Indications of Network Status (AT+QCFG="ledmode", 0, Default Setting)

Table 12: Indications of Network Status (AT+QCFG="ledmode", 2)

Pin Status Description

Flicker slowly (200ms High/1800ms Low) Network searching

Flicker slowly (1800ms High/200ms Low) Idle

Flicker quickly (125ms High/125ms Low) Data transfer is ongoing

Always High Voice calling

Pin Status Description

Low Level (Light on) Registered on network

High-impedance (Light off) ⚫ No network coverage or not registered

⚫ W_DISABLE_N signal is at low level. (RF

Page 29: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 28 / 56

3.8. Tunable Antenna Control Interface*

ANTCTL[0:3] signals are used for tunable antenna control and should be routed to an appropriate

antenna control circuitry.

More details about the interface will be added in the future version of the document.

Table 13: Pin Definition of Tunable Antenna Control Interface*

“*” means under development.

function is disabled)

⚫ AT+CFUN=0, AT+CFUN=4

Pin Name Pin No. I/O Description Comment

ANTCTL0* 3 DO Tunable antenna control 1.8V power domain

ANTCTL1* 5 DO Tunable antenna control 1.8V power domain

ANTCTL2* 44 DO Tunable antenna control 1.8V power domain

ANTCTL3* 46 DO Tunable antenna control 1.8V power domain

NOTE

Page 30: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 29 / 56

4 GNSS Receiver

4.1. General Description

EP06 includes a fully integrated global navigation satellite system solution that supports Gen8C-Lite of

Qualcomm (GPS, GLONASS, BeiDou, Galileo and QZSS).

The module supports standard NMEA-0183 protocol, and outputs NMEA sentences at 1Hz data update

rate via USB interface by default.

By default, EP06 GNSS engine is switched off. It has to be switched on via AT command. For more details

about GNSS engine technology and configurations, please refer to document [3].

4.2. GNSS Performance

The following table shows GNSS performance of EP06.

Table 14: GNSS Performance

Parameter Description Conditions Typ. Unit

Sensitivity

(GNSS)

Cold start Autonomous -145 dBm

Reacquisition Autonomous -157 dBm

Tracking Autonomous -157 dBm

TTFF

(GNSS)

Cold start

@open sky

Autonomous 34.56 s

XTRA enabled 19.41 s

Warm start

@open sky

Autonomous 25.77 s

XTRA enabled 2.26 s

Page 31: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 30 / 56

1. Tracking sensitivity: the lowest GNSS signal value at the antenna port on which the module can keep

on positioning for 3 minutes.

2. Reacquisition sensitivity: the lowest GNSS signal value at the antenna port on which the module can

fix position again within 3 minutes after loss of lock.

3. Cold start sensitivity: the lowest GNSS signal value at the antenna port on which the module fixes

position within 3 minutes after executing cold start command.

4.3. Layout Guidelines

The following layout guidelines should be taken into account in customers’ design.

⚫ Maximize the distance among GNSS antenna, main antenna and Rx-diversity antenna.

⚫ Digital circuits such as (U)SIM card, USB interface, camera module, display connector and SD card

should be kept away from the antennas.

⚫ Use ground vias around the GNSS trace and sensitive analog signal traces to provide coplanar

isolation and protection.

Hot start

@open sky

Autonomous 2.66 s

XTRA enabled 2.03 s

Accuracy

(GNSS) CEP-50

Autonomous

@open sky 2.5 m

NOTES

Page 32: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 31 / 56

5 Antenna Connection

EP06 is mounted with three 2mm × 2mm antenna connectors for external antenna connection: a main

antenna connector, an Rx-diversity antenna connector, and a GNSS antenna connector. The impedance

of the antenna connectors is 50Ω.

ANT_MAIN ANT_DIVANT_GNSS

Figure 12: Antenna Connectors on the Module

5.1. Main/Rx-diversity Antenna Connectors

5.1.1. Description of Main/Rx-diversity Antenna Connectors

The details of main antenna and Rx-diversity antenna connectors are shown below.

Table 15: Description of Main/Rx-diversity Antenna Connectors

Connector I/O Description Comment

M1 IO Main antenna connector 50Ω impedance

D1 AI Receive diversity antenna connector 50Ω impedance

Page 33: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 32 / 56

5.1.2. Operating Frequency

Table 16: EP06-E Operating Frequencies

1) LTE-FDD B32 supports Rx only, and in 2×CA it is only for secondary component carrier.

3GPP Band Transmit Receive Unit

WCDMA B1 1920~1980 2110~2170 MHz

WCDMA B3 1710~1785 1805~1880 MHz

WCDMA B5 824~849 869~894 MHz

WCDMA B8 880~915 925~960 MHz

LTE B1 1920~1980 2110~2170 MHz

LTE B3 1710~1785 1805~1880 MHz

LTE B5 824~849 869~894 MHz

LTE B7 2500~2570 2620~2690 MHz

LTE B8 880~915 925~960 MHz

LTE B20 832~862 791~821 MHz

LTE B28 703~748 758~803 MHz

LTE B321) - 1452~1496 MHz

LTE B38 2570~2620 2570~2620 MHz

LTE B40 2300~2400 2300~2400 MHz

LTE B41 2545~2655 2545~2655 MHz

NOTE

Page 34: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 33 / 56

Table 17: EP06-A Operating Frequencies

1) LTE-FDD B29 supports Rx only, and in 2×CA it is only for secondary component carrier.

3GPP Band Transmit Receive Unit

WCDMA B2 1850~1910 1930~1990 MHz

WCDMA B4 1710~1755 2110~2155 MHz

WCDMA B5 824~849 869~894 MHz

LTE B2 1850~1910 1930~1990 MHz

LTE B4 1710~1755 2110~2155 MHz

LTE B5 824~849 869~894 MHz

LTE B7 2500~2570 2620~2690 MHz

LTE B12 699~716 729~746 MHz

LTE B13 777~787 746~756 MHz

LTE B25 1850~1915 1930~1995 MHz

LTE B26 814~849 859~894 MHz

LTE B291) - 717~728 MHz

LTE B30 2305~2315 2350~2360 MHz

LTE B66 1710~1780 2110~2200 MHz

NOTE

Page 35: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 34 / 56

5.2. GNSS Antenna Connector

The following tables show details of GNSS antenna connector and the frequency specification of GNSS

antenna.

Table 18: Description of GNSS Antenna Connector

Table 19: GNSS Frequency

Connector I/O Description Comment

D2/G AI GNSS antenna connector 50Ω impedance

Type Frequency Unit

GPS 1575.42±1.023 MHz

GLONASS 1597.5~1605.8 MHz

Galileo 1575.42±2.046 MHz

BeiDou 1561.098±2.046 MHz

QZSS 1575.42 MHz

Page 36: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 35 / 56

5.3. Antenna Connectors and Mating Plugs

The dimensions of the antenna connectors are shown as below.

Figure 13: Dimensions of the Antenna Connectors (Unit: mm)

It is recommended to use U.FL-LP mating plugs listed in the following figure to match the antenna

connectors.

Figure 14: Mechanicals of U.FL-LP Mating Plugs

Page 37: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 36 / 56

The following figure describes the space factor of mating plugs.

Figure 15: Space Factor of Mating Plugs (Unit: mm)

For more details of the recommended mating plugs, please visit http://www.hirose.com.

5.4. Antenna Requirements

The following table shows the requirements on main antenna, Rx-diversity antenna and GNSS antenna.

Table 20: Antenna Requirements

Type Requirements

GNSS1)

Frequency Range: 1559MHz~1609MHz

Polarization: RHCP or linear

VSWR: <2 (Typ.)

Passive Antenna Gain: >0dBi

WCDMA/LTE

VSWR: ≤2

Efficiency: >30%

Max Input Power: 50W

Input Impedance: 50Ω

Page 38: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 37 / 56

1) It is recommended to use a passive GNSS antenna when LTE B13 or B14 is supported, as the use of

active antenna may generate harmonics which will affect the GNSS performance.

Cable Insertion Loss: <1dB

(WCDMA B5/B6/B8/B19,

LTE B5/B8/B12/B13/B18/B19/B20/B26/B28/B29)

Cable Insertion Loss: <1.5dB

(WCDMA B1/B2/B3/B4/B9, LTE B1/B2/B3/B4/B25/B32/B39/B66)

Cable Insertion Loss <2dB

(LTE B7/B38/B40/B41/B30)

NOTE

Page 39: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 38 / 56

6 Electrical, Reliability and Radio

Characteristics

6.1. General Description

This chapter mainly describes the following electrical and radio characteristics of EP06:

⚫ Absolute maximum ratings

⚫ Power supply requirements

⚫ RF characteristics

⚫ GNSS performance

⚫ Operation and storage temperatures

⚫ ESD characteristics

⚫ Current consumption

⚫ Thermal consideration

6.2. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital pins of the module are listed in the

following table.

Table 21: Absolute Maximum Ratings

Parameter Min. Max. Unit

VCC -0.3 4.7 V

Voltage at Digital Pins -0.3 2.3 V

Page 40: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 39 / 56

6.3. Power Supply Requirements

The typical input voltage of EP06 is 3.3V, as specified by PCI Express Mini CEM Specifications 1.2. And

the power supply of EP06 should be able to provide sufficient current up to 2A at least. The following table

shows the power supply requirements of EP06.

Table 22: EP06 Power Supply Requirements

6.4. RF Characteristics

The following tables show the RF output power and receiving sensitivity of EP06 module.

Table 23: RF Output Power

Table 24: EP06-E Conducted RF Receiving Sensitivity

Parameter Description Min. Typ. Max. Unit

VCC Power Supply 3.1 3.3 4.4 V

Frequency Max. Min.

WCDMA bands 24dBm+1/-3dB <-50dBm

LTE FDD bands 23dBm±2dB <-40dBm

LTE TDD bands 23dBm±2dB <-40dBm

Frequency Primary (Typ.) Diversity (Typ.) SIMO1) (Typ.) SIMO2) (Worst Case)

WCDMA B1 -109.5dBm -107.5dbm / -106.7dBm

WCDMA B3 -108.5dBm -108.0dbm / -103.7dBm

WCDMA B5 -108.5dBm -109.0dbm / -104.7dBm

WCDMA B8 -109.5dBm -109.5dbm / -103.7dBm

LTE-FDD B1 (10M) -98.0dBm -96.0dbm -99.5dBm -96.3dBm

Page 41: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 40 / 56

Table 25: EP06-A Conducted RF Receiving Sensitivity

LTE-FDD B3 (10M) -97.5dBm -97.5dbm -100.0dBm -93.3dBm

LTE-FDD B5 (10M) -97.0dBm -98.5dbm -99.5dBm -94.3dBm

LTE-FDD B7 (10M) -96.0dBm -96.0dbm -98.5dBm -94.3dBm

LTE-FDD B8 (10M) -98.5dBm -98.0dbm -101.0dBm -93.3dBm

LTE-FDD B20 (10M) -97.5dBm -99.0dbm -101.0dBm -93.3dBm

LTE-FDD B28 (10M) -96.0dBm -98.0dbm -99.0dBm -94.8dBm

LTE-TDD B38 (10M) -96.5dBm -96.0dbm -98.5dBm -96.3dBm

LTE-TDD B40 (10M) -96.5dBm -97.0dbm -99.5dBm -96.3dBm

LTE-TDD B41 (10M) -96.0dBm -96.0dbm -98.5dBm -94.3dBm

Frequency Primary (Typ.) Diversity

(Typ.) SIMO1) (Typ.) SIMO2) (Worst Case)

WCDMA B2 -109.5dBm -108.5dBm / -106.7dBm

WCDMA B4 -109dBm -108.5dBm / -103.7dBm

WCDMA B5 -109.5dBm -110dBm / -104.7dBm

LTE-FDD B2 (10M) -98.2dBm -97.7 dBm -100.7dBm -94.3dBm

LTE-FDD B4 (10M) -97.7dBm -97.8 dBm -100.2dBm -96.3dBm

LTE-FDD B5 (10M) -98.0dBm -98.1 dBm -100.9dBm -94.3dBm

LTE-FDD B7 (10M) -96.2dBm -97 dBm -98.2dBm -94.3dBm

LTE-FDD B12 (10M) -97.2dBm -97.8 dBm -101.7dBm -93.3dBm

LTE-FDD B13 (10M) -97.7dBm -98.1 dBm -100.7dBm -93.3dBm

LTE-FDD B25 (10M) -98.8dBm -98.5 dBm -100.5dBm -92.8dBm

LTE-TDD B26 (10M) -98.5dBm -99.2 dBm -101.8dBm -93.8dBm

LTE-TDD B30 (10M) -96.9dBm -97.8 dBm -99.2dBm -95.3dBm

LTE-TDD B66 (10M) -98.1dBm -97.9 dBm -100.6dBm -95.8dBm

Page 42: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 41 / 56

1. 1) SIMO is a smart antenna technology that uses a single antenna at the transmitter side and two

antennas at the receiver side, which can improve Rx performance.

2. 2) Per 3GPP specification.

6.5. Operation and Storage Temperatures

Table 26: Operation and Storage Temperatures

1. 1) Within operation temperature range, the module is 3GPP compliant.

2. 2) Within extended temperature range, the module remains the ability to establish and maintain a

voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There

are also no effects on radio spectrum and no harm to radio network. Only one or more parameters

like Pout might reduce in their value and exceed the specified tolerances. When the temperature

returns to the normal operating temperature levels, the module will meet 3GPP specifications again.

6.6. Electrostatic Discharge

The module is not protected against electrostatics discharge (ESD) in general. Consequently, it is subject

to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and

packaging procedures must be applied throughout the processing, handling and operation of any

application that incorporates the module.

The following table shows the module electrostatic discharge characteristics.

Parameter Min. Typ. Max. Unit

Operation Temperature Range1) -35 +25 +75 ºC

Extended Temperature Range2) -40 +85 ºC

Storage temperature Range -40 +90 ºC

NOTES

NOTES

Page 43: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 42 / 56

Table 27: Electrostatic Discharge Characteristics (Temperature: 25°C, Humidity: 45%)

6.7. Current Consumption

The following table shows the current consumption of EP06-E.

Table 28: EP06-E Current Consumption

Tested Points Contact Discharge Air Discharge Unit

VBAT, GND ±5 ±10 kV

Antenna Interfaces ±4 ±8 kV

Other Interfaces ±0.5 ±1 kV

Parameter Description Conditions Typ. Unit

IVBAT

Sleep state

AT+CFUN=0 (USB disconnected) 1.69 mA

WCDMA PF=64 (USB disconnected) 2.65 mA

WCDMA PF=128 (USB disconnected) 2.69 mA

WCDMA PF=256 (USB disconnected) 2.41 mA

WCDMA PF=512 (USB disconnected) 2.66 mA

LTE-FDD PF=32 (USB disconnected) 3.06 mA

LTE-FDD PF=64 (USB disconnected) 3.26 mA

LTE-FDD PF=128 (USB disconnected) 2.58 mA

LTE-FDD PF=256 (USB disconnected) 2.26 mA

LTE-TDD PF=32 (USB disconnected) 3.1 mA

LTE-TDD PF=64 (USB disconnected) 3.3 mA

LTE-TDD PF=128 (USB disconnected) 2.63 mA

LTE-TDD PF=256 (USB disconnected) 2.29 mA

Idle state WCDMA PF=64 (USB disconnected) 24 mA

Page 44: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 43 / 56

IVBAT

WCDMA PF=64 (USB connected) 32.12 mA

LTE-FDD PF=64 (USB disconnected) 19.2 mA

LTE-FDD PF=64 (USB connected) 28.5 mA

LTE-TDD PF=64 (USB disconnected) 21.3 mA

LTE-TDD PF=64 (USB connected) 28.6 mA

WCDMA data

transfer

(GNSS OFF)

WCDMA B1 HSDPA CH10700 @23.2dBm 621.1 mA

WCDMA B1 HSUPA CH10700 @23.0dBm 637.8 mA

WCDMA B3 HSDPA CH 1338 @23.4dBm 859.6 mA

WCDMA B3 HSUPA CH 1338 @22.9dBm 875.5 mA

WCDMA B5 HSDPA CH4408 @23.0dBm 608.7 mA

WCDMA B5 HSUPA CH4408 @22.8dBm 614.8 mA

WCDMA B8 HSDPA CH3012 @22.9dBm 693.5 mA

WCDMA B8 HSUPA CH3012 @22.7dBm 709.9 mA

LTE data

transfer

(GNSS OFF)

LTE-FDD B1 CH300 @23.1dBm 681.3 mA

LTE-FDD B3 CH1575 @22.5dBm 905.6 mA

LTE-FDD B5 CH2525 @22.9dBm 625.7 mA

LTE-FDD B7 CH3100 @23.1dBm 1042.1 mA

LTE-FDD B8 CH3625 @22.9dBm 763.3 mA

LTE-FDD B20 CH6300 @22.5dBm 778.9 mA

LTE-FDD B28 CH9510 @23.1dBm 788.2 mA

LTE-TDD B38 CH38000 @23.1dBm 452.1 mA

LTE-TDD B40 CH39150 @23.4dBm 443.5 mA

LTE-TDD B41 CH40740 @23.1dBm 453.3 mA

2×CA data

transfer

LTE-FDD B1+B1 @23.5dBm 770.5 mA

LTE-FDD B1+B5 @23.3dBm 823.1 mA

LTE-FDD B1+B8 @22.5dBm 820.3 mA

LTE-FDD B1+B20 @22.6dBm 832.3 mA

Page 45: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 44 / 56

The following table shows the current consumption of EP06-A.

IVBAT

LTE-FDD B1+B28 @23.2dBm 920.3 mA

LTE-FDD B3+B3 @23.37dBm 986.8 mA

LTE-FDD B3+B5 @23.1dBm 1010.7 mA

LTE-FDD B3+B7 @22.9dBm 1046.8 mA

LTE-FDD B3+B8 @22.8dBm 1017.1 mA

LTE-FDD B3+B20 @22.7dBm 1060.8 mA

LTE-FDD B3+B28 @22.6dBm 1079.3 mA

LTE-FDD B7+B5 @23.3dBm 991.3 mA

LTE-FDD B7+B7 @23.3dBm 1022.2 mA

LTE-FDD B7+B8 @23.3dBm 1030.9 mA

LTE-FDD B7+B20 @23.3dBm 1095.8 mA

LTE-FDD B7+B28 @23.2dBm 1111.2 mA

LTE-FDD B20+B32 @23.2dBm 805.65 mA

LTE-TDD B38+B38 @23.1dBm 530.68 mA

LTE-TDD B40+B40 @22.7dBm 462.23 mA

LTE-TDD B41+B41 @23.4dBm 506.37 mA

WCDMA

voice call

WCDMA B1 CH10700 @23.2dBm 622.18 mA

WCDMA B3 CH1122 @23.2dBm 862.14 mA

WCDMA B5 CH4408 @ 22.9dBm 611.89 mA

WCDMA B8 CH3012 @22.9dBm 699.91 mA

Page 46: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 45 / 56

Table 29: EP06-A Current Consumption

Parameter Description Conditions Typ. Unit

IVBAT

IVBAT

Sleep state

AT+CFUN=0 (USB disconnected) 1.88 mA

WCDMA PF=64 (USB disconnected) 2.4 mA

WCDMA PF=128 (USB disconnected) 2.29 mA

WCDMA PF=256 (USB disconnected) 2.29 mA

WCDMA PF=512 (USB disconnected) 2.28 mA

LTE-FDD PF=32 (USB disconnected) 3.5 mA

LTE-FDD PF=64 (USB disconnected) 3.47 mA

LTE-FDD PF=128 (USB disconnected) 3.5 mA

LTE-FDD PF=256 (USB disconnected) 3.49 mA

LTE-TDD PF=32 (USB disconnected) 3.67 mA

LTE-TDD PF=64 (USB disconnected) 3.6 mA

LTE-TDD PF=128 (USB disconnected) 3.2 mA

LTE-TDD PF=256 (USB disconnected) 3.54 mA

Idle state

WCDMA PF=64 (USB disconnected) 21.2 mA

WCDMA PF=64 (USB connected) 31.3 mA

LTE-FDD PF=64 (USB disconnected) 22.7 mA

LTE-FDD PF=64 (USB connected) 31.1 mA

LTE-TDD PF=64 (USB disconnected) 23.9 mA

LTE-TDD PF=64 (USB connected) 31.2 mA

WCDMA data

transfer

(GNSS OFF)

WCDMA B2 HSDPA CH9400 @23.1dBm 563.4 mA

WCDMA B2 HSUPA CH9400 @23.1dBm 552.5 mA

WCDMA B4 HSDPA CH1412 @22.87dBm 648.5 mA

WCDMA B4 HSUPA CH1412 @22.7dBm 647.4 mA

Page 47: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 46 / 56

IVBAT

WCDMA B5 HSDPA CH4407 @22.7dBm 565.1 mA

WCDMA B5 HSUPA CH4407 @22.7dBm 588.2 mA

LTE data

transfer

(GNSS OFF)

LTE-FDD B2 CH900 @23.8dBm 723.5 mA

LTE-FDD B4 CH 2175 @23.8dBm 837.5 mA

LTE-FDD B5 CH2525 @23.5dBm 654.5 mA

LTE-FDD B7 CH3100 @23.4dBm 1002 mA

LTE-FDD B12 CH5095 @23.5dBm 615 mA

LTE-FDD B13 CH5230 @23.5dBm 670.7 mA

LTE-FDD B25 CH8365 @24.3dBm 778.8 mA

LTE-FDD B26 CH8865 @23.4dBm 702.3 mA

LTE-FDD B30 CH9820 @23.4dBm 802.6 mA

LTE-FDD B66 CH132322 @23.8dBm 850.1 mA

2×CA data

transfer

LTE-FDD B2+B2 @20.66dBm 737.4 mA

LTE-FDD B2+B5 @20.98dBm 699.6 mA

LTE-FDD B2+B12 @20.87dBm 700.4 mA

LTE-FDD B2+B13 @21.06dBm 698 mA

LTE-FDD B2+B29 @21.0dBm 699.8 mA

LTE-FDD B4+B4 @21.55dBm 772.4 mA

LTE-FDD B4+B5 @20.93dBm 810.1 mA

LTE-FDD B4+B12 @20.75dBm 809.2 mA

LTE-FDD B4+B13 @20.73dBm 814.5 mA

LTE-FDD B4+B29 @20.77dBm 808.7 mA

LTE-FDD B7+B5 @20.67dBm 909.2 mA

LTE-FDD B7+B7 @20.63dBm 903.5 mA

LTE-FDD B7+B12 @20.47dBm 915.8 mA

Page 48: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 47 / 56

6.8. Thermal Consideration

In order to achieve better performance of the module, it is strongly recommended to comply with the

following principles for thermal consideration:

⚫ On customers’ PCB design, please keep placement of the module away from heating sources,

especially high power components such as ARM processor, audio power amplifier, power supply.

⚫ Do not place components on the PCB area where the module is mounted, in order to facilitate adding

of heatsink.

⚫ The reference ground of the area where the module is mounted should be complete, and add ground

vias as many as possible for better heat dissipation.

⚫ Add a heatsink on the top of the module and the heatsink should be designed with as many fins as

possible to increase heat dissipation area. Meanwhile, a thermal pad with high thermal conductivity

IVBAT

LTE-FDD B7+B26 @20.55dBm 938 mA

LTE-FDD B25+B5 @20.94dBm 695.4 mA

LTE-FDD B25+B12 @20.55dBm 697.5 mA

LTE-FDD B25+B25 @20.54dBm 762.6 mA

LTE-FDD B25+B26 @21.06dBm 721.4 mA

LTE-FDD B30+B5 @20.56dBm 794.4 mA

LTE-FDD B30+B12 @20.43dBm 799.4 mA

LTE-FDD B30+B29 @20.31dBm 806.1 mA

LTE-FDD B66+B5 @20.06dBm 732.9 mA

LTE-FDD B66+B12 @20.03dBm 734 mA

LTE-FDD B66+B29 @20.05dBm 736.1 mA

LTE-FDD B66+B66 @19.93dBm 801.7 mA

LTE-FDD B66+B13 @20.03dBm 739.7 mA

WCDMA

voice call

WCDMA B2 CH9400 @24.2dBm 608.1 mA

WCDMA B4 CH1412 @23.8dBm 720.8 mA

WCDMA B5 CH4407 @23.5dBm 619.6 mA

Page 49: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 48 / 56

should be used between the heatsink and module.

⚫ Add a thermal pad with appropriate thickness at the bottom of the module to conduct the heat to

PCB.

The following shows the referenced heatsink and thermal pad designs.

Heatsink

EP06 Module

Application Board

Thermal Pad

Shielding Cover

MiniPCIe Connector

Application Board

Heatsink

Heatsink

EP06 Module

PCBA

Figure 16: Referenced Heatsink Design

EP06 Module

Application Board

Thermal Pad

Shielding Cover

MiniPCIe Connector

Application Board

EP06 Module

PCBA

Thermal Pad

Figure 17: Referenced Thermal Pad Design

1. Make sure that customers’ PCB design provides sufficient cooling for the module: proper mounting,

heatsinks, and active cooling may be required depending on the integrated application.

NOTES

Page 50: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 49 / 56

2. In order to protect the components from damage, the thermal design should be maximally optimized

to make sure the module’s internal temperature always maintains below 105°C. Customers can

execute AT+QTEMP command to get the module’s internal temperature.

3. For more detailed guidelines on thermal design, please refer to document [5].

Page 51: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 50 / 56

7 Mechanical Dimensions

This chapter mainly describes the mechanical dimensions as well as packaging specifications of EP06

module. All dimensions are measured in mm. The tolerances for dimensions without tolerance values are

±0.05mm.

7.1. Mechanical Dimensions of EP06 Module

Figure 18: Mechanical Dimensions of EP06 Module

Page 52: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 51 / 56

7.2. Standard Dimensions of Mini PCI Express

The following figure shows the standard dimensions of Mini PCI Express. Please refer to document [6]

for detailed A and B.

Figure 19: Standard Dimensions of Mini PCI Express

Page 53: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 52 / 56

EP06 Mini PCIe adopts a standard Mini PCI Express connector which compiles with the directives and

standards listed in the document [6]. The following figure takes the Molex 679100002 as an example.

Figure 20: Dimensions of the Mini PCI Express Connector (Molex 679100002)

7.3. Design Effect Drawings of EP06 Module

Figure 21: Top View of the Module

Page 54: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 53 / 56

Figure 22: Bottom View of the Module

These are renderings of EP06 module. For authentic dimension and appearance, please refer to the

module that you get from Quectel.

7.4. Packaging

EP06 module is packaged in a tray and each tray contains 10 modules. The smallest package of EP06

contains 100 modules.

NOTE

Page 55: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 54 / 56

8 Appendix References

Table 30: Related Documents

Table 31: Terms and Abbreviations

SN Document Name Remark

[1] Quectel_EPXX_EVB_User_Guide EPXX EVB User Guide

[2] Quectel_EP06&EG06&EM06_AT_Commands_Manual EP06, EG06 and EM06 AT

Commands Manual

[3] Quectel_EP06&EG06&EM06_GNSS_AT_

Commands_Manual

GNSS AT Commands Manual for

EP06, EG06 and EM06 Modules

[4] Quectel_RF_Layout_Application_Note RF Layout Application Note

[5] Quectel_LTE_Module_Thermal_Design_Guide

Thermal Design Guide for LTE

modules including EC25, EC21, EC20

R2.0, EC20 R2.1, EG91, EG95, EP06,

EG06, EM06 and AG35

[6] PCI Express Mini Card Electromechanical Specification

Revision 1.2 Mini PCI Express Specification

Abbreviation Description

AMR Adaptive Multi-rate

bps Bits Per Second

CS Coding Scheme

DFOTA Delta Firmware Upgrade Over The Air

DL Down Link

EFR Enhanced Full Rate

ESD Electrostatic Discharge

FDD Frequency Division Duplexing

Page 56: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 55 / 56

FR Full Rate

GLONASS GLObalnaya Navigatsionnaya Sputnikovaya Sistema, the Russian Global

Navigation Satellite System

GMSK Gaussian Minimum Shift Keying

GNSS Global Navigation Satellite System

GPS Global Positioning System

HR Half Rate

kbps Kilo Bits Per Second

LED Light Emitting Diode

LTE-A Long Term Evolution-Advanced

Mbps Million Bits Per Second

ME Mobile Equipment (Module)

MIMO Multiple-Input Multiple-Output

MMS Multimedia Messaging Service

MO Mobile Originated

MT Mobile Terminated

PCM Pulse Code Modulation

PDU Protocol Data Unit

PPP Point-to-Point Protocol

RF Radio Frequency

Rx Receive

(U)SIM (Universal) Subscriber Identification Module

SIMO Single Input Multiple Output

SMS Short Message Service

UART Universal Asynchronous Receiver & Transmitter

UL Up Link

Page 57: EP06 Hardware Design - AURORA EVERNET

LTE-A Module Series EP06 Hardware Design

EP06_Hardware_Design 56 / 56

URC Unsolicited Result Code

WCDMA Wideband Code Division Multiple Access


Recommended