+ All Categories
Home > Documents > ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb....

ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb....

Date post: 28-Jun-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
30
UNCLASSIFIED An256478 ßepAoduced Juf, the ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA UNCLASSIFIED
Transcript
Page 1: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

UNCLASSIFIED

An256478 ßepAoduced

Juf, the

ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA

UNCLASSIFIED

Page 2: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

MOTICE: When government or other drawings, speci- fications or other data are used for any puzpose other than In connection with a definitely related government procurement operation, the U. S. Government thereby Incurs no responsibility, nor any Obligation whatsoever; and the fact that the Govern- ment may have fonmilated, famished, or In «my way supplied the said drawings, specifications, or other data Is not to be regarded by implication or other- wise as In any manner licensing the holder or any other person or corporation, or conveying any rights or pexmlsslon to manufacture, use or sell any patented Invention that may in any way be related thereto.

Page 3: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

to

to

?-5t J*^

TR-934

CO

S CD

5^

DEPENDENCE OF Z-PARAMETERS

ON THE LF TRANSISTOR T-EQUIVALENT CIRCUIT

C

Nicholas Kyriakopoulos

5 April 1961

A S T I A I T?^

' : 1961 I

HPDR A

DIAMOND ORDNANCE FUZE LABORATORIES ORDNANCE CORPS • DEPARTMENT OF THE ARMY

/ /

XEROX

Page 4: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

ORDNANCE FUZE LABORATORIES WASHINOTON H. D. C.

ammo, MSO.U UJTL FroJ«ot »029»

1»-»S4 5 April 1061

OF Z-PARAMRRS OK IBM IT TIMimZSTOR T-lQUIVALnT CIRC9IT

Nieholaa Kjrlakopouloa

VOR m APPHOVID BY

KjTwrmakl In Chief, Laboratory 900

Qualified raquaatara mmj obtain coplea of thin report fro« ASTXA.

Page 5: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

OOMTBRTS

Pace No.

ABSTRACT 5

1. INTRODUCTION 5

2. DISCUSSION 5

3. RESULTS c ..... . 8

4. ACKNOWLEDOBMBNT 23

5. REFERENCES 23

ILLUSTRATIONS

Figure 1. Real part of Z versus equivalent circuit parameters. Common base, emitter configuration 9

Figure 2. Imaginary part of Z versus equivalent circuit parameters. Common base, emitter configuration. ....... 10

Figure 3. Real part of Z.. versus equivalent circuit parameters.

Common collector configuration 11

Figure 4. Imaginary part of Z versus equivalent circuit parameters. Common collector configuration 12

Figure 5. Real jiart of Z12 versus equivalent circuit parameters.

Common base configuration. .... .... 13

Figure 6. Imaginary part of Z versus equivalent circuit parameters. 12

Common base configuration 14

Figure 7. Real part of Z. versus equivalent circuit parameters.

Common emitter configuration IS

Figure 8. Real part of Z versus equivalent circuit parameters. Common collector configuration. ... 16

Figure 9. Imaginary part of Z versus equivalent circuit parameters. Common collector configuration. • • 17

Figure 10. Real part of Z versus equivalent circuit parameters.

Common base, collector, emitter configuration. . .18

Figure 11. Imaginary part of Z versus equivalent circuit parameters. Common emitter, collector, base configuration. . .19

Figure 12. Real part of Z versus equivalent circuit parameters. Common emitter, collector, base configuration. . .20

Figure 13. Imaginary .part of Z versus equivalent circuit parameters. Common collector, base, emitter configuration. . .21

Page 6: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

ABSTOACT

The Z-parameters of a transistor have been calculated in terms of the transistor T-equivalent circuit parameters. The calculations have been made for a frequency of 1.0 kc. In addition, each of the independent equivalent circuit parameters was halved and doubled while the rest were held constant, and the effect on the Z-parameters investigated.

The results indicate that in the common base and common emitter configurations the input impedance depends on r only, while the forward transfer impedance depends on r. and r . The rest of the

D e parameters are functions of r and C only.

I. INTRODUCTION

The purpose of this report is to investigate the dependence of the terminal characteristics of a transistor on Its T-equivalent circuit parameters. This dependence is of primary Importance in transistor design, since a given set of terminal characteristics can be achieved by specifying the values of the internal parameters; these values, in turn, are functions of Junction area, doping, etc., and can be controlled to a certain extent.

Because of the numerous and tedious calculations Involved, this work was performed with the help of an IBM 704 digital computer. This report will include the relations between the terminal characteristics and the equivalent circuit parameters, a brief discussion of the pro- gramming techniques used, and the results obtained for common base, common emitter and common collector configurations.

2. DISCUSSION

Of the various transistor equivalent circuits available, the T-equivalent was chosen for the purposes of the present investigation. Although basically a low frequency equivalent circuit, its useful frequency range is increased by including an emitter and base capacitance. On the basis of the circuit illustrated below.

{

ai e

r-QSh

1 J

• bb

^

1

E,

Page 7: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

the Z-parameters in the common base, common emitter and common collector configuration are found aa follows:

«IU - «IM, - •»" - ^^J ♦ —=—3 - J.I ^S_. t -.-. .1

2 >

1+(C0Cbrb)iS " i+^C. rh)2

Z . r • + rb Cbrb 12b " rbb + . 2 " Ja> —^^

'b*b'

l^Cbrb) i+fclccrc)2 W-Ccrc)

a l+(«Cbrb)2i

Zllc- Z22b - -bb' + — 5 + —^ .Jaj ( Vb _Vj 1+^bV ^••Cerc)

a 1 l+(«>Cbrb)2 i+fo)c r )2 / c c

r 2c 12e " . I ~2 ~ J®

e e-1 e e' 1+(»C r )^ l+Coc r )2

Z » ^ ^c / «Ccrc2 c r 2 ,

21e 7~ ö Ö + J« S-5 e • I l+(coCere) l+(coCcrc)2 l+(«oCcrc)

2 UtoC#r#)a '

2 . Z % ^-Od'e / (l-a)C r 2 Z22 " Z22e " 2 + H " Jw 2_£_ . e i

l+«0Cere) l+(«Ccrc)2 l+*)Cr)2 U^c r ^ J

c c e e

(l-a)r (1-0)0 r 2 Z12c S " J« S-^ l+(«Ccr )2 1+(<oC r ,2

*• c c

Page 8: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

21e l+(ffl>C r )

c c

C r c J c c

2 ' JüJ

2

1+iö« r ) c c

Thus, the terminal transistor impedances are expressed in terms of the equivalent circuit parameters in the three configurations. For given values of these inherent or Intrinsic parameters the impedances can be calculated.

In the present study, the IBM 704 digital computer of the National Bureau of Standards was used to calculate the terminal parameters. The program was written in the FORTRAN (Formula Translation) language. FORTRAN ;s a system by which a program written in a relatively simple language can be translated into the language that the computer under- stands. This technique enables a non-professional programmer to use the computer for a wide range of problems with a minimum of difficulty (ref 1).

It was desired to find the effect on the terminal characteristics of the transistor when one of the equivalent circuit parameters was varied while the others were held constant. The data used in this re- port were taken from the data sheet for a 2N220 transistor. In the equivalent circuit representation C was assumed to be very small, so the capacitive reactance in parallel with r gave an effective impedance approximately equal to r . In view of the low frequency being con- sidered, this appears to be a valid assumption. The values of the equiva- lent circuit parameters used as basis for the calculation of the terminal characteristics appear in table I. Since C. was not given in the original

D

TABLE I

bb r r e c

a

ohms ohms Pf ohms megohms pf

190 1085 8850 37.7 2.86 50 .985

data, the value of 8850 pf was taken from measurements that were performed on a 2N180 transistor (ref 2).

Page 9: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

The value« given in table I and the terminal parameters corresponding to these values (table II) were used as bases for normalizing the results. Xach value of the equivalent circuit parameters was halved and doubled while the others were kept constant. For each set of values the termi- nal characteristics were computed at a frequency of 1.00 kc. The results of these computations appear In figures 1 through 13. In the graphs, the ordlnate represents the normalized terminal characteristics while the abscissa represents the normalized equivalent circuit parameters.

Table II

Z,. ■ 1.31 x 103 - J6.52 x ID1 Z,_ « 3.77 x 101 + JO.O lie 12e u

Z21 ■ -1.60 x 106 + J1.40 x 106 Z22 ■ 2.38 x 104 - J2.13 x 104

Z,,w ■ 1.31 x 103 - J6.52 x 101 Z,ow ■ 1.27 x 103 - J6.52 x 101 HD X2D

Z21b = 1*56 X 106 " J1'40 x lo6 Z22b " 1'58 X lo6 " J1-42 x lo6

Z,, = 1.58 x 106 - J1.42 x 106 Z,„ « 2.37 x 104 - J2.13 x 104 He 12c

Z0, » 1.58 x 106 - J1.42 x 106 Z00 = 2.38 x 10

4 - J2.13 x 104

3. RESULTS

The greatest effect on most of the terminal characteristics of a transistor, at the frequency considered, is brought about by the varia- tion of r and C . The only exceptions are the parameters with which r

and C are not associated. Thus, in the common emitter and common base c ' configurations the input impedance is largely a function of r. and C.

b b while r.. has little effect and r plays an insignificant role. In fact, DD e ' the only terminal characteristic which is affected by r is the common

emitter forward transfer impedance Z which for all practical purposes is directly proportional to r . In this investigation, the emitter

capacitance was assumed negligible, thus making the forward transfer

Impedance equal to r .

Page 10: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

2.0

1.5

a> OC

O LÜ 1.0 M

o

0.5

s i rc,Cc,Cb A H

^r <

0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS

2.0

Figure 1. Real part of Z^ versus equivalent circuit parameters«

Common base, emitter configuration.

Page 11: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

4.0

.

3.0

JE

o Iü2.0 M

or o

1.0

, 7 -

/ \

rbb\rc,Cc,r9

-A OS

'S A 0.5 1.0 15

NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0

lb

Figure 2. Imaginary part of Z versus equivalent circuit parameters.

Common base, emitter configuration.

Page 12: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

2.0

1.5

00

Q bJ 1.0

<

o

0.5

Cc

.

\

rbb',rb»cb»rc

K J

\

X N

v

0 0.5 1.0 1.5 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS

Figure 3. Real part of Z versus equivalent circuit parameters.

2.0

Common collector configuration. 11

Page 13: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

2.0

1.5

o uj 1.0 ISI

o

0.5

»1 —

'bbl Vb- re

Y /

Cc

V\ /

12

0 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS

Figure 4. Imaginary part of Z versus equivalent circuit parameters

Common collector configuration.

2.0

Page 14: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

2.0

.

1.5

CM

NJ

cr

o LU 1.0 NJ

o

0.5

rc,Cc,Cb.rc A H /

rb

Y\

0 0.5 1.0 1.5 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS Figure 5

Common base configuration

20

Real part of Z versus equivalent circuit parametersc &3

13

Page 15: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

4.0

3.0

CM

II O id 2,0

or o

1.0

v

7 /

^rc,Cc,rt

rb A ■

*

0 0.5 1.0 15 2.0 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS

Figure 6. Imaginary part of Z „ versus equivalent circuit parameters.

Common base configuration. 14

Page 16: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

2.0

1.5

CM

M Of (r a LU 1.0 M

O

0.5

7 rbb;rb.Cb.rc,Cc

/

/

/

re

0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS

2.0

Figure 7, Real part of Z12 versus equivalent circuit parameters.

Common emitter configuration.

15

Page 17: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

1

1.5

i o ui 1.0 Nl

0C O

0.5

'bb'/b/V«

16

0" 0.5 1.0 15 2.0 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS

Figure 8. Real part of Z versus equivalent circuit parameters.

Cormon collector configuration.

Page 18: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

2.0

1.5

O LÜ 1.0 N

or o

0.5

.

rbbVrb,Cb,re

J 1 /

Cc v /

0 0.5 1.0 1.5 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS

2.0

Figure 9. Imaginary part of Z versus equivalent circuit parameters.

Common collector configuration.

17

Page 19: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

2.0

1.5

(M

£ a LÜ 1.0 M

<

o z

0.5

u

Cc

r bb, r b,Cb, re

/

18

> 0.5 1.0 1.5 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS

Figure 10. Real part of Z versus equivalent circuit parameters.

Common base, collector, emitter configuration.

2.0

Page 20: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

0" 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS

Figure 11. Imaginary part of Z2 versus equivalent circuit parameters

Common emitter, collector base configuration.

19

Page 21: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

^

0.5 1.0 1.5 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS

2.0

Figure 12. Real part of Z versus equivalent circuit parameters, mm

Common emitter, collector, base configuration.

20

J

Page 22: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

2.0

1.5

CM CVi

M

O id 1.0 M -J <

a: o

0.5

*

;l rbb;rb,Cb,Te

/j /

Cc /I ■

■i

/

I

0 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS

2.0

Figure 13. Imaginary part of Z versus equivalent circuit parameters

Common collector, base, emitter configuration. 21

Page 23: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

The base capacitance C. contributes only to the Imaginary components o

of Z,, . Z,,. and Z.„.. From table II it is seen that these components lie ilo I^D

are negligible in comparison to the real parts. - Of course, as the frequency is increased, C. will play a significant role on the terminal

characteristics. If only the magnitude of the impedance is required, the base capacitance can be neglected. However, if phase angle informa- tion is needed C must be included. In the common emitter and common

b o base input impedance the phase angle is approximately 2 . By varying

C. from one-half to twice its nominal value, the phase angle could be

changed from 1 to 6 respectively. Thus, the phase angle of the input

impedance can be controlled to a certain extent by adjusting C., while

its absolute value will remain constant.

In the common collection configuration, all four elements of the

Z-matrix depend only on r and C . Of particular interest is the ef- c c

feet of r on the real parts and of C on the imaginary parts of the c c

elements of the matrix. For values of r less than its nominal value, c

the real part of the Impedance increase according to some exponential functional of r . As r reaches a value slightly higher than its

c c nominal, the real part of Z, Re[Z], begins to decrease and it will continue to decrease as r increases. This rather unusual behavior

c can be traced to the expression

r c

1+|»C r )2

c c

2 where for large values of r the term containing rc begins to in- fluence the fraction more than the numerator r . The maximum value

c of the real part is given for a value of r slightly higher than its

c nominal value. Similarly, the imaginary components behave in almost

identical manner for the variation in C . The term responsible for

this effect of C is c

2 mC r

c c

1+(»C r )2

c c

22

Page 24: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

Since r behaves in similar fashion in both the numerator and denominator,

the imaginary terms of the Z-parameters, Im[z], are affected by r accord-

ing to some proportionality function. Thus Im[Z] increases with increas- ing r while C causes it to increase initially and then reverse slope.

c c The points of inflection were calculated after the data indicated that

either halving or doubling r and C the Impedance was less than that of c c

the nominal values.

A few remarks can also be made as to the dependence of the absolute

value of the Z-parameters on r and C . It is obvious that any Increase

in the collector capacitance will cause the impedances which depend on

C to decrease, perhaps slowly in the beginning but rather rapidly as

C attains values higher than its nominal value„ The effect of r ,

however, is not as easily predictable. For values of r less than

nominal, the absolute value of the Impedance will Increase since both

the real and the imaginary parts Increased with r . As the value of c

r becomes much larger than nominal, the real part begins to decrease wfiile the Imaginary part continues increasing. To the extent for which

information is available, |z|, which depends almost equally on the real and imaginary parts (table II), will continue to increase with increas- ing r but at an ever-decreasing rate. The phase angle will experience a rapid increase since the imaginary part increases and the real part decreases with r . It should be kept in mind that all the parameter variations are for a frequency of 1.0 kc. For any other frequency the curves might assume a completely different form.

4. ACKNOWLEDGEMENT

The author wishes to thank Mr. George Kambouris for many helpful suggestions regarding this Investigation.

5. REFERENCES

1. IBM General Information Manual, Programmer's Primer for FORTRAN Automatic Coding System for the IBM 704 Data Processing System.

2. DOFL TR-502, "Transistor Parameter Variations in the VLF Range", G. Kambouris and H. Morris, 1 September 1957.

23

Page 25: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

Commander

DISTRIBUTION

Department of the Army Office of the Chief of Ordnance The Pentagon, Washington 25. D. C. Attn; ORDTN (Nuclear & Special Components Br) Attn: ORDTB (Research Br)

Commanding General Army Ballistic Missile Agency Redstone Arsenal, Alabama

Attn: Technical Documents Library

Commanding Officer Pleatinny Arsenal Dover, New Jersey

Attn: Feltman Research & Engineering Laboratories Attn: Library

Commanding Officer U. S. Army Signal Research & Development Laboratory Fort Uonmouth, New Jersey

Attn: Electronic Components Research Dept Attn: Tech Library Attn: Dr. B. Reich Attn: Mr. Fred Gordon Attn: Slg. FM - Flash El P.D.C.

Department of the Navy Washington 25, D. C.

Attn: Bureau of Ships, Main Navy Bldg, Rm 3346

Commander U.S. Naval Ordnance Laboratory Corona, California

Attn: Documents Librarian

U.S. Naval Ordnance Laboratory White Oak, Silver Spring 19, Maryland

Attn: Tech Library

Department of the Navy Bureau of Naval Weapons Washington 25, D. C.

Attn: DLI-3, Tech Library

Commander Naval Research Laboratory Washington 25, D. C.

Attn: Solid-State Electronics Br, S. Pauli Attn: Tech Library Attn: Laddie Rhodes Attn: George Abrahams

25

Page 26: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

DISTRIBUTION (Continued)

Components & Techniques Laboratory Air Research & Development Center Bedford, Mass

Attn; E. Czerllnsky

Commander Armed Services Technical Information Agency Arlington Hall Station ; Arlington 12, Virginia

Attn: TIPDR (10 copies)

National Bureau of Standards Washington 25, D. C.

Attn: Library Attn: J. C. French, 14.02 (207 EL) Attn: P. A. Mantek, 12.01 (331 CL) Attn: Sidney Geller, 12.01 (331 CL)

Advisory Group on Electron Tubes 346 Broadway New York 13, New York Attn: Chief, Technical Reference Section

Bell Telephone Laboratories, Inc. Mountain Avenue Murray Hill, New Jersey ■>

Attn: Dr. J. M, Early ,

Office, Chief of Research and Development Department of the Army Missile and Space Division Washington 25, D. C.

Attn: Capt John McClary

Stanford University Electronics Research Laboratory Stanford, California

Attn: J. P. Paddock

Airinc 1700 "K" Street, N. W. Washington, D. C.

Attn: A. J. Dellinger

26

Page 27: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

Internal Distribution

Hinman, W. S., Jr./llcEvoy, R. W. Apstein, M./Gerwin, H. L./Guarino, P Fong, L. B. C./Schwenk, C. C.

Hardin, C. D., Lab 100 Horton, B. M., Lab 200 Rotkin, 1., Lab 300 Landis, P. E./Tuccinardi, T. E., Lab 400 Hatcher, R. D., Lab 500 Flyer, I. N., Lab 600 Campagna, J. H./Apolenis, C. J., Div 70O DeMasi, R., Div 800 Franklin, P. J./Horsey, E. F., Lab 900 Beaton, J. W./260 Liimatainen, T. M., 920 Kaiser, Q. C, 920 Williams, D., 920 Van Trump, J. H., 930 Young, R. T., 930 Kambouris, G. N., 930 Otley, K. O., 930 Baldini, B. P., 930 Kyriakopoulos, Nr, 930 (10 copies) Technical Reports Unit/800 (3 copies) Technical Information Office, 010 (10 copies) DOFL Library (5 copies)

A./kalmus, H. P.

'

(Two pages of abstract cards follow)

27

Page 28: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

r i i

8 <

o

9

| 3

i s

o

2 a

2 3 s ;« si

J

i» >M u I* u e « *•

•i » •< ^ £ M • P a - -H Tf ^ ««

IS u Q

if 4 i

J3 rt rH

ao 21

e • • K

s

4J »4 >« -M 4-I N U U *4 «

+i « IH -4 > «w +J O

o 5 t, I o > « •

a> J; 4i cr *-• U

L* « e a> v > d 5 a» -o ä a a « a. c ■M *<

MAO)

e$ Tl -H ©

-* * a»

o u a U «I M -O

y -a c a> e c « Art« « T3 a o &«! *•

•O ■H B «

•H « 0 ** o nt -M c n JS 3 nt e *• a -a o

c a» -^ 41 -H Q. *J 4-" BO ri *> ■* C O JS 9

■H 4J U «-I ■a v e w <M v

■w C tf) t-

tn p -a w at w t- «

*-« * M 0» C t- tn eO O «

u «M a

St

I

_l

«4 « «-• I o e "O m

O ** 4» 3 n -H o ^« b

C « ^ 9 8> O -H U O I

*> 3 « -O N U 4»

»> 4» — ^3 e ♦* JS *» wo « P -* > PH TJ ^H *J

: Ji 0) «4 ^H M

i cd ft

OB £ _ I* **

U M V

ao i 4» « o

<« n « fr.

B AC

i* u o a. c

M i es

; e 9 b u t § »•* ■ -« ft U T) • ft h ^ >«««-• ft t ** e £ - '- ft -< •

»f6

X! * il ** -o a

« 9 « e

«i «< a. •*

i

s

■ Z * v ** o -a »

■• ft e •

• •* «4 «« !■ «4

ft «• ft e « k o c «

s • ?" a

li I iSS155 I *• 3 ft

N «* & ft •

t S ft 3 T> ••

• e &> k

e a

•4 ft *J I

ft -»4 O *■* H

S «I £ 3 a ft •-t u o I •* 3 «J -O (-)

C ^

«1 **

« w Ti d

2 &

u o ao>

en *J

es

ft fl) U h 4-i

ft ** I-I at

3 «4 rt 4-> i4 u o a B Oh ft 4J -H ^ 4J « w ü o -H w

■H e 3 E m +i o rj o C B 3 U U

14 fH ft U "O

ft •« C JC 9 A ft

*-i er ^-i 4» • o o i* a u -a

i 0 > o » n P4 M in ^ ♦> C . 3 ft ft ^ ft a* M bo +* O —

E ' 41 *J

b ft £ ft ft > « 5 4» -O J3 B

t " J 4) N ^ a o n

^ » ft ^ h 4i 4» > Ti w a» ^: x ft a ja ** H ^ x -H » «

ft XI

ife

O 0 "O « B • ft ft « K ^ Tt ^-l

B JOB C OJ t- o

E 4» B Ü g -3 O Ü O O O « T3

O TJ C ft e B ft j: « ft *-• TJ a u

O 41 »t c a -a

** O. V o B ft -H

ft -H a ** ■P SO ft ft -H B U -C 9

■^ *J ti «M

"O 0 B CA 4M ft

■H B W h> O B ft

W -H « +J -W fc, Cft f-H ft 4-» fa 3 b ft N 9 IB V ft U 1H 4) I« -H n e

«M » d ft e h b .c O O rt H u <H a

ft 0 T) ■A e • ft (A ft >« J3 T1 ^

B AB C (U i- o o a SVC u 13 TJ O O o U ft W Tt

o -a c ft B C «I

JS ft & o

jc 3 ft e ** a. rt o

C ft" -. 4» -4 a **

^ ft W (,

ft C I« k

s

H

U

CO

Ü

J

Page 29: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

r i

Ifl

10 'f (-4

Si x M U U

III > *M

«9 -H

o S i.

II

* « ~ A

2 8

«il

8«? BBS

^ 3 « a

« -H a. «

o» b « O1 4-»

It 2 M c ass ü-2

•H «H B CA b

•M 4-* h M -H « U t,

o e ü Ü

g« h

Si

•MM« o c

0 «4 as« •» ^* o _ . *• 3 rt TJ N

r s B s 5 ■M Ä «

c« L. B <0 <M

3 V 5 ♦*

« 4-*

£ • 0

a *4 w tt) J3 W

§ * £

o c P o o

B fa «I

not)

1 S8 S 5 nl aft

S

_ Ü o , •-4 e :

> %4 4

- I"- o S fa

ii K

■ fa -a | S2

S|a^ as ■. s

■2 ■«• " II' a« >

55 Iä 8

: j. fa o

: I- i a

£ä5§ «5 iS

Ifll

I S

Sl I s,

a. «

s&

D,S5 a m

iS

to S

. « faS < : in A

ÜB

i

a *.

2 a r* M Q

g| S M +J i-t

P as; 00 *f

W t* |S to S < w <n a M

t -« «ft N 5 ^ Cl

S M

i Si el

as ,|j

3,^S « »^ fi M «M ü «~ g « CO « 0) E • M J3 v n o u 4->

ft +J TJ

* s«i «* fa u o a a o fa a M u o •- M

oi « £ o o g £ g..!: u

> »^ ^J 0)

^ S-l, . » F« <-i -rf a «

1 "5 i « 2 S Hg B S « S

• J3

u

Ü O 13 C

41 C fi 5 €& ,

B M- B vi

•H V O u

M ^ B 01 JS 3 (4 B

o. n o « B a; -H

4-1 S u M 01 -H B U Ä 3

«« fa «M

&, O V > Tl W O

H' 53 JB ^ 'S «

■H a

»Is 0) «H (J ♦* 3 rt ■

el». ■w a) ^ |

fH Tl ^

Si .

» 0.0

SS"4: fa 3S I O fa

^« S i B B 3 t

> <M * cd •'-< i

- &"i o o fa .

-4 U

iZM

«i -a

§ g S TJ O O

. 1 u

III AS* t*l

2. « -a O- w M CM' at u -H -MB

** IN « «15

«I a -a «

ess^«-: JUi

o

Page 30: ßepAoduced Juf, the - DTIC · 2018-11-08 · 2.0 1.5 CM M (rOf a r LU 1.0 M O 0.5 7 rbb; b.Cb. c,Cc / / / re 0.5 1.0 15 NORMALIZED EQUIVALENT CIRCUIT PARAMETERS 2.0 Figure 7, Real

UNCLASSIFIED

UNCLASSIFIED


Recommended