+ All Categories
Home > Documents > Error estimates for Feynman-Kac semi-groups. · 2017-06-22 · 1. Problem and motivation. Large...

Error estimates for Feynman-Kac semi-groups. · 2017-06-22 · 1. Problem and motivation. Large...

Date post: 10-Jul-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
23
www.enpc.fr Error estimates for Feynman-Kac semi-groups. IHP - Young Researchers’ Seminar Grégoire Ferré – Gabriel Stoltz CERMICS - ENPC, INRIA Paris & Labex BEZOUT Thursday, June 22 nd , 2017
Transcript
Page 1: Error estimates for Feynman-Kac semi-groups. · 2017-06-22 · 1. Problem and motivation. Large deviations Consider an ergodic dynamics on the torus with invariant measure : dXt =b(Xt)dt

www.enpc.fr

Error estimates for

Feynman-Kac semi-groups.

IHP - Young Researchers’ Seminar

Grégoire Ferré – Gabriel Stoltz

CERMICS - ENPC, INRIA Paris & Labex BEZOUT

Thursday, June 22nd, 2017

Page 2: Error estimates for Feynman-Kac semi-groups. · 2017-06-22 · 1. Problem and motivation. Large deviations Consider an ergodic dynamics on the torus with invariant measure : dXt =b(Xt)dt

Outline

1. Problem and motivation

2. Error estimates on ergodic averages

3. Error estimates for Feynman-Kac semi-groups

Grégoire Ferré, Gabriel Stoltz CERMICS - ENPC

Error estimates for Feynman-Kac semi-groups. 2 / 18

Page 3: Error estimates for Feynman-Kac semi-groups. · 2017-06-22 · 1. Problem and motivation. Large deviations Consider an ergodic dynamics on the torus with invariant measure : dXt =b(Xt)dt

1. Problem and motivation

Page 4: Error estimates for Feynman-Kac semi-groups. · 2017-06-22 · 1. Problem and motivation. Large deviations Consider an ergodic dynamics on the torus with invariant measure : dXt =b(Xt)dt

Large deviations

• Consider an ergodic dynamics on the torus with invariantmeasure ν:

dXt = b(Xt )dt +√

2β−1dBt .

• Idea of large deviations:

P

[1t

∫ t

0W(Xs)ds = a

]� e−tI(a),

where I is the rate function.

Grégoire Ferré, Gabriel Stoltz CERMICS - ENPC

Error estimates for Feynman-Kac semi-groups. 4 / 18

Page 5: Error estimates for Feynman-Kac semi-groups. · 2017-06-22 · 1. Problem and motivation. Large deviations Consider an ergodic dynamics on the torus with invariant measure : dXt =b(Xt)dt

Large deviations

• Consider an ergodic dynamics on the torus with invariantmeasure ν:

dXt = b(Xt )dt +√

2β−1dBt .

• Idea of large deviations:

P

[1t

∫ t

0W(Xs)ds = a

]� e−tI(a),

where I is the rate function.

• Donsker-Varadhan [1975]: if one sets

λ(k) := supa∈R{ka − I(a)},

then λ(k) is the largest eigenvalue of L+ kW where L is thegenerator of (Xt ).

Grégoire Ferré, Gabriel Stoltz CERMICS - ENPC

Error estimates for Feynman-Kac semi-groups. 4 / 18

Page 6: Error estimates for Feynman-Kac semi-groups. · 2017-06-22 · 1. Problem and motivation. Large deviations Consider an ergodic dynamics on the torus with invariant measure : dXt =b(Xt)dt

Feynman-Kac semi-groups

• Consider (λ,νW ) the principal eigenvalue and eigenfunction ofL†+W . Feynman-Kac formula gives

λ= limt→∞

1t

logE[e∫ t

0 W(Xs)ds].

• We then consider, for an observable ϕ,

Φt (µ)(ϕ) =Eµ

[ϕ(Xt )e

∫ t0 W(Xs)ds

]Eµ

[e∫ t

0 W(Xs)ds] −→

t→∞

∫DϕdνW .

Grégoire Ferré, Gabriel Stoltz CERMICS - ENPC

Error estimates for Feynman-Kac semi-groups. 5 / 18

Page 7: Error estimates for Feynman-Kac semi-groups. · 2017-06-22 · 1. Problem and motivation. Large deviations Consider an ergodic dynamics on the torus with invariant measure : dXt =b(Xt)dt

Feynman-Kac semi-groups

• Consider (λ,νW ) the principal eigenvalue and eigenfunction ofL†+W . Feynman-Kac formula gives

λ= limt→∞

1t

logE[e∫ t

0 W(Xs)ds].

• We then consider, for an observable ϕ,

Φt (µ)(ϕ) =Eµ

[ϕ(Xt )e

∫ t0 W(Xs)ds

]Eµ

[e∫ t

0 W(Xs)ds] −→

t→∞

∫DϕdνW .

• Problem related to Markov processes conditioned on largedeviations (Chetrite & Touchette – Tsobgni-Nyawo & Touchette –Angeletti & Touchette).

• Discretization and error estimates for such semi-groups ?

Grégoire Ferré, Gabriel Stoltz CERMICS - ENPC

Error estimates for Feynman-Kac semi-groups. 5 / 18

Page 8: Error estimates for Feynman-Kac semi-groups. · 2017-06-22 · 1. Problem and motivation. Large deviations Consider an ergodic dynamics on the torus with invariant measure : dXt =b(Xt)dt

Problem: error estimates

• We discretize the process (Xt ) into a Markov chain (xn) of timestep ∆t . Consider for example the estimator:

Φ∆t ,n(µ)(ϕ) =Eµ

[ϕ(xn)e∆t

∑n−1i=0 W(xi )

]Eµ

[e∆t

∑n−1i=0 W(xi )

] −→n→∞

∫DϕdνW ,∆t .

• Natural question: is νW ,∆t close to νW? Can we find C > 0, p > 1s.t. ∣∣∣∣∣∫

DϕdνW ,∆t −

∫DϕdνW

∣∣∣∣∣ 6 C∆tp ,

depending on the numerical scheme?

Grégoire Ferré, Gabriel Stoltz CERMICS - ENPC

Error estimates for Feynman-Kac semi-groups. 6 / 18

Page 9: Error estimates for Feynman-Kac semi-groups. · 2017-06-22 · 1. Problem and motivation. Large deviations Consider an ergodic dynamics on the torus with invariant measure : dXt =b(Xt)dt

2. Error estimates on ergodic averages

Page 10: Error estimates for Feynman-Kac semi-groups. · 2017-06-22 · 1. Problem and motivation. Large deviations Consider an ergodic dynamics on the torus with invariant measure : dXt =b(Xt)dt

Error estimates on the time step bias

• Ergodic average:

1Niter

Niter−1∑n=0

ϕ(xn) −→n→∞

∫Dϕdν∆t .

• Systematic error (Talay & Tubaro – Mattingly, Stuart & Tretyakov –Debussche & Faou – Abdulle, Vilmart, Konstantinos & Zygalakis –Leimkuhler, Matthews & Stoltz ...)

Theorem

There exists p > 1 and f regular such that for all smooth ϕ,∫Dϕdν∆t =

∫Dϕdν + ∆tp

∫Dϕf dν + O(∆tp+1)

• The function f is solution to the Poisson equation of the formL∗f = g , where g and p depend on the numerical scheme.

Grégoire Ferré, Gabriel Stoltz CERMICS - ENPC

Error estimates for Feynman-Kac semi-groups. 8 / 18

Page 11: Error estimates for Feynman-Kac semi-groups. · 2017-06-22 · 1. Problem and motivation. Large deviations Consider an ergodic dynamics on the torus with invariant measure : dXt =b(Xt)dt

Sketch of proof

Idea: Q∆t defined by Q∆tϕ(x) = E[ϕ(xn+1)|xn = x] approximates theexact flow etL over a time step ∆t . We assume that:Q∆tϕ = ϕ+∆tA1ϕ+ . . .+∆tpApϕ+∆tp+1Ap+1ϕ+O(∆tp+2)The proof relies on the stationarity equations,∫

DPtϕdν =

∫Dϕdν,

∫DQ∆tϕdν∆t =

∫Dϕdν∆t .

Idea: expand ν∆t as a function of ν, i.e. search f s.t.∫D(Q∆tϕ)(1+∆tp f)dν =

∫Dϕ(1+∆tp f)dν+∆tp+2R∆t (ϕ).

Then, if∫DAkϕdν = 0 for k = 1, . . . ,p we have at order p +1∫D

[Ap+1ϕ+(A1ϕ)f

]dν = 0, so f = −(A∗1)

−1Ap+11.

Grégoire Ferré, Gabriel Stoltz CERMICS - ENPC

Error estimates for Feynman-Kac semi-groups. 9 / 18

Page 12: Error estimates for Feynman-Kac semi-groups. · 2017-06-22 · 1. Problem and motivation. Large deviations Consider an ergodic dynamics on the torus with invariant measure : dXt =b(Xt)dt

3. Error estimates for Feynman-Kacsemi-groups

Page 13: Error estimates for Feynman-Kac semi-groups. · 2017-06-22 · 1. Problem and motivation. Large deviations Consider an ergodic dynamics on the torus with invariant measure : dXt =b(Xt)dt

A double discretization

• We want to discretize the flow

E

[ϕ(Xt )e

∫ t0 W(Xs)ds

]= et(L+W)ϕ

over a time step ∆t .

• We need to discretize both the process and the integral. Wedenote QW

∆t the approximated flow, for example

(QW∆tϕ)(x) = e∆tW(x)(Q∆tϕ)(x), (QW

∆tϕ)(x) = e∆t2 W(x)(Q∆tϕe

∆t2 W )(x).

• Same strategy for the long time error, show that

QW∆t ≈ e∆t(L+W)

with an expansion in ∆t .

Grégoire Ferré, Gabriel Stoltz CERMICS - ENPC

Error estimates for Feynman-Kac semi-groups. 11 / 18

Page 14: Error estimates for Feynman-Kac semi-groups. · 2017-06-22 · 1. Problem and motivation. Large deviations Consider an ergodic dynamics on the torus with invariant measure : dXt =b(Xt)dt

Main result

We assume that:

QW∆tϕ = ϕ+∆tAW

1 ϕ+ . . .+∆tpAWp ϕ+∆tp+1AW

p+1ϕ+O(∆tp+2).

Theorem: error estimate on the invariant measure

Under «mild» assumptions, if for k = 1, . . . ,p there exists ak ∈R s.t. forany smooth ϕ,

∀ϕ ∈ C∞,∫DAW

k ϕdνW = ak

∫DϕdνW ,

then ∫DϕdνW ,∆t =

∫DϕdνW + ∆tp

∫Dϕf dνW + O(∆tp+1)

Grégoire Ferré, Gabriel Stoltz CERMICS - ENPC

Error estimates for Feynman-Kac semi-groups. 12 / 18

Page 15: Error estimates for Feynman-Kac semi-groups. · 2017-06-22 · 1. Problem and motivation. Large deviations Consider an ergodic dynamics on the torus with invariant measure : dXt =b(Xt)dt

Sketch of proof

Again, start from stationarity equations:∫Det(L+W)ϕdνW = etλ

∫DϕdνW ,

and ∫DQW

∆tϕdνW ,∆t =

(∫DQW

∆t (1)dνW ,∆t

)︸ ︷︷ ︸

creation of probability: e∆tλ∆t

(∫DϕdνW ,∆t

).

Grégoire Ferré, Gabriel Stoltz CERMICS - ENPC

Error estimates for Feynman-Kac semi-groups. 13 / 18

Page 16: Error estimates for Feynman-Kac semi-groups. · 2017-06-22 · 1. Problem and motivation. Large deviations Consider an ergodic dynamics on the torus with invariant measure : dXt =b(Xt)dt

Sketch of proof

Again, start from stationarity equations:∫Det(L+W)ϕdνW = etλ

∫DϕdνW ,

and ∫DQW

∆tϕdνW ,∆t =

(∫DQW

∆t (1)dνW ,∆t

)︸ ︷︷ ︸

creation of probability: e∆tλ∆t

(∫DϕdνW ,∆t

).

Next steps:

• identify f solution to a Poisson equation s. t. νW ,∆t ≈ (1+∆tp f)νW ,

• build an approximate eigenvector hW ,∆t s.t. QW∆t hW ,∆t ≈ e∆tλ∆t hW ,∆t ,

• a priori estimate on the creation of probability e∆tλ∆t .

• technical details.

Grégoire Ferré, Gabriel Stoltz CERMICS - ENPC

Error estimates for Feynman-Kac semi-groups. 13 / 18

Page 17: Error estimates for Feynman-Kac semi-groups. · 2017-06-22 · 1. Problem and motivation. Large deviations Consider an ergodic dynamics on the torus with invariant measure : dXt =b(Xt)dt

Useful corollary

• We are mainly interested in the eigenvalue λ. We define:

e∆tλ∆t :=∫DQW

∆t (1)dνW ,∆t .

Grégoire Ferré, Gabriel Stoltz CERMICS - ENPC

Error estimates for Feynman-Kac semi-groups. 14 / 18

Page 18: Error estimates for Feynman-Kac semi-groups. · 2017-06-22 · 1. Problem and motivation. Large deviations Consider an ergodic dynamics on the torus with invariant measure : dXt =b(Xt)dt

Useful corollary

• We are mainly interested in the eigenvalue λ. We define:

e∆tλ∆t :=∫DQW

∆t (1)dνW ,∆t .

• Error estimate on λ∆t

Eigenvalue as a partition function

If QW∆t is consistent at order p , then

λ∆t :=1∆t

log

[∫DQW

∆t (1)dνW ,∆t

]= λ+∆tpC +O(∆tp+1),

where C ∈R is a constant depending on f .

Grégoire Ferré, Gabriel Stoltz CERMICS - ENPC

Error estimates for Feynman-Kac semi-groups. 14 / 18

Page 19: Error estimates for Feynman-Kac semi-groups. · 2017-06-22 · 1. Problem and motivation. Large deviations Consider an ergodic dynamics on the torus with invariant measure : dXt =b(Xt)dt

Consequences

Applications to statistical physics and Diffusion Monte Carlo:

• If the dynamics is discretized with a second order scheme Q∆t ,then the splitting

QW∆t = e

∆t2 W

(Q∆t (e

∆t2 W ·)

)provides a second-order discretization of the Feynman-Kacsemi-group.

• For Diffusion Monte Carlo, the dynamics (Xt ) is a brownianmotion, so the flow Q∆t is exact. The above splitting isimmediately second order.

Grégoire Ferré, Gabriel Stoltz CERMICS - ENPC

Error estimates for Feynman-Kac semi-groups. 15 / 18

Page 20: Error estimates for Feynman-Kac semi-groups. · 2017-06-22 · 1. Problem and motivation. Large deviations Consider an ergodic dynamics on the torus with invariant measure : dXt =b(Xt)dt

Statistical approximation

• Path average over a set of replicas (xmn )Mm=1,

Φ∆t ,n(ϕ) ≈

1M

M∑m=1

ϕ(xmn )e∑n−1

k=0 W(xmk )∆t

1M

M∑m=1

e∑n−1

k=0 W(xmk )∆t

• Important variance of the exponential weights.• Population dynamics over the M replicas of the systems. For each

step:1 evolve the replicas with kernel Q∆t ,2 compute probabilities (pm)Mm=1 from the weights e∆tW ,3 kill or clone each replica with probability pm and resize the

population,4 average ϕ over the replicas.

Grégoire Ferré, Gabriel Stoltz CERMICS - ENPC

Error estimates for Feynman-Kac semi-groups. 16 / 18

Page 21: Error estimates for Feynman-Kac semi-groups. · 2017-06-22 · 1. Problem and motivation. Large deviations Consider an ergodic dynamics on the torus with invariant measure : dXt =b(Xt)dt

Application

Overdamped Langevin dynamics on a one dimensional torus.

1.2

1.22

1.24

1.26

1.28

1.3

1.32

1.34

0 0.002 0.004 0.006 0.008 0.01

No

n-lin

ea

r a

ve

rag

e

∆t

Euler scheme

Modified scheme

Estimation of λ∆t for:

• dXt = −V ′(Xt )dt +dBt ,

• V(x) = cos(2πx),

• W = |V |2,

• Euler-Maruyama schemeand 2nd order modifiedscheme,

• comparison to Galerkindiscretization.

We indeed observe first and second order convergence.

Grégoire Ferré, Gabriel Stoltz CERMICS - ENPC

Error estimates for Feynman-Kac semi-groups. 17 / 18

Page 22: Error estimates for Feynman-Kac semi-groups. · 2017-06-22 · 1. Problem and motivation. Large deviations Consider an ergodic dynamics on the torus with invariant measure : dXt =b(Xt)dt

Conclusion & Tracks

Conclusion

Summary:

• a numerical large deviation problem,

• discretization of SDE’s and error on the invariant measure,

• new error estimates on the invariant measure of Feynman-Kacsemi-groups,

• alternative representation of the principal eigenvalue.

Perspectives

• convergence of Feynman-Kac semi-groups for an unboundedstate space,

• adaptative scheme, variance reduction.

Grégoire Ferré, Gabriel Stoltz CERMICS - ENPC

Error estimates for Feynman-Kac semi-groups. 18 / 18

Page 23: Error estimates for Feynman-Kac semi-groups. · 2017-06-22 · 1. Problem and motivation. Large deviations Consider an ergodic dynamics on the torus with invariant measure : dXt =b(Xt)dt

Conclusion & Tracks

Conclusion

Summary:

• a numerical large deviation problem,

• discretization of SDE’s and error on the invariant measure,

• new error estimates on the invariant measure of Feynman-Kacsemi-groups,

• alternative representation of the principal eigenvalue.

Perspectives

• convergence of Feynman-Kac semi-groups for an unboundedstate space,

• adaptative scheme, variance reduction.

Grégoire Ferré, Gabriel Stoltz CERMICS - ENPC

Error estimates for Feynman-Kac semi-groups. 18 / 18


Recommended