+ All Categories
Home > Documents > Erythropoietin in the Increase of Quality of Life and Survival of ...

Erythropoietin in the Increase of Quality of Life and Survival of ...

Date post: 01-Jun-2015
Category:
Upload: christina101
View: 595 times
Download: 4 times
Share this document with a friend
Popular Tags:
17
Is there a role to erythropoiesis-stimulating proteins in the treatment of anemic chronic heart failure patients: a meta-analysis of randomized controlled trials Bárbara Vieira, [email protected] ; Diana Pires, [email protected] ; Iolanda Vieira, [email protected] ; João Novo, joã[email protected] ; José Machado, [email protected] ; Lia Rodrigues, [email protected] ; Maria Lume, [email protected] ; Mário Sousa, [email protected] ; Mónica Pereira, [email protected] ; Patrícia Gouveia, [email protected] ; Pedro Vieira [email protected] Dra. Filipa Almeida, turma 6 ABSTRACT: Problem: The study aim is to define if treatment of anemia with erythropoietin stimulating proteins influences and improves survival, prognosis and quality of life of severe heart failure patients. Summary of background: Anaemia is frequently observed in patients with chronic heart failure (CHF). Erythropoietin (EPO) is a glycoprotein hormone that acts on erythroid stem cells of the bone marrow to stimulate proliferation and differentiation. It has been successfully used in the treatment of many types of anaemia. Methods: We performed a systematic review and meta-analysis of randomized controlled trials reporting outcomes of heart failure patients with anaemia treated with erythropoietin stimulating proteins (ESP) versus placebo or iron therapy. Our systematic review compares ESP therapy with standard care in severe CHF patients published in Medline, IsiWeb of
Transcript
Page 1: Erythropoietin in the Increase of Quality of Life and  Survival of ...

Is there a role to erythropoiesis-stimulating proteins in the treatment of anemic chronic heart

failure patients: a meta-analysis of randomized controlled trials

Bárbara Vieira, [email protected]; Diana Pires, [email protected];

Iolanda Vieira, [email protected]; João Novo, joã[email protected]; José

Machado, [email protected]; Lia Rodrigues, [email protected]; Maria Lume,

[email protected]; Mário Sousa, [email protected]; Mónica Pereira,

[email protected]; Patrícia Gouveia, [email protected]; Pedro Vieira

[email protected]

Dra. Filipa Almeida, turma 6

ABSTRACT:

Problem: The study aim is to define if treatment of anemia with erythropoietin stimulating proteins

influences and improves survival, prognosis and quality of life of severe heart failure patients.

Summary of background: Anaemia is frequently observed in patients with chronic heart failure

(CHF). Erythropoietin (EPO) is a glycoprotein hormone that acts on erythroid stem cells of the bone

marrow to stimulate proliferation and differentiation. It has been successfully used in the treatment of

many types of anaemia.

Methods: We performed a systematic review and meta-analysis of randomized controlled trials

reporting outcomes of heart failure patients with anaemia treated with erythropoietin stimulating

proteins (ESP) versus placebo or iron therapy. Our systematic review compares ESP therapy with

standard care in severe CHF patients published in Medline, IsiWeb of Knowledge and Scopus. Data

were analyzed using the software SPSS 16® and the meta-analysis software in Review Manager 5®.

Results: The electronic search retrieved 1187 eligible articles. 1174 were rejected initially and the

other 13 were detailed evaluated and 5 of them were rejected. 8 studies were included in the meta-

analysis. The outcomes selected to the meta-analysis were exercise duration (p< 0.00001)), six-

minute walk distance (p= 0.03), left ventricular ejection fraction (LVEF) (p=0.02) and the peak Vo2

(p=0.03), New York Heart Association classification (p=0.01), serum ferritin (p=0.92), haemoglobin

concentration(p<0.00001) and mortality (p=0.48).

Conclusion: The advantages of erythropoietin administration in patients with HF and anaemia are

significant, this treatment should, therefore, be considered a serious therapeutic option.

KEY WORDS: Anaemia, Chronic heart failure, Erythropoietin

Page 2: Erythropoietin in the Increase of Quality of Life and  Survival of ...

INTRODUCTION: Heart failure (HF) is a condition in which the heart is unable to pump out sufficient

blood to meet the metabolic need of the body. Chronic HF refers to a persistent symptomatic HF and

is the most common form of HF leading to hospital admission, accounting for 80% of cases [1]. The

prevalence of HF is between 2 and 3% and rises sharply at 75 years old, so the prevalence in 70 to

80-year-old people is between 10 and 20% [2].

Anaemia is frequently observed in patients with chronic heart failure (CHF). Prevalence of anaemia

depends both on the severity of CHF and diagnostic criteria used to define it. Using the most

commonly employed definition of the World Health Organization (Haemoglobin [Hb] <12g/dL in

women and <13g/dL in men), anaemia is present in one-third of the CHF patients [3, 4]. Its

pathogenesis in CHF is complex and renal dysfunction, inflammation; changes in plasma volume,

hematinic deficiencies, and drug treatment are common causes [5].

Anaemia in patients with HF is frequently associated with a substantially decreased aerobic capacity,

a subjective experience of fatigue and reduced functional status and poor quality of life. Anaemia in

CHF is independently associated with increased morbidity and mortality, and is considered as a

useful prognostic marker [3], suggesting that treatment for anaemia should benefit patients. The

recognition of the high prevalence and the independent prognostic role of anaemia in HF have

contributed to intensification of research for an effective treatment.

Erythropoietin (EPO) is a glycoprotein hormone that acts on erythroid stem cells of the bone marrow

to stimulate proliferation and differentiation. It has been successfully used in the treatment of many

types of anaemia such as anaemia due to kidney failure [6] and anaemia associated with cancer [7].

A central role of erythropoietin in cardiorenal anaemia syndrome has been proposed. Treatment of

anaemia with erythropoiesis-stimulating proteins in patients with CHF would thus seem attractive and

has been explored in several studies [3, 8-12]. Several randomized controlled trials (RCT) have

demonstrated the safety and efficacy of erythropoietin-stimulating proteins (ESP) in correcting

anaemia in patients with HF. However, as some studies have failed to show benefit, the role of this

novel therapy in the treatment of HF is not defined.

The aim of this study is to define if treatment of anemia with erythropoietin stimulating proteins

influences and improves survival, prognosis and quality of life of severe heart failure patients.

METHODS

Study objectives and design: We performed a systematic review and metanalysis of randomized

controlled trials reporting outcomes of heart failure patients with anaemia treated with erythropoietin

stimulating proteins versus placebo or iron therapy. The primary endpoints evaluated were effects of

the therapy in mortality rates, prognosis defined as readmission rates, NYHA functional class,

exercise capacity and quality of life, evaluated with validated questionnaires. The second endpoint

Page 3: Erythropoietin in the Increase of Quality of Life and  Survival of ...

was evaluation of complication rates and safety of erythropoietin stimulating proteins treatment. The

outcomes of interest were mortality, readmission rates, left ventricle ejection fraction, NYHA

functional class, exercise capacity defined by oxygen consumption in the exercise test and 6 min

walking test and vascular complications.

Search Strategy: We preformed a Systematic review of randomized controlled trials that compare

ESP therapy with standard care in severe CHF patients published in Medline, IsiWeb of Knowledge

and Scopus, since 1985 (year when ESP were first described and synthesised) until February 2009.

In the search criteria defined the Mesh Terms: heart failure; anemia; erythropoietin recombinant and

the text words: heart failure; congestive heart failure; chronic heart failure; heart insuficiency; systolic

dysfunction; symptomatic heart failure; anemia; epoetin delta; erythropoiesis stimulating protein,

human; darbepoetin alfa; recombinant erythropoietin; erythropoietin; erythropoietin recombinant,

were used. The final query used to select the articles was: ("Heart Failure“ [Mesh] OR "heart failure“

[All Fields] OR "congestive heart failure“ [All Fields] OR "chronic heart failure“ [All Fields] OR "systolic

dysfunction“ [All Fields] OR "symptomatic heart failure“ [All Fields]) AND ("Anaemia“ [Mesh] OR

"anaemia“ [All Fields] OR "anaemia“ [All Fields]) AND ("Erythropoietin, Recombinant“ [Mesh] OR

"epoetin delta“ [Substance Name] OR "erythropoiesis stimulating protein, human“ [Substance Name]

OR "darbepoetin alfa“ [Substance Name] OR "recombinant erythropoietin“ [All Fields] OR

"erythropoietin“ [All Fields] OR "erythropoietin“ [MeSH Terms] OR "erythropoietin recombinant“ [All

Fields])

Study Selection: We included randomized controlled trials whose primary objective was to compare

ESP treatment in CHF patients with placebo or iron therapy. Titles and abstracts of all articles were

evaluated independently by two reviewers and rejected on initial screen if they: 1) included subjects

other than CHF patients or evaluated erythropoietin therapy in other diseases; 2) had no evaluation

of hemoglobin (Hb) or hematocrit (Ht) levels; 3) were not randomized controlled trials; 4) were

published only in abstract form; 5) were published in another language than English or Portuguese.

After obtaining full texts of the selected studies, the same reviewers independently assessed

eligibility according to the following criteria: 1) studies that compared Erythropoietin group or

erythropoietin + iron therapy vs placebo group or iron therapy; 2) studies where treatment of heart

failure other than ESP is optimize in the 2 groups; 3) Articles that evaluate prognosis, mortality and

quality of life; 4) articles addressing animal experiments and not phase III or IV RCT. Differences in

data between the 2 reviewers were solved by rereviewing corresponding articles, and the final set

was agreed on by consensus.

Data extraction: Two reviewers extracted independently pre-specified data elements from each study,

and data was organized in five different categories: study sample, effect of ESP treatment on

Page 4: Erythropoietin in the Increase of Quality of Life and  Survival of ...

Reject based on title and abstract

(n = 1174)

Reject based on full text article

(n =5)

Potential eligible studies screened

(n= 1187)

Potential eligible studies that were detailed review

(n = 13)

Studies included in meta-analysis

(n= 8)

anaemia, effect of ESP on mortality and prognosis, effect on quality of life and complication events.

Charts were used to compile the data of each category. The following variables we created according

to the four categories: (1) study sample variables: total patients in each group, age and heart failure

treatment; (2) effect of ESP treatment on anaemia variables: hemoglobin level and serum ferritin for

each group before and after treatment; (3) effect of ESP on mortality and prognosis variables: NYHA,

left ventricle ejection fraction, peak of oxygen volume, distance in the 6 min walking test, in each

group before and after treatment and mortality in the two groups; (4) quality of life variables: type of

questionnaire used, global score before and after intervention in the 2 groups; (5) complication

events variables: which complication event and incidence per group.

Statistical analysis: Data were analyzed using the software SPSS 16® on an intention to treat basis.

Where appropriate, data from all trials were combined using the meta-analysis software in Review

Manager 5®. Random effects meta-analysis was conducted to determine a summary estimate of the

relative risk and the 95% confidence interval and estimate the magnitude of the effect of ESP

treatment in anemic heart failure patients and the primary endpoints determined. We performed tests

of heterogeneity between studies using a standard chi-square test and I2 statistic. Statistical

significance was set at p < 0.05.

RESULTS:

Description of the included articles: The electronic

search retrieved 1187 eligible articles. On initial

screening, 1174 were rejected based on title and

abstract and the other 13 were detailed evaluated. Of

the 13 screened full text articles, 5 were rejected. Thus

8 studies were included in this meta-analysis (Fig.1).

The characteristics of the included articles are listed

Table 1. Data were analyzed using the software SPSS

16® on an intention to treat basis and data from all trials

were combined using the meta-analysis software in

Review Manager 5® .P-values up to 0,1 indicates

homogeneity.

Meta-analysis findings: According to the information

available in the 8 articles, the outcomes selected to the

meta-analysis were exercise duration, six-minute walk

distance, left ventricular ejection fraction (LVEF) and

the peak Vo2, serum ferritin, haemoglobin

Figure 1 Flow Chart for articles selection

Page 5: Erythropoietin in the Increase of Quality of Life and  Survival of ...

concentration, mortality (objective variables), and New York Heart Association classification

(subjective variable). To evaluate the efficiency of the treatment with erythropoietin were also

analysed the variation of haemoglobin concentration and serum ferritin.

On the other hand duration of exercise data was available in 4 articles [14, 17, 21] and its analysis

showed a statistically significant increase (p < 0.00001) of the distance walked (Fig.3). Relatively to

the heterogeneity test, it was homogeneous (95% CI; p=0.59). Six-minute-walk distance improved

with erythropoietin administration.

Six-minute-walk distance data was available in 4 articles [15, 18, 20, 21] . Analysis revealed that

there is a statistically significant improvement (p = 0.03) of this outcome in patients treated with

erythropoietin compared with placebo group (Fig.2). The p-value of heterogeneity test (95% CI;

p=0.01) indicates that exercise duration data is heterogeneous.

Left ventricular ejection fraction, an efficiency marker, was measured in 4 studies. The mean LVEF

increased significantly (p = 0.02) in patients treated with erythropoietin compared with placebo group

(Fig.4) and its test was heterogeneous (95% CI; p=0.009).

Peak Vo2 was evaluated in 3 articles [14, 17, 21] and analysis shows that it significantly increased (p

= 0,03) in treatment group compared with placebo (Fig.5) while the heterogeneity test p-value

demonstrated that this variable is heterogeneous (95% CI; p=0.0002). Although the heterogeneity

graph represents an homogeneous distribution.

Changes in New York Heart Association classification were evaluated in 6 articles [15, 16, 17, 18, 19,

20]. Data analyse revealed a significant decrease (p = 0,01) in NYHA class in experimental group

compared with placebo group (Fig.6) and meta-analysis showed that NYHA class has an

heterogeneous distribution (95% CI; p<0.00001).

Mortality was considerate in all 8 articles which promote a better analysis with efficient results. There

is no significant difference (p = 0,48) between the groups (Fig.7) and its distribution is homogeneous

according to the heterogeneity test (95% CI; p=0.33).

Variation in Haemoglobin (Hb) concentration was monitored in 7 articles [14, 15, 16, 17, 18, 20, 21].

There was a significantly increase in Hb concentration (p < 0.00001) as result of the administration of

erythropoietin (Fig.8). Hb concentration distribution is homogeneous according to the test of

heterogeneity (95% CI; p=0.08). Although this heterogeneity is not too much significant as the p-

value indicates because it is not to much lower than 0.1 and the heterogeneity graph representation

also doesn’t show a bigger heterogeneity.

Serum ferritin was measured in only 3 articles [15, 16, 18] and there is no significantly changes (p =

0,92) between the study groups (Fig.9). The heterogeneity test indicates an homogeneity in the

distribution of serum ferritin data (95% CI; p=0.27).

Page 6: Erythropoietin in the Increase of Quality of Life and  Survival of ...

Table 1 Description of the included articles

Article identifiation

Title AuthorsN placebo

N study

Age (Placebo)

Age (Study) Outcomes

1

Effect of darbepoetin alfa on exercise tolerance in anemia patients with symptomatic chronic heart failure

Piotr Ponikowski, MD, PHD, Stefan D. Anker, et al 22 19 72 ± 7 70 ± 7

Mortality, hemoglobin, exercise duration, peak VO2.

2

Randomized, double-blind, placebo- controlled study o evaluate the effect of two dosing regimens of darbepoetin alfa in patients with heart failure and anaemia

Dirk J. van Veldhuisen, Kenneth Dickstein, Alain Cohen-Solal, et al

55 110 71 ± 9 71 ± 11

Mortality, hemoglobin, NYHA class, 6-minute walk distance, left ventricular ejection fraction, serum ferritin.

3

The effect of correction of mild anemia in severe, resistant congestive heart failure using subcutaneous erythropoietin and intravenous iron: a randomized controlled study

Donald S. Silverberg, MD, Dov Wexler, MD, David Sheps, et al

16 16 72.2 ± 9.9 75.3 ± 14.6

Mortality, hemoglobin, NYHA class, left ventricular ejection fraction serum ferritin.

4

Erythropoietin improves anemia exercise tolerance and renal function and reduces B-type natriuretic peptide and hospitalization in patients with heart failure and anemia

Alberto Palazzuoli, MD, PhD,a Donald Silverberg, MD,b Francesca Iovine, MD, et al

18 20 75 ± 6 72 ± 5Mortality, hemoglobin, exercise duration, NYHA class, peak VO2.

5

Effects of darbepoetin α on right and left ventricular systolic and diastolic function in anemic patients with chronic heart failure secondary to ischemic or idiopathic dilated cardiomyopathy

John T. Parissis, MD,a Kallirrhoe Kourea, MD,a Fotios Panou, et al 11 21 69 ± 4 72 ± 5

Mortality, hemoglobin, NYHA class, 6-minute walk distance, left ventricular ejection fraction, serum ferritin.

6

Randomized double-blind trial of darbepoetin alfa in patients with symptomatic heart failure and anemia

Jalal K. Ghali, Inder S. Anand, William T. Abraham, et al

157 162 69 ± 10 68 ± 12 Mortality, NYHA class.

7

Effect of darbepoetin- alfa on plasma pro-inflamatory cytokines, anti- inflamatory cytokine interleukin- 10 and solube Faz/Faz ligand system in anemic patient with chronic heart failure

Kallirrhoe Kourea 1, John T. Parissis, Dimitrios Farmakis, et al 20 21 68 ± 13 72 ± 5

Mortality, hemoglobin, NYHA class, 6-minute walk distance, left ventricular ejection fraction.

8

Effect of Erythropoietin on Exercise Capacity in Patients With Moderate to Severe Chronic Heart Failure

Donna M. Mancini, Stuart D. Katz, Chim C. Lang, John LaManca, et al

8 15 55 ± 7 60 ± 12

Mortality, hemoglobin, exercise duration, 6-minute walk distance, peak VO2.

Page 7: Erythropoietin in the Increase of Quality of Life and  Survival of ...

Figure 2 Exercise duration

Page 8: Erythropoietin in the Increase of Quality of Life and  Survival of ...

Figure 3 Six-minute walk distance

Figure 4 Left ventricular ejection fraction (LVEF)

Figure 5 Peak Vo2

Study or Subgroup

A.H. Journal 2006 (4)A.H. Journal 2008 (5)A.H. Journal 2008 (6)ELSEVIER 2007 (7)JACC 2001 (3)JACC 2007 (2)

Total (95% CI)

Heterogeneity: Tau² = 0.48; Chi² = 175.90, df = 5 (P < 0.00001); I² = 97%Test for overall effect: Z = 2.44 (P = 0.01)

Mean

2.22.1

2.432.82.22.3

SD

0.70.5

0.320.50.7

0.64

Total

2021

1622116

110

350

Mean

3.93.2

2.522.553.9

2.315

SD

0.30.6

0.360.50.3

0.68

Total

1811

157201655

277

Weight

16.5%16.0%17.5%16.7%16.3%17.1%

100.0%

IV, Random, 95% CI

-1.70 [-2.04, -1.36]-1.10 [-1.51, -0.69]-0.09 [-0.16, -0.02]

0.25 [-0.06, 0.56]-1.70 [-2.07, -1.33]-0.02 [-0.23, 0.20]

-0.71 [-1.28, -0.14]

Erythropoietin Placebo Mean Difference Mean DifferenceIV, Random, 95% CI

-2 -1 0 1 2Favours experimental Favours control

Figure 6 New York Heart Association classification

Page 9: Erythropoietin in the Increase of Quality of Life and  Survival of ...

Figure 7 Mortality

Figure 8 Haemoglobin concentration

Figure 9 Serum Ferritin

DISCUSSION: This is the first meta-analysis to evaluate survival and quality of life related aspects in

patients with Heart Failure and anaemia treated with erythropoietin.

Page 10: Erythropoietin in the Increase of Quality of Life and  Survival of ...

We found statistically significant improvements in many aspects associated with quality of life in

patients treated with erythropoietin, such as exercise duration, six-minute walk distance, left

ventricular ejection fraction (LVEF) and peak Vo2. A significant decrease in NYHA classification in

experimental group is a positive subjective consequence which seems to be associated to the

treatment. Haemoglobin also improved with erythropoietin administration comparing with the placebo

group. Therefore we can conclude that erythropoietin treatment benefices haemoglobin concentration

in patients.

The differences found in mortality frequency weren’t statistically significant. So, we conclude that the

treatment with erythropoietin does not improve patient’s survival.

Three of the studies included in meta-analysis [14, 15, 18] refer rates complication after the treatment

and it let us conclude that exist an higher level of safety associated with the treatment.

Another three articles [14, 15, 21] evaluate quality of life trough two type of questionnaire: Kansas

City Cardiomyopathy Questionnaire (KCCQ) and Minnesota Living with Heart Failure Questionnaire

(MLHFQ). The first one was used only in articles [14], where quality of life improved in experimental

group and it was statistically significant, and [15] where the improve of quality of life was not

statistically significant. The MLHFQ was mentioned in the three articles. The quality of life improved

with erythropoietin administration in all of them but only in article [21] it was statistically significant.

The advantages of erythropoietin administration in patients with HF and anaemia are significant, this

treatment should, therefore, be considered a serious therapeutic option.

After this analysis we may suggest that should not be done more randomized controlled clinical trial

about erythropoietin administration in patients with Chronic Heart Failure because of ethical

questions. Studies made until now are enough, so people should not be submitted to this type of

treatment if it is not necessary.

Study limitations. Limitation of meta-analysis basically included heterogeneity, absence of full article

and differences in data presentation used in the selected articles which difficult data aggregation.

The articles that weren’t available were excluded. In articles with same variables in different units we

tried to convert them into the same unit. If it was not possible, the variable was excluded.

Some relevant variables, as B-type Natriuretic Peptide (BNP), an important data to evaluate the

efficiency of treatment, rate readmission and safety, were mentioned only in less than three articles,

so it wasn’t possible include them into the meta-analysis.

These limitations led to the impossibility of running a meta-analysis with a larger number of variables

and analyzing more articles which titles and abstracts indicated them relevant for our study.

During the meta-analysis using meta-analysis software in Review Manager 5® the heterogeneity test

values were affected because of the restrict number of article values therefore, sometimes, the p-

value allowed us to conclude heterogeneity that did not exist in the graphic interpretation.

Page 11: Erythropoietin in the Increase of Quality of Life and  Survival of ...

REFERENCES

1. Kenneth D., Alain C., et al. ESC Guidelines for the diagnosis and treatment of acute and chronic

heart failure 2008. Eur. HeartJ. 2008; 29: 2388-2442.

2. Dunlay S., Weston S., et al. Anaemia and heart failure: A community study. Acad Med 2008; 121:

726-732.

3. Vedhuisen D., Dickstein K., et al. Randomized double-blind, placebo- controlled study to evaluate

the effect of two dosing regimens of darbepoetin alfa in patients with heart failure and anaemia.

Eur. HeartJ. 2007; 28.

4. Groenveld H., Januzzi J., et al. Anaemia and mortality in heart failure patients - A systematic

review and meta-analysis. J. Am. Coll. Cardiol. 2008; 52: 818-827.

5. Westenbrink B., de Boer R., etal. Anaemia in chronic heart failure: etiology and treatment options.

Curr. Opin. Cardiol. 2008; 23: 141-147.

6. Michael J., Lloyd I., et al. Impact of epoetin alfa on clinical end points in patients with chronic renal

failure: A meta-analysis. Kidney International 2004; 65: 757–76.

7. Crawford J., Recombinant human erythropoietin in cancer-related anaemia. Review of clinical

evidence. Oncology 2002;16: 41-53

8. Ghali J., Anand I., et al. Randomized double-blind trial of darbepoetin alfa in patients with

symptomatic heart failure and anaemia. Circulation 2008; 117: 526-535.

9. Silverberg DS, Wexler D, Sheps D, Blum M, Keren G, Baruch R, Schwartz D,Yachnin T,

Steinbruch S, Shapira I, Laniado S, Iaina A. The effect of correction of mild anaemia in severe,

resistant congestive heart failure using subcutaneous erythropoietin and intravenous iron: a

randomized controlled study. J Am Coll Cardiol 2001;37:1775–1780.

10. Mancini DM, Katz SD, Lang CC, LaManca J, Hudaihed A, Androne AS. Effect of erythropoietin

on exercise capacity in patients with moderate to severe chronic heart failure. Circulation

2003;107:294–299.

11. Palazzuoli A, Silverberg D, Iovine F, Capobianco S, Giannotti G, Calabro A, Campagna MS, Nuti

R. Erythropoietin improves anaemia exercise tolerance and renal function and reduces B-type

natriuretic peptide and hospitalization in patients with heart failure and anaemia. Am Heart J

2006;152:1096.e9–e15.

Page 12: Erythropoietin in the Increase of Quality of Life and  Survival of ...

12. Ponikowski P, Anker SD, Szachniewicz J, Okonko D, Ledwidge M, Zymlinski R, Ryan E,

Wasserman SM, Baker N, Rosser D, Rosen SD, Poole-Wilson PA, Banasiak W, Coats AJS,

McDonald K. Effect of darbepoetin alfa on exercise tolerance in anemic patients with symptomatic

chromic heart failure. J Am Coll Cardiol 2007;49:753–762.

13. Donald S. Silverberg, Dov Wexler, Miriam Blum, Doron Schwartz, Gad Keren, David Sheps and

Adrian Iaina. Effect of Correction of anemia with erythropoietin and intravenous iron in resistant

heart failure in octogenarians. IMAJ 2003; 5:337-339

14. Piotr Ponikowski, Stefan D. Anker, Joanna Szachniewicz, Darlington Okonko, Mark Ledwidge,

Robert Zymlinski, Enda Ryan, Scott M. Wasserman, Nigel Baker, Dylan Rosser, Stuart D.Rosen,

Philip A. Poole-wilson, Waldemar Banasiak. Effect of Darbepoietin Alfa on Exercise Tolerance in

Anemic Patients With Symptomatic Chronic Heart Failure. JACC 2007, Vol 49, No 7

15. Dirk J. Van Veldhusien, Kenneth Dickstein, Alain Cohen-Solal, Dirk J.A. Lok, Scott M.

Wassermans, Nigel Baker, Dylan Rosser, John G.F. Cledand, Piotr Ponikowskis. Randomized,

double-blind, placebo-controlled study to evaluate the effect os two dosing regimens of

darbepoetin alfa in patients with heart failure and anemia. European Heart Journal (2007) 28,

2208–2216

16. Donald S. Silverberg, Dov Wexler, David Sheps, Miriam Blum, Gad Keren, Ron Baruch, Doron

Schwartz, Tatyana Yachnin, Shoshana Steinbruch, Itzhak Shapira, Sholomo Laniado, Adrian

Iaina. The Effect of Correction of Mild Anemia in Severe, Resistant Congestive Heart Failure Using

Subcutaneous Erythropoietin and Intravenous Iron: A Randomized Controlled Study. JACC 2001,

Vol 37, No 7

17. Alberto Palazzuoli, PhD Donald Silverberg, Francesca Iovine, Stefano Capobianco, Giovanna

Giannoti, Anna Calabro, Maria stella Campagna, Ranuccio Nuti. Erythropoietin improves anemia

exercise tolerance and renal function and reduces B-type natriuretic peptide and hospitalization in

patients with heart failure and anemia. American Heart Journal, September 2006

18. John T. Parissis, Kallirrhoe Kourea, Fotios Panou, Dimitrios Farmakis, Ioannis Paraskevaidis,

Ignatios Ikonomidis, Gerasimos Filippatos, Dimitrios Th Kremastinos. Effects of darbepoetin alfa

on right and left ventricular systolic and diastolic function in anemic patients with chronic heart

failure secondary to ischemic or idiopathic dilated cardiomyopathy. American Heart Journal, April

2008

19. Jalal K. Ghali, Inder S. Anand, William T. Abraham, Gregg C. Fonarow, Barry Greenberg, Henry

Krum, Barry M. Massie, Scott M. Wasserman, Marie-Louise Trotman, Yan Sun, Beat Knusel, Paul

Page 13: Erythropoietin in the Increase of Quality of Life and  Survival of ...

Armstrong. Randomized Double-Blind Trial of Darbepoetin Alfa in Patients With Symptomatic

Heart Failure and Anemia. Circulation 2008;117;526-535

20. Kallirrhoe Kourea, John T. Parissis, Dimitrios Farmakis, Fotios Panou, Ioannis Paraskevaidis,

Koula Venetsanou, Gerasimos Filippatos, Dimitrios Th. Kremastinos. Effects of darbepoetin-alpha

on plasma pro-inflammatory cytokines, anti-inflammatory cytokine interleukin-10 and soluble

Fas/Fas ligand system in anemic patients with chronic heart failure. ELSEVIER, Atherosclerosis 199

(2008) 215–221

21. Donna M. Mancini, Stuart D. Katz, Chim C. Lang, John LaManca, Alhakam Hudaihed and Ana-

Silvia Androne. Effect of Erythropoietin on Exercise Capacity in Patients With Moderate to Severe

Chronic Heart Failure. Circulation 2003;107;294-299


Recommended