+ All Categories
Home > Documents > ESS 261Multi-Instrument/Spacecraft 1 Multi-instrument, multi-spacecraft analysis … Finite...

ESS 261Multi-Instrument/Spacecraft 1 Multi-instrument, multi-spacecraft analysis … Finite...

Date post: 19-Dec-2015
Category:
View: 217 times
Download: 0 times
Share this document with a friend
Popular Tags:
34
ESS 261 Multi-Instrument/ Spacecraft 1 Multi-instrument, multi-spacecraft analysis … Finite Gyroradius (from last time) Review: SST cleanup, MHD Electric Field from Particle Velocity Total Density Computation from Various Sources Total Pressure ESS 261 Spring Quarter 2009 Lecture 05 May 27, 2009
Transcript

ESS 261 Multi-Instrument/Spacecraft 1

Multi-instrument, multi-spacecraft analysis

… Finite Gyroradius (from last time)Review:

SST cleanup, MHD Electric Field from Particle VelocityTotal Density Computation from Various Sources

Total Pressure

ESS 261 Spring Quarter 2009

Lecture 05May 27, 2009

ESS 261 Multi-Instrument/Spacecraft 2

Finite gyroradius techniques• Ion Gyroradius large compared to magnetospheric boundaries

– Can be used to remotely sense speedand thickness of boundaries

– Assumption is that boundary is sharpand flux has step function across

• Application at the magnetopause• Application at the magnetotail

– Can also be applied to waves ifparticle gradient is sufficiently high

• Application on ULF waves atinner magnetosphere

Method exploits finite iongyroradius to remotely senseapproaching ion boundary andmeasure boundary speed (V⊥)

THEMIS

To EarthTo Sun

To Tail

ESS 261 Multi-Instrument/Spacecraft 3

At the magnetotaili,thermal-tail (4keV,20nT)= ~325kmi,super-thermal (50keV,20nT)= ~2200km

Plasma Sheet Thickness ~ 1-3 RE

Boundary Layer Thickness ~500-2000kmCurrent layer Thickness ~ 500-2000km

Waves Across Boundary: ~1000-10,000kmAlong Boundary: ~Normal : 1-10 RE

For magnetotail particles, the current layer and plasma sheet boundary layer are sharp compared to the superthermal ion gyroradius and the magnetic field is the same direction in the plasma sheet and outside (the lobe). This means we can use the measured field to determine gyrocenters both at the outer plasma sheet and the lobe, on either side of the hot magnetotail boundary.

ESS 261 Multi-Instrument/Spacecraft 4

Side View (elevations)

To Sun

SpinAxis

ESA:Elevationdirection(DSL)

SST:Elevationdirection(DSL)

25o

52o

-25o

-52o

11.25o

33.75o

ESS 261 Multi-Instrument/Spacecraft 5

Top View (sectors)For ESA and SST (0=Sun)

Spin motiondirection ( DSL)

11.25o

33.75o

To Sun (0o)

Spin axis

Normal to Sun, +90o

ESS 261 Multi-Instrument/Spacecraft 6

(a)

(b)

(c)

(d)

(e)

TH-B

(a)

(b)

(c)

(d)

(e)

TH-B

Particle motion directionCoordinate: ( DSL)Energy: 125-175keV

Note: direction dependson spin axis.

B fieldazimuth(solid white)

-B fieldazimuth(dashed white)

You care to time this!(+/- 90o to Bfield azimuth)

ESS 261 Multi-Instrument/Spacecraft 7

Multiple spacecraft, energies, elevations

A

B

D

E

….

Elev: 25deg E=30-50keV Elev: 25deg, E=80-120keV

ESS 261 Multi-Instrument/Spacecraft 8

Vi_const 310km/sec/keV fci_cons 0.0152Hz/nT B 30nTTi 40keV rho_ion 683kmTi 100keV rho_ion 1081km Ti 150keV rho_ion 1323km Ti 300keV rho_ion 1872km

SC E (keV) detectord (deg) r time B 40 SPW -128.0 683.4 11:19:29 B 40 SPE -52.0 683.4 11:19:39 B 40 SEW -155.0 683.4 11:19:18 B 40 SEE -25.0 683.4 11:19:42 B 40 NPW 128.0 683.4 11:19:29 B 40 NPE 52.0 683.4 11:19:38 B 40 NEW 155.0 683.4 11:19:24 B 40 NEE 25.0 683.4 11:19:43 B 100 SPW -128.0 1080.5 11:19:17 B 100 SPE -52.0 1080.5 11:19:42 B 100 SEW -155.0 1080.5 11:19:20 B 100 SEE -25.0 1080.5 11:19:45 B 100 NPW 128.0 1080.5 11:19:20 B 100 NPE 52.0 1080.5 11:19:45 B 100 NEW 155.0 1080.5 11:19:23 B 100 NEE 25.0 1080.5 11:19:48 B 150 SPW -128.0 1323.4 11:19:10 B 150 SPE -52.0 1323.4 11:19:44 B 150 SEW -155.0 1323.4 11:19:14 B 150 SEE -25.0 1323.4 11:19:51 B 150 NPW 128.0 1323.4 11:19:23 B 150 NPE 52.0 1323.4 11:19:45 B 150 NEW 155.0 1323.4 11:19:13 B 150 NEE 25.0 1323.4 11:19:48 B 300 SPW -128.0 1871.5 11:19:10 B 300 SPE -52.0 1871.5 11:19:44 B 300 SEW -155.0 1871.5 11:19:14 B 300 SEE -25.0 1871.5 11:19:51 B 300 NPW 128.0 1871.5 11:19:23 B 300 NPE 52.0 1871.5 11:19:45 B 300 NEW 155.0 1871.5 11:19:13 B 300 NEE 25.0 1871.5 11:19:48

Note:NEE= North-Equatorial, EastNPW=North-Equatorial, WestAngles measured from East direction-25deg elevation, 90deg East = SEE+52deg elevation, 90deg East = NPE… Spin axis

B

NPW

NEW

SEW

SPW

NPE

NEE

SEE

SPE

Boundary

ESS 261 Multi-Instrument/Spacecraft 9

Spin axis

BNPW

NEW

SEW

SPW

NPE

NEE

SEE

SPE

Boundary

V: NEE Part. direction

Hot/dense plasma

Cold/tenuous plasma Y

Z

GCNEE

n

Y

Y

n

Show: d=*sin(-)Note: d negative if moving towards spacecraft

d

SC

ESS 261 Multi-Instrument/Spacecraft 10

• Procedure– For a given , determine variance of data for all – Find minimum in variance, this determines (boundary direction)– Speed distance as function of time determines boundary speed

– intro_ascii,'remote_sense_A.txt',delta,rho,hh,mm,ss,nskip=13,format="(25x,f6.1,f8.1,3(1x,i2))"– ;– angle=fltarr(73)– chisqrd=fltarr(73)– for ijk=0,72 do begin– epsilon=float(ijk*5)– get_d_vs_dt,epsilon,hh,mm,ss,rho,delta,dist,times– yfit=dist & yfit(*)=0.– chi2=dist & chi2(*)=0.– coeffs=svdfit(times,dist,2,yfit=yfit,chisq=chi2)– angle(ijk)=epsilon– chisqrd(ijk)=chi2– endfor– ipos=indgen(30)+43– chisqrd_min=min(chisqrd(ipos),imin)– plot,angle,chisqrd– print,angle(ipos(imin)),chisqrd(ipos(imin))– ;– stop

ESS 261 Multi-Instrument/Spacecraft 11

Var

ianc

e,

2

Boundary orientation,

= 280o

Var

ianc

e,

2

Boundary orientation,

= 280o

1000

km

V ~ 70km/s

Z

Y

D

BA

• Procedure– Note two minima (identical solutions)

• One for approaching boundary at V>0• One for receding boundary at V<0

– Convention that d<0 if boundarymoves towards spacecraftallows us to pick one of the two(positive slope of d versus time)

ESS 261 Multi-Instrument/Spacecraft 12

Probe: TH-BAngle to Y_east=280degD0 = -2224 kmV0 = 69.9 km/stcross= 11:19:31.81

Time since 11:19:00

Bou

ndar

y di

stan

ce (

km)

Probe: TH-BAngle to Y_east=280degD0 = -2224 kmV0 = 69.9 km/stcross= 11:19:31.81

Time since 11:19:00

Bou

ndar

y di

stan

ce (

km)

 

  tcross V [km/s] [deg]

D 11:19:27.6 75 270

B 11:19:31.8 70 280

A 11:19:38.4 80 275

Table 1. Results of remote sensing analysis on the inner probes

Timing of the arrivals of the other signatures at the inner three spacecraft

ESS 261 Multi-Instrument/Spacecraft 13

At the magnetopausei,sheath (0.5keV,10nT)= ~200kmi,m-sphere (10keV,10nT)= ~1000km

Magnetopause Thickness ~ 6000kmCurrent layer Thickness ~ 500km

FTE scale, Normal 2 Boundary: ~6000kmAlong Boundary: ~Normal : 1-3 RE

For leaking magnetospheric particles, the currentlayer is sharp compared to the ion gyroradius andthe magnetic field is the same direction in the sheath and the magnetopause outside the current layer. This means we can use the measured field outside themagnetopause to determine gyrocenters both at the magnetopause and the magnetosheath on either side of the hot magnetopause boundary.

ESS 261 Multi-Instrument/Spacecraft 14

C

DTH-B AE

Ygse

Xgse

C

DTH-B AE

Ygse

Xgse

Magnetopause encounter on July 12, 2007

(a)(b)

(c)

(d)

(e)

(g)

(f)

(h)

(a)(b)

(c)

(d)

(e)

(g)

(f)

(h)

Magnetic field angle is 60deg below spin plane and +120deg in azimuth i.e., anti-Sunward and roughly tangent to the magnetopause. The particle velocities, centered at 52deg above the spin plane, have roughly 90o pitch angles, with gyro-centers that were on the Earthward side of the spacecraft. The energy spectra of the NP particles show clearly the arrival of the FTE ahead of its magnetic signature, remotely sensing its arrival due to the finite gyroradius effect of the energetic particles. T=55s, i,100keV, 28nT) =1150km, V=40km/s

ESS 261 Multi-Instrument/Spacecraft 15

At the near-Earth magnetosphere

ESS 261 Multi-Instrument/Spacecraft 16

At the near-Earth magnetosphere

ESS 261 Multi-Instrument/Spacecraft 17

At the near-Earth magnetosphere

timespan,'7 11 07/10',2,/hours & sc='a'

thm_load_state,probe=sc,/get_supp

thm_load_fit,probe=sc,data='fgs',coord='gsm',suff='_gsm'

thm_load_mom,probe=sc ; L2: onboard processed moms

thm_load_esa,probe=sc ; L2: gmoms, omni spectra

tplot,'tha_fgs_gsm tha_pxxm_pot tha_pe?m_density tha_pe?r_en_eflux'

;

trange=['07-11-07/11:00','07-11-07/11:30']

thm_part_getspec, probe=['a'], trange=trange, angle='gyro', $

pitch=[45,135], other_dim='mPhism', $

; /normalize, $

data_type=['peir'], regrid=[32,16]

tplot,'tha_peir_an_eflux_gyro tha_fgs_gsm tha_pxxm_pot tha_pe?m_density tha_pe?r_en_eflux'

Remote sensing of wavesin ESA data, at the mostappropriate coordinateSystem, I.e, field alignedcoordinates. gyro=0o => Earthward particles

ESS 261 Multi-Instrument/Spacecraft 18

At the near-Earth magnetosphere

trange=['07-11-07/11:00','07-11-07/11:30']

thm_part_getspec, probe=['a'], trange=trange, angle='gyro', $

pitch=[45,135], other_dim='mPhism', $

/normalize, $

data_type=['peir'], regrid=[32,16]

tplot,'tha_peir_an_eflux_gyro tha_fgs_gsm tha_pxxm_pot tha_pe?m_density tha_pe?r_en_eflux'

Same as before but using keyword: /normalizeI.e., anisotropy is normalized to 1, to ensure flux variations do not affect anisotropy calculation.

ESS 261 Multi-Instrument/Spacecraft 19

Clean up SST, ESA, EFI measurements [1]• Preliminary Tasks

– SST: Sun contamination removal (see Lecture 08)– ESA: background noise removal (mostly in tail, inner magnetosphere)– ESA: watch-out for cold ions (via total density, spectra, mostly dayside)– EFI: remove offsets, watch-out for cold ion wake (via waveforms)

– Obtain partial moments, add them, compare with scpot-density

– Ready for further analysis

ESS 261 Multi-Instrument/Spacecraft 20

ESS 261 Multi-Instrument/Spacecraft 21

ESS 261 Multi-Instrument/Spacecraft 22

• Preliminary Tasks [clean SST]– timespan,'2008-02-26/03',3,/hours

– sdate=time_double('2008-02-26/03:00:00')

– edate=time_double('2008-02-26/06:00:00')

– trange=[sdate,edate]

– ;

– eVpercc_to_nPa=0.1602/1000. ; multiply

– nTesla2_to_nPa=0.01/25.132741 ; multiply

– ;

– thm_load_state,/get_supp

– thm_load_fgm,probe='e',coord='dsl gsm'

– thm_load_sst,probe='e' ; reads L1 SST data

– thm_load_esa,probe='e' ; reads L2 ESA data

– ;

– ; Clean up SST data -------------------------------------------------------------

– sc='e'

– thm_part_getspec, probe=sc,trange=trange, $

– theta=[-45,0],data_type=['psif','psef'],angle=phi,suff='_m45'$

– , erange=[25000,100000]

– thm_part_getspec, probe=sc,trange=trange, $

– theta=[-90,0],data_type=['psif','psef'],angle=phi,suff='_m90'$

– , erange=[25000,100000]

– thm_part_getspec, probe=sc,trange=trange, $

– theta=[0,45],data_type=['psif','psef'],angle=phi,suff='_p45'$

– , erange=[25000,100000]

– thm_part_getspec, probe=sc,trange=trange, $

– theta=[45,90],data_type=['psif','psef'],angle=phi,suff='_p90'$

– , erange=[25000,100000]

– example of plotting spectra as lines

– options,'th'+sc+'_ps?f_an_eflux_phi*',spec=0 ; line plot: spec=0, spectra: spec=1

– ylim,'th'+sc+'_ps?f_an_eflux_phi*',1.e-5,1.e-5,1

– tplot_options,'th'+sc+'_ps?f_an_eflux_phi*',title='Line plot'

– tplot,'th'+sc+'_ps?f_an_eflux_phi*'

– ;

– ; replot as spectra

– options,'th'+sc+'_ps?f_an_eflux_phi*',spec=1 ; line plot: spec=0, spectra: spec=1

– tplot_options,'th'+sc+'_ps?f_an_eflux_phi*',title=' '

– ylim,'th'+sc+'_ps?f_an_eflux_phi*',0,360,0

– tplot,'th'+sc+'_psif_an_eflux_phi* th'+sc+'_psef_an_eflux_phi*'

– tplot,/pick

ESS 261 Multi-Instrument/Spacecraft 23

• Preliminary Tasks [clean SST #2]– ; SST Ions only enough, no need for electrons now

– ;

– edit3dbins,thm_sst_psif(probe=sc, gettime(/c)), ibins

– print,ibins

– tplot,'th'+sc+'_psif_an_eflux_phi* th'+sc+'_psef_an_eflux_phi*'

– t1=time_double('2008-02-26/03:15:00')

– t2=time_double('2008-02-26/03:18:00')

– times=[t1,t2]

– ;

– thm_part_getspec, probe=sc,$

– theta=[-45,0],data_type=['psif'],angle=phi,suff='_m45c'$

– , erange=[25000,100000],/mask_remove,fillin_method='interpolation'$

– , method_sunpulse_clean='median' $

– , enoise_bins=ibins, enoise_bgnd_time=times

– thm_part_getspec, probe=sc,$

– theta=[-90,0],data_type=['psif'],angle=phi,suff='_m90c'$

– , erange=[25000,100000],/mask_remove,fillin_method='interpolation'$

– , method_sunpulse_clean='median' $

– , enoise_bins=ibins, enoise_bgnd_time=times

– thm_part_getspec, probe=sc,$

– theta=[0,45],data_type=['psif'],angle=phi,suff='_p45c'$

– , erange=[25000,100000],/mask_remove,fillin_method='interpolation'$

– , method_sunpulse_clean='median' $

– , enoise_bins=ibins, enoise_bgnd_time=times

– thm_part_getspec, probe=sc,$

– theta=[45,90],data_type=['psif'],angle=phi,suff='_p90c'$

– , erange=[25000,100000],/mask_remove,fillin_method='interpolation'$

– , method_sunpulse_clean='median' $

– , enoise_bins=ibins, enoise_bgnd_time=times

– thm_part_moments,probe=probe,instrum=['psif'] $

– ,/mask_remove,fillin_method='interpolation'$

– , method_sunpulse_clean='median' $

– , enoise_bins=ibins, enoise_bgnd_time=times $

– , /scale_sphere

– thm_part_getspec, probe=sc $

– , data_type=['psif'],/energy $

– ,/mask_remove,fillin_method='interpolation' $

– , method_sunpulse_clean='median' $

– , enoise_bins=ibins, enoise_bgnd_time=times $

– ylim,'th'+sc+'_psif_density',1.e-5,1.e-5,1

– ylim,'th'+sc+'_psif_velocity',0,0,0

– ylim,'th'+sc+'_psif_t3',1.e-5,1.e-5,1

– ;

– tplot,'the_psif_density the_psif_velocity the_psif_t3 the_psif_en_eflux th'+sc+'_psif_an_eflux_phi_???c'

ESS 261 Multi-Instrument/Spacecraft 24

ESS 261 Multi-Instrument/Spacecraft 25

• Recompute ESA moments, using reworked sc_pot– tplot,'the_pxxm_pot',/add

– get_data,'the_pxxm_pot',data=the_pxxm_pot

– the_pxxm_pot.y=(the_pxxm_pot.y+1.)*1.15 ; correct for sphere bias and shielding

– store_data,'the_pxxm_pot1',data={x:the_pxxm_pot.x,y:the_pxxm_pot.y}

– thm_load_esa_pkt,probe='e'

– thm_part_moments,probe=sc,instrum=['peir', 'peer'],scpot_suffix='_pxxm_pot1',tplotsuffix='_norm',trange=[sdate,edate]

– ;

– ; recompute total density, velocity, temperature

– sst_scale=1.

– ;

– ; density

– ;

– tinterpol_mxn,'the_psif_density','the_peir_density_norm',suff='_int'

– calc,'"the_psif_density_int" = sst_scale*"the_psif_density_int"'

– add_data,'the_psif_density_int','the_peir_density_norm',newname='the_ptim_density_new'

– ;

ESS 261 Multi-Instrument/Spacecraft 26

• Recompute ESA mom’s, using reworked sc_pot [2]– ;

– ; velocity

– ;

– tinterpol_mxn,'the_psif_velocity','the_peir_density_norm',suff='_int'

– get_data,'the_psif_density_int',data=the_psif_density_int

– get_data,'the_psif_velocity_int',data=the_psif_velocity_int

– get_data,'the_peir_density_norm',data=the_peir_density_norm

– get_data,'the_peir_velocity_norm',data=the_peir_velocity_norm

– get_data,'the_ptim_density_new',data=the_ptim_density_new

– vel_tot_0=(the_psif_density_int.y*the_psif_velocity_int.y(*,0)+ $

– the_peir_density_norm.y*the_peir_velocity_norm.y(*,0) ) / $

– the_ptim_density_new.y

– vel_tot_1=(the_psif_density_int.y*the_psif_velocity_int.y(*,1)+ $

– the_peir_density_norm.y*the_peir_velocity_norm.y(*,1) ) / $

– the_ptim_density_new.y

– vel_tot_2=(the_psif_density_int.y*the_psif_velocity_int.y(*,2)+ $

– the_peir_density_norm.y*the_peir_velocity_norm.y(*,2) ) / $

– the_ptim_density_new.y

– store_data,'the_ptim_velocity_new',data={x:the_peir_density_norm.x, $

– y:[[vel_tot_0],[vel_tot_1],[vel_tot_2]]}

– options,'the_ptim_velocity_new',colors=[2,4,6]

– ;

ESS 261 Multi-Instrument/Spacecraft 27

• Recompute ESA mom’s, using reworked sc_pot [3]– ; pressure and temperature

– ;

– tinterpol_mxn,'the_psif_t3','the_peir_density_norm',suff='_int'

– get_data,'the_psif_t3_int',data=the_psif_t3_int

– get_data,'the_peir_t3_norm',data=the_peir_t3_norm

– get_data,'the_peer_t3_norm',data=the_peer_t3_norm

– press_tot=the_psif_density_int.y*total(the_psif_t3_int.y,2)/3 + $

– the_peir_density_norm.y*total(the_peir_t3_norm.y,2)/3

– store_data,'the_ptim_pressure_new',data={x:the_peir_density_norm.x, $

– y:press_tot}

– store_data,'the_psif_pressure_int',data={x:the_peir_density_norm.x, $

– y:the_psif_density_int.y*total(the_psif_t3_int.y,2)/3}

– store_data,'the_peir_pressure_norm',data={x:the_peir_density_norm.x, $

– y:the_peir_density_norm.y*total(the_peir_t3_norm.y,2)/3}

– div_data,'the_ptim_pressure_new','the_ptim_density_new',newname='the_ptim_temperature_new'

– store_data,'the_peer_pressure_norm',data={x:the_peir_density_norm.x, $

– y:the_peir_density_norm.y*total(the_peer_t3_norm.y,2)/3}

– ;

– ;

ESS 261 Multi-Instrument/Spacecraft 28

• Recompute ESA mom’s, using reworked sc_pot [4]– ;

– ; Plot 'em

– ;

– store_data,'the_N_combo',data='the_psif_density_int the_peir_density_norm the_ptim_density_new'

– store_data,'the_P_combo',data='the_psif_pressure_int the_peir_pressure_norm the_ptim_pressure_new'

– ylim,'the_p???_pressure_*',1.e-5,1.e-5,1

– store_data,'the_pxix_en_eflux',data='the_psif_en_eflux the_peir_en_eflux'

– ylim,'the_pxix_en_eflux',3.,3.e6,1

– zlim,'the_pxix_en_eflux',50,1.e7,1

– store_data,'the_peer_en_eflux_pot',data='the_peer_en_eflux the_pxxm_pot1'

– ylim,'the_peer_en_eflux_pot',5.,3.e4,1

– ;

– tplot,'the_N_combo the_peir_velocity_norm the_ptim_velocity_new the_P_combo the_pxix_en_eflux the_peer_en_eflux_pot'

– ;

ESS 261 Multi-Instrument/Spacecraft 29

ESS 261 Multi-Instrument/Spacecraft 30

• Compare E-field with EFI and compute Ptotal– ; Introduce B & E field; compute Ez from E*B=0

– ;

– thm_load_fit,probe=sc,coord='dsl',suff='_dsl'

– get_data,'the_efs_0',data=the_efs_0

– i2average=where((the_efs_0.x gt time_double('2008-02-26/04:45:00')) and $

– the_efs_0.x lt time_double('2008-02-26/04:48:00'),iany)

– print,'this is the estimated Exoffset: ', average(the_efs_0.y(i2average,0))

– print,'this is the estimated Eyoffset: ', average(the_efs_0.y(i2average,1))

– Exoffset=-1.02249

– Eyoffset=0.00233

– ;

– angle=10. ; degrees

– tanangle=tan(angle*!PI/180.)

– get_data,'th'+sc+'_efs_0',data=thx_efs_dsl

– get_data,'th'+sc+'_fgs',data=thx_fgs_dsl

– igood=where(abs(thx_fgs_dsl.y(*,2)/sqrt(thx_fgs_dsl.y(*,0)^2+thx_fgs_dsl.y(*,1)^2)) ge tanangle,janygood)

– ibad=where(abs(thx_fgs_dsl.y(*,2)/sqrt(thx_fgs_dsl.y(*,0)^2+thx_fgs_dsl.y(*,1)^2)) lt tanangle,janybad)

– thx_efs_dsl.y(*,0)=thx_efs_dsl.y(*,0)-Exoffset & thx_efs_dsl.y(*,1)=thx_efs_dsl.y(*,1)-Eyoffset

– thx_efs_dot0_dsl=thx_efs_dsl

– ;

– if (janybad ge 1) then thx_efs_dot0_dsl.y(ibad,*)=!VALUES.F_NAN

– if (janygood lt 1) then print,'*****WARNING: NO GOOD 3D ExB data'

– if (janygood ge 1) then thx_efs_dot0_dsl.y(igood,2)= -(thx_efs_dsl.y(igood,0)*thx_fgs_dsl.y(igood,0)+$

– thx_efs_dsl.y(igood,1)*thx_fgs_dsl.y(igood,1)+ thx_efs_dsl.y(igood,2)*thx_fgs_dsl.y(igood,2))/ thx_fgs_dsl.y(igood,2)

– ;

– thx_exb_dot0_dsl=thx_efs_dot0_dsl

– store_data,'th'+sc+'_efs_dot0_dsl',data={x:thx_efs_dot0_dsl.x,y:thx_efs_dot0_dsl.y}– options,'th'+sc+'_efs_dot0_dsl','colors',[2,4,6];

ESS 261 Multi-Instrument/Spacecraft 31

• Compare E-field with EFI– ; Produce E from Vi x B, to compare

– ;

– tinterpol_mxn,'the_fgs','the_peir_density_norm',suff='_int' ; get same time res.

– tcrossp,'th'+sc+'_ptim_velocity_new','th'+sc+'_fgs_int',newname='the_Evxb_dsl_temp'

– calc,'"the_Evxb_dsl" = -0.001*"the_Evxb_dsl_temp"'

– options,'the_Evxb_dsl',colors=[2,4,6] & ylim,'the_Evxb_dsl the_efs_dot0_dsl',-20,20,0

– ;

– tplot,'the_fgs_int the_Evxb_dsl the_efs_dot0_dsl the_N_combo the_ptim_velocity_new the_P_combo the_pxix_en_eflux the_peer_en_eflux_pot'

– ;

– ; Add total ion, electron and magnetic pressure to create total pressure

– ;

– calc,'"the_Pi" = (0.1602/1000.) * "the_ptim_pressure_new"' ; ESA+SST ions in nPa

– calc,'"the_Pe" = (0.1602/1000.) * "the_peer_pressure_norm"'; ESA electrons in nPa

– tinterpol_mxn,'the_fgs_dsl','the_peir_density_norm',suff='_int' ; on common time

– tvectot,'the_fgs_dsl_int',tot='the_fgs_mag'

– calc,'"the_Pb" = (0.01/25.132741) * "the_fgs_mag" * "the_fgs_mag" ' ; Pb in nPa

– ;

– calc,'"the_Pt" = "the_Pi" + "the_Pe" + "the_Pb" ' ; Ptotal in nPa

– ;

– store_data,'the_Pall',data='the_Pi the_Pe the_Pb the_Pt' ; single variable to plot

– ylim,'the_P? the_Pall',0.005,1,1

– ;

– tplot,'the_fgs_int the_Evxb_dsl the_efs_dot0_dsl the_N_combo the_ptim_velocity_new the_P_combo the_Pall the_pxix_en_eflux the_peer_en_eflux_pot'

– ;

ESS 261 Multi-Instrument/Spacecraft 32

ESS 261 Multi-Instrument/Spacecraft 33

February 16, 2008 event:Moments computation after SST cleanup

ESS 261 Multi-Instrument/Spacecraft 34

February 16, 2008 event:ExB comparison


Recommended