+ All Categories
Home > Documents > ESSENTIAL COMPUTER EXPERIMENTSscienide2.uwaterloo.ca/~nooijen/Chem-440-computational/... ·...

ESSENTIAL COMPUTER EXPERIMENTSscienide2.uwaterloo.ca/~nooijen/Chem-440-computational/... ·...

Date post: 15-Jul-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
21
PART I: Essential Computer Experiments 1 PART I ESSENTIAL COMPUTER EXPERIMENTS
Transcript
Page 1: ESSENTIAL COMPUTER EXPERIMENTSscienide2.uwaterloo.ca/~nooijen/Chem-440-computational/... · 2013-09-10 · InterpretingtheResultsofMOCalculations % % 4% 2 Computer Experiment! 2:

PART  I:  Essential  Computer  Experiments     1  

         

 

PART  I    

 

ESSENTIAL COMPUTER

EXPERIMENTS

Page 2: ESSENTIAL COMPUTER EXPERIMENTSscienide2.uwaterloo.ca/~nooijen/Chem-440-computational/... · 2013-09-10 · InterpretingtheResultsofMOCalculations % % 4% 2 Computer Experiment! 2:

Building  Molecules  in  the  Computer     2  

1 Computer  Experiment  1:  Building  Molecules  in  the  Computer  

1.1 Background  In  this  basic  and  quick  experiment  you  should  practice  the  building  of  molecular  

structures  using  either  paper  and  pencil  or  a  graphical  molecular  editor.  Preferably  you  

try  both  routes.  

1.1.1 The  Z-­‐Matrix  If  the  molecule  under  investigation  is  not  too  large,  it  may  be  the  most  convenient  route  

to  manually  input  bond  distances,  bond  angles  and  dihedral  angles.  A  definition  of  the  

molecular  structure  in  this  way  is  called  a  ‘Z-­‐Matrix’.  In  order  to  specify  the  position  of  a  

general  atom,  one  needs  six  nubers:  NA,  NB,  NC  are  the  numbers  of  atoms  that  the  new  

atom  is  conected  with  and  R,  A  and  D  are  a  bond  distance,  a  bond  angle  and  a  dihedral  

angle.  The  definition  of  NA,  NB  and  NC  is:  

• NA:  The  atom  that  the  actual  atom  has  a  distance  with  

• NB:  The  actual  atom  has  an  angle  with  atoms  NA  and  NB  

• NC:  The  actual  atom  has  a  dihedral  angle  with  atoms  NA,NB  and  NC.  This   is  the  

angle  between  the  actual  atom  and  atom  NC  when  looking  down  the  NA-­‐NB  axis.  

Angles  are  always  given  in  degrees!  The  first  atom  is  always  placed  at  the  origin.  The  

second  atom  is  placed  a  distance  R  (by  default  in  Å  units)  along  one  of  the  coordinate  

axes  (e.g.  X).  The  third  atom  is  placed  in  (say)  the  XZ  plane  and  any  further  atom  really  

needs  all  six  specifiers  mentioned  above.    

The  format  for  ORCA  is:  

 For  example,  for  H2CO  a  reasonable  input  is:    

 

* int 0 1 C 0 0 0 0.0 000.0 000.0 O 1 0 0 1.2 000.0 000.0 H 1 2 0 1.1 120.0 000.0 H 1 2 3 1.1 120.0 180.0 *

* int Charge Mult AtomName-1 NA NB NC R A D AtomName-2 NA NB NC R A D ... AtomName-N NA NB NC R A D *

Page 3: ESSENTIAL COMPUTER EXPERIMENTSscienide2.uwaterloo.ca/~nooijen/Chem-440-computational/... · 2013-09-10 · InterpretingtheResultsofMOCalculations % % 4% 2 Computer Experiment! 2:

Building  Molecules  in  the  Computer     3  

1.2 Description  of  the  Computer  Experiment    

1. CH4   :  Td  symmetry  

2. C2H6   :  C3v  symmetry  

3. C2H4   :  D2h  symmetry  

4. C2H2   :  D ∞h  symmetry  

5. H3COH  :  CS  symmetry    

6. H2CO   :  C2v  symmetry  

7. HCOOH   :  CS  symmetry  

8. CO2   :  D ∞h  symmetry  

9. CO     :  C ∞v  symmetry  

10. LiH   :  C ∞v  symmetry  

11. LiF     :  C ∞v  symmetry  

12. NH3   :  C3v  symmetry  

13. H2O   :  C2v  symmetry  

14. HF     :  C ∞v  symmetry  

15. Glycine   :  C1  symmetry  

You  can  assume  the  following  “standard”  geometrical  parameters.       C-­‐C       :  1.54  Å     C=C       :  1.34  Å     C≡C       :  1.22  Å     C-­‐O       :  1.40  Å     C=O       :  1.20  Å     C≡O       :  1.13  Å     C-­‐H       :  1.10  Å     N-­‐H       :  1.05  Å     O-­‐H       :  1.00  Å     Li-­‐F       :  1.57  Å     Li-­‐H       :  1.62  Å     Dihedral  angle     :  109.4712°  

Page 4: ESSENTIAL COMPUTER EXPERIMENTSscienide2.uwaterloo.ca/~nooijen/Chem-440-computational/... · 2013-09-10 · InterpretingtheResultsofMOCalculations % % 4% 2 Computer Experiment! 2:

Interpreting  the  Results  of  MO  Calculations     4  

2 Computer   Experiment   2:   Interpreting   the   Results   of   MO  

Calculations    

2.1 Background  In  this  experiment  you  will  for  the  first  time  get  subjected  to  a  MO  calculation.  The  goal  

of  the  experiment  is  to  familiarize  yourself  with  the  basic  quantities  that  you  get  from  

such  calculations.  

2.1.1 Total  Energy  The  total  energy  of  a  molecule  is  minus  the  energy  that  it  takes  to  separate  all  particles  

(electrons  and  nuclei)  in  the  molecule  and  put  them  in  infinite  distance  of  each  other.  

Thus,  the  total  energy  is  a  very  large  number.  It  is  measured  in  Hartree  units  (also  called  

“atomic  units”)  which  is  abbreviated  with  the  symbol  Eh.  It  is  very  useful  to  remember  

conversion  factors  to  more  chemically  relevant  units  of  energy:  

 Although  this  is  not  good  scientific  practice  the  majority  of  the  quantum  chemical  

literature  still  reports  energy  differences  in  kcal/mol  (using  1  eV=23.06  kcal/mol  and  1  

kcal/mol=4.184  kJ/mol).  The  spectroscopic  literature  is  dominated  by  the  units  of  cm-­‐1  

(using  1  eV=8065.73  cm-­‐1).  It  is  a  very  good  idea  to  familiarize  yourself  with  several  

units  of  energy.  

For  example,  the  nonrelativistic  total  energy  of  the  CO  molecule  is  somewhere  around  -­‐

113.X  Eh  which  amounts  to  ~71000  kcal/mol.  Chemically  relevant  energy  differences  

are  on  the  order  of  1  kJ/mol.  This  puts  the  tremendous  task  of  quantum  chemistry  into  

perspective:    

 Fortunately,  we  do  not  need  to  compute  the  total  energy  of  molecules  to  an  accuracy  of  1  

kJ/mol.  If  this  would  be  the  case,  quantum  chemistry  would  be  a  very  frustrating  

research  field.  Only  in  recent  years  it  is  possible  to  reach  such  a  high  absolute  accuracy  

and  this  is  only  possible  for  very  small  molecules.  In  chemistry,  we  are  always  

measuring  energy  differences  and  upon  taking  these  differences  most  of  the  errors  that  

we  make  in  computing  the  total  energies  will  cancel.  In  fact,  most  of  the  total  energy  

In  quantum  chemistry  we  are  facing  the  challenge  of  having  to  compute  

small  differences  between  large  numbers  and  to  do  this  with  high  accuracy.  

You  have  to  worry  at  least  about  the  third  digit  in  the  total  energy  (given  in  

1  Eh   =  27.2107  eV  =  627.51  kcal/mol  =  2625.5  kJ/mol  =  219474.2  cm-­‐1      

Page 5: ESSENTIAL COMPUTER EXPERIMENTSscienide2.uwaterloo.ca/~nooijen/Chem-440-computational/... · 2013-09-10 · InterpretingtheResultsofMOCalculations % % 4% 2 Computer Experiment! 2:

Interpreting  the  Results  of  MO  Calculations     5  

comes  from  the  very  strong  interaction  of  the  core  level  electrons  with  the  nuclei  and  

such  core  electrons  do  not  contribute  appreciably  to  the  chemical  behaviour  of  atoms  in  

molecules.  Still,  the  basic  problem  of  quantum  chemistry  is  the  one  of  reaching  the  high  

accuracy  that  is  necessary  in  order  to  cope  with  energy  differences  that  are  quite  small  

on  the  molecular  scale  but  that  are  dominant  for  the  chemical  behaviour  of  a  molecule.  It  

is  relatively  easy,  for  example,  to  recover  ~99%  of  the  total  energy  –  already  the  

Hartree-­‐Fock  method  is  good  enough  to  do  that.  Yet,  the  remaining  error  is  huge  on  the  

chemical  scale.    

2.1.2 Orbital  Energies  In  Hartree-­‐Fock  theory,  each  canonical  molecular  orbital  is  associated  with  a  unique  

molecular  orbital  (MO)  energy.  Unlike  the  total  energy,  these  orbital  energies  do  not  

have  an  “absolute”  meaning  since  they  have  been  introduced  into  the  theory  only  in  

order  to  satisfy  the  orthonormality  constraint  between  different  molecular  orbitals.    

Fortunately,  the  orbital  energies  of  the  occupied  orbitals  can  be  given  an  approximate  

interpretation  (Koopman’s  theorem):  

 This  theorem  thus  makes  the  important  prediction  that  minus  the  orbital  energy  of  the  

HOMO  (the  highest  occupied  MO)  is  approximately  equal  to  the  ionization  potential  of  

the  molecule.  Furthermore,  by  plotting  the  orbital  energies  as  vertical  bars  on  graph  that  

has  ‘orbital  energy’  on  the  x-­‐axis,  one  should  obtain  a  good  idea  where  to  expect  peaks  in  

the  photoelectron  spectrum  of  the  molecule.  This  is  a  rather  nice  connection  between  MO  

calculations  and  spectroscopy  and  therefore  the  canonical  orbitals  are  also  called  

“spectroscopist’s  orbitals”.  Upon  comparing  calculation  and  reality  you  will  find  

important  deviations.  It  is  well  worthwhile  to  think  about  the  origin  of  such  

discrepancies!  

2.1.3 Molecular  Orbitals  and  Their  Shapes  Unlike  the  total  Hartree-­‐Fock  N-­‐electron  wavefunction  and  its  associated  charge  density  

and  despite  all  claims  to  the  contrary  made  in  chemical  textbooks,  the  orbitals  

themselves  do  not  have  a  rigorous  physical  meaning.  As  already  discussed  in  section  

Error!  Reference  source  not  found.  (page  Error!  Bookmark  not  defined.),  the  

orbitals  are  introduced  to  the  theory  as  an  auxiliary  construct.  Yet,  in  Hartree-­‐Fock  

The  orbital  energy  of  a  given  canonical  MO  is  approximately  equal  to  minus  

the  energy  that  it  takes  to  remove  an  electron  from  this  orbital.  Thus,  it  is  

approximately  equal  to  the  first  or  a  higher  ionization  potential.  

Page 6: ESSENTIAL COMPUTER EXPERIMENTSscienide2.uwaterloo.ca/~nooijen/Chem-440-computational/... · 2013-09-10 · InterpretingtheResultsofMOCalculations % % 4% 2 Computer Experiment! 2:

Interpreting  the  Results  of  MO  Calculations     6  

theory,  each  orbital  describes  the  motion  of  one  electron  and  the  square  of  the  orbital  

describes  its  probability  distribution.  We  will  come  back  to  the  subject  of  HOMO/LUMO  

and  popular  reactivity  arguments  in  section  Error!  Reference  source  not  found.  (page  

Error!  Bookmark  not  defined.).  In  this  computer  experiment  we  only  want  you  to  

enjoy  looking  at  orbitals,  to  define  their  character  as  π-­‐  or  σ-­‐orbitals  or  lone-­‐pairs  and  to  

deduce  the  symmetry  labels  of  these  orbitals  using  group  theory.    

   The  basic  types  of  molecular  orbitals  and  the  principle  of  their  formation  from  fragment  

orbitals  are  shown  in  Figure  1:  

 

 Figure  1:  Basic  types  of  molecular  orbitals.  

In  the  left  panel  the  formation  of  a  homopolar  bond  is  exemplified  -­‐  two  isoenergetic,  

singly  occupied  fragment  orbitals  form  a  standard  two-­‐electron  bond.  The  lower  

component  is  bonding  and  features  constructive  overlap  of  the  fragment  orbitals;  the  

Recall  that  the  canonical  orbitals  transform  under  the  irreducible  

representations  of  the  point  group  that  the  molecule  belongs  to.  Also  

recall  that  the  total  symmetry  of  the  state  under  investigation  can  be  

deduced  from  the  symmetries  of  the  singly  occupied  orbitals  in  a  given  

electronic  configuration.  Each  completely  filled  subshell  is  totally  

symmetric.  Thus,  closed  shell  molecules  have  a  totally  symmetric  

ground  state.  

σ*  π*  

π  σ  

Page 7: ESSENTIAL COMPUTER EXPERIMENTSscienide2.uwaterloo.ca/~nooijen/Chem-440-computational/... · 2013-09-10 · InterpretingtheResultsofMOCalculations % % 4% 2 Computer Experiment! 2:

Interpreting  the  Results  of  MO  Calculations     7  

higher  MO  is  more  destabilized  than  the  lower  one  is  stabilized1  and  is  antibonding.  The  

formation  of  a  heteropolar  bond  is  shown  in  the  middle  panel.  Here  two  orbitals  of  

different  energy  interact.  The  initially  higher  lying  orbital  is  destabilized  and  becomes  

antibonding.  The  larger  the  energy  gap  and  the  smaller  the  orbital  interaction,  the  more  

the  orbital  retains  its  initial  character.  Likewise,  the  lower  energy  component  becomes  

bonding  but  also  retains  the  character  of  the  originally  lower-­‐lying  fragment  orbital  φb.  

The  polarity  of  the  bond  depends  on  the  energy  gap  between  the  two  initial  fragment  

orbitals  and  their  mutual  interaction  which  may  be  taken  to  be  proportional  to  the  

fragment  orbital  overlap.  The  right  panel  shows  some  typical  members  of  fragment  

orbitals,  namely  a  σ*  antibonding  MO  (usually  very  high  in  energy),  a  π*-­‐orbital,  a  lone-­‐

pair  orbital  as  well  as  a  σ-­‐bonding  and  a  π-­‐bonding  orbital.  The  bond  order  of  a  given  A-­‐

B  bond  is  defined  as  one-­‐half  the  number  of  electrons  in  the  bonding  orbitals  minus  the  

number  of  electrons  in  the  antibonding  orbitals.  The  bond  order  is  indicative  of  but  not  

directly  proportional  to  the  bond  dissociation  energy  which,  of  course,  depends  on  many  

factors.  

2.1.4 The  total  Charge  Density,  Moments  and  Population  Analysis  In  Hartree-­‐Fock  and  DFT  theory,  the  total  electron  density  is  given  as  a  sum  of  

contributions  of  the  individual  orbitals  that  make  up  the  single  Hartree-­‐Fock  or  Kohn-­‐

Sham  determinant.  For  a  closed-­‐shell  system  this  is:  

      ! r( ) = 2 "

ir( )

2

i=1

N/2

!               (  1)  

Where  the  factor  of  2  arises  due  to  the  fact  that  each  MO  is  doubly  occupied.  From  the  

total  charge  density  one  can  computer  the  various  moments  of  the  charge  distribution.  

The  most  important  is  of  course  the  dipole  moment  and  it  is  related  to  the  polarity  of  

the  molecule.  The  dipole  moment  is  on  observable.  It  is  computed  from  the  charge  

density  and  the  nuclear  positions  RA  and  nuclear  charges  ZA  as  follows:  

      µ

dip= Z

AR

AA=1

M

! " ! r( )rdr#           (  2)  

Where  the  minus  sign  arises  from  the  negative  charge  of  the  electrons.  As  it  stands  the  

dipole  moment  is  given  in  atomic  units.  In  order  to  convert  to  the  more  convention  unit  

(Debye)  one  has  to  multiply  the  computed  dipole  moment  given  in  a.u.  by  2.541798.  The  

                                                                                                               1  This  is  seen  from  the  normalization  factors  involving  the  fragment  overlap  integral  S.  

Page 8: ESSENTIAL COMPUTER EXPERIMENTSscienide2.uwaterloo.ca/~nooijen/Chem-440-computational/... · 2013-09-10 · InterpretingtheResultsofMOCalculations % % 4% 2 Computer Experiment! 2:

Interpreting  the  Results  of  MO  Calculations     8  

dipole  moment  is  a  vector  that  points  from  the  center  of  negative  charge  of  the  molecule  

to  the  center  of  positive  charge.    

An  important  concept  of  chemistry  is  that  of  a  partial  charge  of  an  atom  in  a  molecule.  

Unlike  the  dipole  moment  the  partial  charges  are  not  observables.  Unfortunately,  it  

seems  to  be  impossible  to  arrive  at  a  unique  decomposition  of  the  total  electron  density  

(which  is  a  continuous  function  of  space)  into  parts  that  “belong”  to  individual  atoms.  

Many  different  attempts  have  been  made  to  arrive  at  an  approximate  decomposition  and  

these  procedures  are  collectively  referred  to  as  “population  analysis”.  None  of  these  

schemes  can  claim  any  rigorous  physical  reality.  Yet,  if  viewed  with  appropriate  caution,  

these  schemes  can  tell  you  a  lot  about  the  trends  of  the  charge  distribution  in  a  series  of  

related  molecules.  Consequently,  almost  all  quantum  chemical  programs  print  one  or  the  

other  form  of  population  analysis  in  their  output  files.  For  example,  ORCA  prints  by  

default,  the  Mulliken  analysis,  the  Löwdin  analysis  and  the  Mayer  analysis.  We  briefly  

review  the  origin  of  the  Mulliken  analysis  below:  

The  Mulliken  population  analysis  is,  despite  all  its  known  considerable  weaknesses,  the  

standard  in  most  quantum  chemical  programs.  It  partitions  the  total  density  using  the  

assignment  of  basis  functions  to  given  atoms  in  the  molecules  and  the  basis  function  

overlap.  If  the  total  charge  density  is  written  as   !!r( )  and  the  total  number  of  electrons  

is   N  we  have:  

          ! r( )dr! = N           (  3)  

and  from  the  density  matrix   P  and  the  basis  functions  { ! }  it  follows:  

          ! r( ) = P

µ"#

µr( )#" r( )

µ"!         (  4)  

therefore:  

       

! r( )dr! = Pµ"#

µr( )#" r( )dr!

Sµ"

! "###### $######µ""       (  5)  

       

= Pµ!S

µ!µ!!  

Where   S

µ!  is  the  overlap  integral  between  the  basis  functions  µ  and  ν.  After  assigning  

each  basis  function  to  a  given  center  (A,B,C…)  this  can  be  rewritten:  

     

= A BPµ!ABS

µ!AB

!!

µ!

B!

A!         (  6)  

Page 9: ESSENTIAL COMPUTER EXPERIMENTSscienide2.uwaterloo.ca/~nooijen/Chem-440-computational/... · 2013-09-10 · InterpretingtheResultsofMOCalculations % % 4% 2 Computer Experiment! 2:

Interpreting  the  Results  of  MO  Calculations     9  

     

= A APµ!AAS

µ!AA

!!

µ!

A! + 2 A BP

µ!ABS

µ!AB

!!

µ!

B<A!

A!   (  7)  

Mulliken  proposed  to  divide  the  second  term  equally  between  each  pair  of  atoms  

involved  and  define  the  number  of  electrons  on  center   A ,   NA,  as:  

      N

A= A AP

µ!AAS

µ!AA

!!

µ! + A BP

µ!ABS

µ!AB

!!

µ!

B"A!       (  8)  

such  that  

NA

A! = N .  The  charge  of  an  atom  in  the  molecule  is  then:  

          QA= Z

A!N

A           (  9)  

where   ZA  is  the  core  charge  of  atom   A .  The  cross  terms  between  pairs  of  basis  

functions  centered  on  different  atoms  is  the  overlap  charge  and  is  used  in  ORCA to  define  the  Mulliken  bond  order:  

          B

AB= 2 A BP

µ!ABS

µ!AB

!!

µ!         (  

10)  

In  the  present  computer  experiment  you  should  look  at  the  results  of  the  population  

analysis  schemes  and  try  to  determine  whether  the  observed  trends  compare  well  with  

your  chemical  intuition.  

 TIP:  

• A   more   advanced   method   of   population   analysis   is   the   so-­‐called   “natural  

population   analysis”   invented   by   Weinhold   and   co-­‐workers.   Among   the  

available  choices  this  one  may  be  recommended  for  your  chemical  applications.2  

The  NPA  analysis  is  available  in  both  ORCA  (NPA  keyword).  

                                                                                                               2  A   full   discussion  may   be   found   in   F.  Weinhold   and   C.   R.   Landis,  Valency   and   Bonding:   A   Natural   Bond   Orbital   Donor-­‐Acceptor  Perspective  (Cambridge  U.  Press,  2003).  

Be  careful:  In  addition  to  the  theoretical  problems  with  population  analysis  

schemes  mentioned  above  you  MUST  know  that  population  analysis  schemes  

are  sensitive  to  the  basis  set  use  and  do  not  converge  to  a  well  defined  basis  

set  limit.  Therefore  –  when  you  compare  population  analysis  results  for  

different  molecules:  make  sure  that  you  have  done  the  calculation  with  

identical  basis  sets.  Do  not  compare  absolute  populations  between  different  

Page 10: ESSENTIAL COMPUTER EXPERIMENTSscienide2.uwaterloo.ca/~nooijen/Chem-440-computational/... · 2013-09-10 · InterpretingtheResultsofMOCalculations % % 4% 2 Computer Experiment! 2:

Interpreting  the  Results  of  MO  Calculations     10  

2.2 Description  of  the  Experiment    Take  the  molecules  that  you  made  in  the  first  experiment  and  run  a  RHF  calculation  with  

the  SVP  basis  set.  Look  at  the  following  quantities:  

1. Look   at   the   results   of   the   population   analysis   and   create   a   table   of   partial  

charges   of,   say,   the   carbon   atoms   in   a   series   of   molecules.   How   do   the  

numbers  compare  with  your  intuition?  

2. Look   at   the   frontier   orbitals   of   the  molecules   using   a   visualization   package.  

Classify  the  MOs  as  π,  π*,  σ,  σ*  or  as  lone  pair.    

3. For  at   least  one  of   the   compounds   studied  make  a  quantitative  MO  scheme.  

This  should  consist  of  the  occupied  and  the  first  three  unoccupied  MOs.  Find  

the   irreducible   representations   of   all   MOs   and   label   them   on   the   plot.   Are  

degenerate  MOs  unique?    

Compare  the  results  of  these  calculations  with  the  experimental  data  collected  in  Table  1  

below.  

4. Determine  the  ionization  potential  predicted  by  Koopman’s  theorem  

5. Determine  the  dipole  moment  printed  at  the  end  of  the  output.  

6. Perform   a   regression   analysis   of   the   computed   data   using   the   XMGrace  

program.  Determine  the  average  absolute  error,  the  largest  absolute  error,  the  

average   deviation   from   experiment   and   the   standard   deviation.   These  

quantities  are  indicative  of  the  reliability  of  the  calculations  and  the  tendency  

to  over-­‐  or  underestimate  a  given  quantity.    

Table  1:  Dipole  Moments  and  Ionization  potentials  of  the  small  molecules  studied  in  experiment  #1.3  

Molecule Dipole Moment (Debye) Ionization Potential (eV) CH4 0.000 12.61±0.01 C2H6 0.000 11.56±0.02 C2H4 0.000 10.51±0.015 C2H2 0.000 11.41±0.01 H3COH 1.700 10.84±0.07 H2CO 2.330 10.86

                                                                                                               3  Experimental  data  from  http://srdata.nist.gov/cccbdb/  and  http://webbook.nist.gov/chemistry/          

Page 11: ESSENTIAL COMPUTER EXPERIMENTSscienide2.uwaterloo.ca/~nooijen/Chem-440-computational/... · 2013-09-10 · InterpretingtheResultsofMOCalculations % % 4% 2 Computer Experiment! 2:

Interpreting  the  Results  of  MO  Calculations     11  

HCOOH 1.410 11.31 CO2 0.000 13.778±0.002 CO 0.112 14.0142±0.0003 LiH 5.880 7.9±0.3 LiF 6.330 11.3 NH3 1.470 10.07±0.01 H2O 1.850 12.6188±0.0009 HF 1.820 16.06 Glycine 1.095 8.9 The  direction  of  the  dipole  moments  (arrow  points  from  negative  to  positive)  

Page 12: ESSENTIAL COMPUTER EXPERIMENTSscienide2.uwaterloo.ca/~nooijen/Chem-440-computational/... · 2013-09-10 · InterpretingtheResultsofMOCalculations % % 4% 2 Computer Experiment! 2:

Geometry  Optimization     12  

3 Computer  Experiment  3:  Geometry  Optimization  

3.1 Background  The  purpose  of  this  experiment  is  to  locate  the  most  stable  arrangement  of  the  

molecules  under  study.  In  the  case  of  a  diatomic  molecule,  geometry  optimization  is  

employed  to  search  for  the  suitable  inter-­‐atomic  distance  between  these  two  atoms,  

which  give  rise  to  the  lowest  energy  among  the  all  conformations  of  this  molecule.  

3.1.1 Potential  Energy  Surface  (PES)  The  way  in  which  the  energy  of  a  molecule  system  varies  with  the  coordinates  is  usually  

referred  to  as  the  potential  energy  surface  (PES),  sometimes  called  the  “hyper-­‐surface”.  

Except  for  the  very  simplest  systems,  the  PES  is  a  complicated,  multidimensional  

function  of  all  degrees  of  freedom  of  the  molecule.  For  a  non-­‐linear  molecule  with  N  

atoms,  the  energy  is  thus  a  function  of  3N-­‐6  internal  coordinates;  it  is  therefore  

impossible  to  visualize  the  entire  energy  surface  except  for  some  simple  cases  where  the  

energy  is  a  function  of  just  one  or  two  coordinates.  

A  typical  PES  is  depicted  below,  each  point  corresponds  to  the  specific  arrangement  of  

the  N  atoms  in  the  molecule;  hence,  each  points  represents  a  particular  molecular  

structure,  with  the  height  of  the  surface  at  that  point  corresponding  to  the  energy  of  that  

structure.  

 Figure  2:  Schematic  PES  adapted  from  “Exploring  Chemistry  with  Electronic  Structure  Methods,  Second  Edition”.  

There  are  three  minima  on  this  PES.  A  minimum  is  the  bottom  of  a  valley  on  the  PES,  any  

movement  away  from  such  a  point  gives  a  configuration  with  a  higher  energy.  A  

minimum  can  be  either  a  local  minimum  or  a  global  minimum  (the  lowest  energy  on  the  

Page 13: ESSENTIAL COMPUTER EXPERIMENTSscienide2.uwaterloo.ca/~nooijen/Chem-440-computational/... · 2013-09-10 · InterpretingtheResultsofMOCalculations % % 4% 2 Computer Experiment! 2:

Geometry  Optimization     13  

entire  PES).  Minima  occur  at  equilibrium  structures  for  the  system,  with  different  

minima  corresponding  to  different  conformations  or  structural  isomers  in  the  case  of  

single  molecule,  or  reactant  and  product  molecules  in  the  case  of  multi-­‐component  

systems.  A  point  which  is  a  maximum  in  one  direction  and  a  minimum  in  the  all  others  is  

called  a  saddle  point  (more  precisely  a  first-­‐order  saddle  point).  A  saddle  point  

corresponds  to  a  transition  structure  connecting  the  two  equilibrium  structures,  or  a  

transition  state  “connecting”  the  reactant  and  product.  

3.1.2 Searching  for  Minima  Geometry  optimizations  usually  attempt  to  locate  minima  on  the  PES,  thus  predicting  

equilibrium  structures  of  molecular  system.  Optimizations  can  also  locate  transition  

states  which  may  be  desired  or  undesired.  We  will  come  back  to  methods  for  finding  

transition  states  in  section  Error!  Reference  source  not  found.  (page  Error!  

Bookmark  not  defined.).  

At  both  minima  and  saddle  points,  the  first  derivative  of  the  energy  (gradient)  with  

respect  to  every  internal  degree  of  freedom  is  zero.  Since  the  gradient  is  the  negative  of  

the  force,  it  means  that  at  such  points  the  forces  are  zero  as  well.  Points  at  which  the  

gradient  of  the  energy  vanishes  are  called  stationary  points.  They  may  represent  true  

minima  or  saddle  points  of  some  kind.  

The  energy  E  of  a  molecular  system  obtained  under  the  Born-­‐Oppenheimer  

approximation  is  a  paramertric  function  of  the  nuclear  coordinates  denoted  as  R,  the  

energy  can  be  expanded  in  a  Taylor  series  about  the  point  R(k)  as  follows:  

E(R) = E(R k( ))+ (R!R

k( ))f +12(R!R

k( ))T H(R!Rk( ))+ """       (  

11)  where  the  gradient  is  defined  as    

fi

=!E(R)!R

i R=Rk( )

               

  (12)  

where  R0  refer  to  the    and  the  Hessian  matrix  or  the  force  constant  matrix  is  

H

ij=!E(R)!R

i!R

j R=Rk( )

                  (  

13)  

Page 14: ESSENTIAL COMPUTER EXPERIMENTSscienide2.uwaterloo.ca/~nooijen/Chem-440-computational/... · 2013-09-10 · InterpretingtheResultsofMOCalculations % % 4% 2 Computer Experiment! 2:

Geometry  Optimization     14  

The  energy  functions  of  molecules  are  hardly  quadratic  and  the  Taylor  series  expand  can  

only  be  considered  as  an  approximation,  known  as  harmonic  approximation.  Close  to  

minima,  it  is  supposed  that  a  quadratic  form  is  adequate  for  description  of  the  PES.    

For  a  stationary  point R ,  by  definition  we  require   f(R) = 0 ,  in  order  to  identify  this  

stationary  point  is  a  local  minimum  other  than  a  saddle  point  the  following  condition  

must  be  met:  

!i(R) > 0  where   !i(R)  is  the  i’th  eigenvalue  of  the  Hessian  matrix  after  the  

translations  and  rotations  have  been  projected  out.    

This  corresponds  to  the  condition  that  there  is  no  imaginary  frequency  in  the  frequency  

calculation.  

Nevertheless  for  a  first-­‐order  saddle  point,  the  following  conditions  are  necessary:    

f(R) = 0 ,  and  

!i(R) < 0  for  one  specific  coordinate  (internal  reaction  coordinate)  

!i(R) > 0  for  all  other  coordinates  within  the  molecule.  Exactly  one  imaginary  

frequency  is  indicative  of  a  first-­‐order  saddle  point.  In  the  similar  way  we  can  define  

higher  order  saddle  point  according  to  the  number  of  imaginary  frequency.  

 

3.1.3 Optimization  Techniques  There  are  a  number  of  numerical  methods  for  finding  stationary  point  of  a  function  of  

many  variables.  Here  a  short  introduction  of  widely  adopted  Newton-­‐Raphson  (NR)  

method  is  presented  below.  

Close  to  a  stationary  point,  a  Taylor  series  expansion  of  the  energy  of  the  molecule  under  

study  is  valid:  

E

quad(R) = E(R)+ (R!R)f +

12(R!R)T H(R!R)+ """       (  14)  

If  R  is  close  enough  to   R ,  we  are  in  the  quadratic  regime  it  is  legitimate  to  replace  the  

exact  surface  E(R)  with  the  quadratic  model  surface   E

quad(R) .  It  is  now  straightforward  

to  minimize  the  energy  of  this  model  surface.  The  first  derivative  of  the  model  surface  

with  respect  to  a  nuclear  coordinate  is:  

Be  careful:  geometry  optimization  only  searches  for  stationary  points,  thus  you  never  

know  whether  the  obtained  structures  locate  at  a  local  minimum  or  a  saddle  points.  In  

order  to  settle  this  point  it  is  necessary  to  perform  a  frequency  calculation  on  the  

optimized  structure.  

Page 15: ESSENTIAL COMPUTER EXPERIMENTSscienide2.uwaterloo.ca/~nooijen/Chem-440-computational/... · 2013-09-10 · InterpretingtheResultsofMOCalculations % % 4% 2 Computer Experiment! 2:

Geometry  Optimization     15  

!Equad

!Ri

= fi+ (R

i"R

i)H

ij

j

#               (  

15)  

It  is  now  straightforward  to  solve  for  the  step-­‐vector   != R"R  which  brings  us  from  

point  R  to  the  desired  point   R :  in  fact:  

!="H"1

f                     (  

16)  

This  equation  is  the  essence  of  the  NR  method.  Thus,  the  NR  algorithm  can  locate  the  

minimum  in  a  single  step  for  a  purely  quadratic  surface.  Close  enough  to  the  quadratic  

regime  it  is  still  converging  quadratically  to  the  desired  stationary  point  (this  means  in  

practice  in  very  few  iterations,  e.g.  less  than  five).  However,  for  real  surfaces,  which  are  

not  quadratic,  convergence  may  be  considerably  slower.  In  general,  convergence  slows  

down  substantially  if  the  present  point  R  is  far  from  the  desired  stationary  point.  

While  the  fast  convergence  of  the  Newton-­‐Raphson  method  close  to  the  minimum  is  

very  attractive,  there  is  an  important  caveat  to  its  practical  use:  The  calculation  of  the  

Hessian  matrix  is  computationally  very  demanding  for  large  systems.  Thus,  essentially  

all  minimization  algorithms  try  to  circumvent  the  calculation  of  second  derivatives  in  

each  step  and  only  work  with  the  energy  E(R)  and  its  first  derivative.  One  possibility  

that  is  followed  by  the  majority  of  the  available  programs  is  the  so-­‐called  quasi-­‐Newton  

method.  In  this  approach,  one  starts  from  a  guessed  Hessian  (or  one  calculated  at  a  

lower  level  of  theory)  and  improves  on  it  by  using  the  first  derivative  information  from  

various  previous  iterations.4  If  this  is  done  carefully  and  the  starting  point  of  the  

optimization  was  not  too  bad,  convergence  can  usually  be  achieved  in  10-­‐40  iterations  

depending  on  the  size  and  nature  of  the  system.  In  general,  floppy  molecules  are  much  

more  difficult  to  optimize.  In  such  molecules  low  energy  rotations  around  single  bonds  

may  lead  to  very  large  geometry  changes  along  very  soft  modes.  All  optimization  

techniques  have  difficulties  with  such  situations.  It  is  therefore  important  to  guide  the  

calculation  to  the  desired  minimum  and  to  carefully  monitor  the  progress  of  a  geometry  

optimization.  

                                                                                                               4  The  details  are  of  no  concern  in  the  present  context;  we  simply  note  for  the  interested  students  that  most  programs  make  use  of   the  Broyden-­‐Fletcher-­‐Goldfarb-­‐Shanno   (BFGS)   algorithm   to  update   the   approximate  Hessian  or   its   inverse.   This   is  usually  a  good  choice  since  it  helps  to  retain  an  initially  positive  definite  Hessian  positive  definite.    

Page 16: ESSENTIAL COMPUTER EXPERIMENTSscienide2.uwaterloo.ca/~nooijen/Chem-440-computational/... · 2013-09-10 · InterpretingtheResultsofMOCalculations % % 4% 2 Computer Experiment! 2:

Geometry  Optimization     16  

3.2 Description  of  the  Experiment  1. Taking   at   least   five   of   molecules   that   you   constructured   in   Experiment   1,   run  

geometry  optimization  jobs  on  them  using  B3LYP/SVP.    

2. Compare   your   optimized   structures   with   experimental   data,   and   summarize   in   a  

table.  

3. Deduce   the  bond  nature  as   single,  double,   triple…from   the   critical  bond  distances,  

and  compare  the  calculated  bond  orders  from  the  Mayer  or  Löwdin  analysis  with  the  

chemical   nature   of   the   bonds.   Plot   the   bond   order   versus   the   bond  distance   for   a  

given  bond  type  (e.g.  the  C-­‐C  bonds  in  C2H6,  C2H4  and  C2H2).  

4. Perform  regression  and  error  analysis  as  you  did  in  Experiment  2.  In  order  to  draw  

more   definitive   conclusions   you   would   certainly   need   to   do   more   than   five  

molecules.  

Table  2:  Experimental  geometric  parameters  of  the  investigated  molecules.  

Parameters   Exp.   Calc.   Parameters   Exp.   Calc.  rCH  in  CH4   1.094     rOH  in  H3COH   0.956    aHCH  in  CH4   109.47     rCO  in  H3COH   1.427    rCC  in  C2H6   1.536     rCH  in  H3COH   1.096    rCH  in  C2H6   1.091     aHCH  in  H3COH   109.03    aHCH  in  C2H6   108.0     aHOC  in  H3COH   108.87    aHCC  in  C2H6   110.91     dHCOH  in  H3COH   180.0    rCC  in  C2H4   1.399     rCH  in  H2CO   1.111    rCH  in  C2H4   1.086     rCO  in  H2CO   1.205    aHCH  in  C2H4   117.6     aHCH  in  H2CO   116.133    aHCC  in  C2H4   121.2     aHCO  in  H2CO   121.9    rCH  in  C2H2   1.063     rCO  in  HCOOH   1.202,  1.343    rCC  in  C2H2   1.203     rCH  in  HCOOH   1.097    aHCC  in  C2H2   180.0     rOH  in  HCOOH   0.972    rCC  in  C6H6   1.397     aOCO  in  HCOOH   124.9    rCH  in  C6H6   1.084     aHCO  in  HCOOH   124.1    aCCC  in  C6H6   120.0     aHOC  in  HCOOH   106.3    aHCC  in  C6H6   120.0     rCO  in  CO2   1.162    rLiH  in  LiH   1.596     aOCO  in  CO2   180.0    rLiF  in  LiF   1.564     rCO  in  CO   1.128    rNH  in  NH3   1.012     rCN  in  glycine   1.469    aHNH  in  NH3   106.67     rCC  in  glycine   1.532    aXNH  in  NH3   112.15     rCO  in  glycine   1.207,  1.357    rOH  in  H2O   0.958     rOH  in  glycine   0.974    aHOH  in  H2O   104.48     rNH  in  glycine   1.014    rHF  in  HF   0.917     rCH  in  glycine   1.096           aCCN  in  glycine   113.0           aCCO  in  glycine   125.0,  111.5           aHOC  in  glycine   110.5           aHNC  in  glycine   113.27           aHNH  in  glycine   110.29           aHCH  in  glycine   107.04      

Page 17: ESSENTIAL COMPUTER EXPERIMENTSscienide2.uwaterloo.ca/~nooijen/Chem-440-computational/... · 2013-09-10 · InterpretingtheResultsofMOCalculations % % 4% 2 Computer Experiment! 2:

Geometry  Optimization     17  

 

Page 18: ESSENTIAL COMPUTER EXPERIMENTSscienide2.uwaterloo.ca/~nooijen/Chem-440-computational/... · 2013-09-10 · InterpretingtheResultsofMOCalculations % % 4% 2 Computer Experiment! 2:

Geometry  Optimization     18  

4 Computer  Experiment  4:  Relative  Energies  of  Isomers  

4.1 Background  In  this  experiment  you  will  conduct  a  frequency  analysis  at  the  stationary  points  of  

the  potential  energy  surface.  The  goal  of  this  experiment  is  to  get  a  feeling  for  how  

to  locate  different  minima  on  a  given  potential  energy  surface,  to  characterize  their  

nature  using  frequency  calculations  and  to  understand  the  chemical  implications  of  

the  different  minima.  

The  necessary  theoretical  background  is  collected  in  section  3  (nature  of  stationary  

points)  and  section  Error!  Reference  source  not  found.  (meaning  of  vibrational  

and  thermal  corrections  to  the  total  energy).  Briefly,  the  total  energy  of  a  molecule  consists  to  a  good  approximation  of  additive  contributions  

from   its   electronic   energy   (together   with   the   nuclear   repulsion),   its   translational   energy,   its  

rotational  energy  and  its  vibrational  energy.  The  latter  contribution  may  be  divided  into  a  part  

corresponding   to   the   zero-­‐point   energy   ( Ezpe  sum   of   the   energies   of   all   ν=0   levels)   and   a  

thermal  correction  ( Evib* )  coming  from  Boltzmann-­‐population  of  the  higher  vibrational  levels  of  

the  system.  

  Etot = Eele + Etra + Erot + Evib* + Ezpe            

  (  17)  Contributions  from  translational,  rotational  and  excited  vibrational  states( Etra ,   Erot  

and   Evib*  accordingly)  are  frequently  negligible  in  comparing  the  energies  of  

different  isomers  but  the  zero-­‐point  correction  may  be  important.  It  is  obtained  

from  

                   

  E

ZPE= h!

kk=1

3N!6

"   (  18)  

With   ! k  being  the  k’th  vibrational  frequency  of  the  molecule.  

As  you  have  determined  several  stationary  points  and  their  character  on  the  

potential  energy  surface  which  correspond  to  different  conformers  or  electronic  

Page 19: ESSENTIAL COMPUTER EXPERIMENTSscienide2.uwaterloo.ca/~nooijen/Chem-440-computational/... · 2013-09-10 · InterpretingtheResultsofMOCalculations % % 4% 2 Computer Experiment! 2:

Geometry  Optimization     19  

states,  you  may  be  interested  in  the  population  of  these  states  at  a  certain  

temperature.  Therefore,  Boltzmann-­‐statistics  is  employed.    In  Boltzmann  statistics  

the  fractional    population  of  the  i’th  state  is  given  by:  

 

Ni = N e!" ikT

e!" j

kT#                

  (  19)  

where   Ni  is  the  number  of  particles  in  the  i’th  energy  level   ! i ,   N  the  number  of  all  

particles,   k  is  the  Boltzmann-­‐constant,   T  the  temperature  in  Kelvin  and  the  sum  

includes  all  energy  states.  

4.2 Description  of  the  Experiment    Similarly,  as  in  the  last  experiment,  build  the  Z-­‐matrices  for  the  two  geometric  

confomers  of  glyoxal  (trans-­‐,  cis-­‐)  as  well  as  for  the  three  different  

confomers/isomers  of  butadiene  (trans-­‐,  cis-­‐)  and  cyclo-­‐butene.  Run  a  B3LYP/DFT  

calculation  with  the  SVP  basis  set.    

                                                                               Figure  3:  The  two  isomers  of  glyoxal:  trans  (left)  and  cis  (right).  

 

                               Figure  4:  Three  isomers  of  C4H6:  trans  (left)  and  cis  (Middle)  butadiene  and  cyclobutene  (right).  

 

Conduct  the  following  steps:  

Page 20: ESSENTIAL COMPUTER EXPERIMENTSscienide2.uwaterloo.ca/~nooijen/Chem-440-computational/... · 2013-09-10 · InterpretingtheResultsofMOCalculations % % 4% 2 Computer Experiment! 2:

Geometry  Optimization     20  

1. Execute   a   full   geometry   optimization   for   all   conformers   and  determine   the  

stationary   points   on   the   potential   energy   surface.   Try   several   starting  

geometries  (distort  the  molecule)  

Determine  whether  the  obtained  stationary  points  are  local  minima.  To  this  

end,  perform  frequency  calculations.  Use  your  chemical  intuition  in  order  to  

guess  a  starting  geometry  that  leads  to  convergence  to  a  first-­‐order  saddle  

point.  Confirm  your  suspicion  by  a  frequency  analysis.  

2. If   you   have   been   successful   in   finding   different   local  minima,   compare   the  

relative  energies  of  each  isomer.    

Page 21: ESSENTIAL COMPUTER EXPERIMENTSscienide2.uwaterloo.ca/~nooijen/Chem-440-computational/... · 2013-09-10 · InterpretingtheResultsofMOCalculations % % 4% 2 Computer Experiment! 2:

Geometry  Optimization     21  

Table  3:  Relative  energies  of  the  isomers  of  C2H2O2  and  C4O6  in  kJ/mol.  

 

 

   

3. Does   inclusion   of   Zero-­‐Point-­‐Energy   improve   the   relative   energies  

significantly?  Compare  the  magnitude  of  the  thermal  correction  to  that  of  the  

ZPE   corrections.  Which   contribution   is  more   significant   for   relative   isomer  

energies  ?  

4. Calculate   the   fractional   population   of   each   isomeric   form   using   Boltzmann  

statistics?   Will   you   necessarily   observe   the   different   isomers   in   this  

proportion   in   actual   experiments?   Discuss   possible   sources   of   deviations  

from  the  expected  ratios.        

                                                                                 

                                                                                                               5  BUTZ  KW,  KRAJNOVICH  DJ,  PARMENTER  CS,  JOURNAL  OF  CHEMICAL  PHYSICS  93  (3):  1557-­‐1567  AUG  1  1990  6 ENGELN R, CONSALVO D, REUSS J, CHEMICAL PHYSICS 160 (3): 427-433 MAR 15 1992 7  SPELLMEYER  DC,  HOUK  KN,   J.  AM.CHEM.SOC.  110,  11,  3412-­‐3416,  1988;  WIBERG  KB,  FENOGLIO  RA,   J.  AM.CHEM.SOC.  90,  13,  3395-­‐3397,  1968

  C2H2O2   C4H6  

                       Trans-­‐   0   0                          Cis-­‐   16(5   17(6                            Cyclo-­‐   -­‐   46(7  


Recommended