+ All Categories
Home > Documents > Estimation of parameters for simulation of steady state ... · 7/2/2012  · k k nf FM rg f rg u...

Estimation of parameters for simulation of steady state ... · 7/2/2012  · k k nf FM rg f rg u...

Date post: 05-Feb-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
41
Estimation of parameters for simulation of steady state foam flow in porous media Kun Ma, Jose L. Lopez-Salinas, Sibani Lisa Biswal and George J. Hirasaki Department of Chemical & Biomolecular Engineering Rice University, Houston, TX 07/02/2012
Transcript
  • Estimation of parameters for simulation of

    steady state foam flow in porous media

    Kun Ma, Jose L. Lopez-Salinas, Sibani Lisa Biswal and George J. Hirasaki

    Department of Chemical & Biomolecular Engineering

    Rice University, Houston, TX

    07/02/2012

  • Outline

    1. Foam simulators have many parameters. How do we

    determine them?

    2. Compare the experimental results with the foam models in

    a commercially available reservoir simulator.

    3. Develop methodology to describe foam mobility from

    common foam experiments.

  • System A

    System B

  • 1-D foam experiments (System A)

    Sandpack: silica sand 20/40

    Length: 27.5 cm

    Inner diameter: 2.58 cm

    Permeability: 158.0 darcy

    Porosity: 36.0%

    Surfactant: IOS 1518 with 1.0% wt NaCl

    R-CH(OH)-CH2-CH(SO3-)-R’ (~75%)

    R-CH=CH-CH(SO3-)-R’ (~25%),

    where R+R’ = C12-15

  • 1-D foam experiments

    Total superficial velocity: 20 ft/day

    gw

    appfoamuu

    pk

    ,

  • 1-D foam experiments

    Total superficial velocity: 20 ft/day

  • Foam model

    FMkk nfrgf

    rg

    surfwater FFfmmobFM

    1

    1

    )( Dgpkk

    u ggg

    rg

    g

    Gas mobility is a function of both water saturation and surfactant

    concentration.

    1. Ashoori E, Heijden TLM, Rossen WR (2010) Fractional-Flow Theory of Foam Displacements With Oil. SPE Journal

    15:pp. 260-273

    2. Computer Modeling Group (2007) STARSTM User's Guide. Calgary, Alberta, Canada

    gas m

    obili

    ty r

    eduction (

    1/F

    M)

  • STARS Foam model (old)

    surfwater FFfmmobFM

    1

    1

    )](arctan[5.0

    fmdrySepdryF wwater

    1. Rossen, W. R. and Renkema, W. J. (2007). Success of Foam SAG Processes in Heterogeneous Reservoirs. SPE Annual

    Technical Conference and Exhibition. Anaheim, California, U.S.A., Society of Petroleum Engineers.

    ( )

    1

    epsurfswsurf s

    s

    CF for C fmsurf

    fmsurf

    for C fmsurf

    fmmob: the reference foam

    mobility reduction factor;

    fmdry: the critical water

    saturation (volume fraction)

    above which the maximum foam

    strength is reached;

    fmsurf: the critical surfactant

    concentration above which gas

    mobility is independent of

    surfactant concentration.

  • High and low quality regime

    1. Cheng, L., Reme, A. B., et al. (2000). Simulating Foam Processes at High and Low Foam Qualities. SPE/DOE Improved

    Oil Recovery Symposium. Tulsa, Oklahoma.

    2. Alvarez, J. M., Rivas, H. J., et al. (2001). Unified Model for Steady-State Foam Behavior at High and Low Foam

    Qualities. SPE Journal 6(3).

    1

    ( ) /

    ( ) / ( ) /

    ( ) /1 (1 )

    ( ) /

    rg g

    g

    rw w rg g

    rg g

    rw w

    k Sf

    k S k S

    k S

    k S

    fmdrySS ww *

    1

    *

    **

    * ))(

    )()(1(1

    g

    w

    wrw

    ww

    nf

    rg

    gSk

    SFMSkf

    ?

  • Sw* and fmdry

    An example using fmmob = 10000,

    epdry=1000 and fmdry = 0.1:

    1. Sw* is close but not equal to fmdry;

    2 . Sw* can be calculated through

    )()(max *,, wappfoamwappfoam SS

    fmdry=0.1000

    Sw*=0.1038

  • Sw* and fmdry

    An example using fmmob = 10000,

    epdry=1000 and fmdry = 0.1:

    fg-Sw curve is very steep near Sw* and precise

    calculation of Sw* is needed.

    fg*

    fmdry=0.1000

    Sw*=0.1038

    transition

    foam quality

  • The problem to solve

    g

    w

    f

    rg

    w

    wrw

    appfoamfmdryfmmobSkSk

    measured

    ),,()(

    1)(

    **

    *

    ,

    ),,(

    )(1

    1)(

    *

    *

    *

    fmdryfmmobSk

    Skmeasuredf

    w

    f

    rg

    g

    w

    wrw

    g

    )()(max *,, wappfoamwappfoam SS

    g

    w

    f

    rg

    w

    wrw

    wappfoamSkSk

    S

    )()(

    1)(,

    Solve fmmob, fmdry and Sw* through the following equations:

  • Using Equations (c) and (d) to determine a

    contour plot 2 of μfoam,app as a function of fmmob and fmdry

    Eqn (c)

    Eqn (d)

    Using Equations (a) and (b) to determine a

    contour plot 1 of fg* as a function of fmmob and

    fmdry

    Eqn (a)

    Perform superposition of contour plots 1 and 2 and indentify

    the point (fmmob, fmdry) where fg*= fg,measured

    * in contour plot

    1 and μfoam,app= μfoam, measured* in contour plot 2 cross over

    Eqn (b)

    )(

    )(1

    1

    *

    *

    *

    w

    f

    rg

    g

    w

    wrw

    g

    Sk

    Skf

    )(

    )(1

    1*,

    w

    f

    rg

    g

    w

    wrw

    measuredg

    Sk

    Skf

    g

    w

    f

    rg

    w

    wrw

    wappfoamSkSk

    S

    )()(

    1)(,

    )()(max *,, wappfoamwappfoam SS

  • Match experimental data

    fg=0.5

    Computed from:

    )(

    )(1

    1

    *

    *

    *

    w

    f

    rg

    g

    w

    wrw

    g

    Sk

    Skf

    Computed from:

    g

    w

    f

    rg

    w

    wrw

    wappfoamSkSk

    S

    )()(

    1)(,

  • Match experimental data

    fmdry = 0.072

    fmmob

    = 44200

  • Match experimental data Total superficial velocity: 20 ft/day

    fmmob=44200

    fmdry=0.072

    epdry=1000

  • Effect of epdry

    fmmob = 44200, and fmdry = 0.072

  • Dependence on surfactant concentration

  • Revised Foam model (new)

    surfwater FFfmmobFM

    1

    1

    )])((arctan[

    5.0

    epfmdrysww

    water

    fmsurf

    CfmdrySepdry

    F

    instead of

    fmdry in the old

    model

    fmsurfC

    fmsurfCfmsurf

    C

    F

    sw

    sw

    epsurfsw

    surf

    for 1

    for )(

  • Surface tension

    fmsurf (hypothesized)

  • Match experimental data

  • Comparison of Sw

  • System A

    System B

  • Foam apparatus for high temperature

    (System B)

  • Experimental data

    Surfactants: ZA blend

    Temperature: 94℃

  • Match experimental data

    38799fmmob

    044.0fmdry

  • Match experimental data

    Surfactants: ZA blend

    Temperature: 94℃ Total superficial velocity: 31.0 ft/day

  • Experimental data (shear thinning)

  • Shear thinning effect in foam model

    surfshearwater FFFfmmobFM

    1

    1

    FMkk nfrgf

    rg

    )](arctan[5.0

    fmdrySepdryF wwater

    epv

    refg

    g

    shearu

    uF )(

    ,

    1surfF (default value)

  • Shear thinning effect

    g

    gw

    f

    rg

    w

    wrw

    wappfoamuSkSk

    S

    ),()(

    1)(,

    ),(

    )(1

    1)(

    gw

    f

    rg

    g

    w

    wrw

    wg

    uSk

    SkSf

    wn

    wcgr

    wcwrwrw

    SS

    SSkk )

    1(0

    FMSS

    SSkk g

    n

    wcgr

    wcwrg

    f

    rg

    )

    11(0

    (next slide)

  • Shear thinning effect

    1)1

    1(

    )()](arctan[

    5.0

    ,

    0

    ,

    gn

    wcgr

    wcw

    gg

    appfoamrg

    epv

    refg

    gw

    SS

    SS

    f

    k

    u

    ufmdrySepdryfmmob

    wn

    appfoamrw

    gw

    wcgrwcwk

    fSSSS

    1

    ,

    0

    )1()1(

    (next slide)

  • Log-log fit to experimental data

    )(log10 gux

    })1(

    )1({arctan

    5.0

    1)1(

    1

    log1

    ,

    0

    1

    ,

    0

    ,

    0

    10

    fmdryk

    fSSSepdry

    k

    f

    f

    k

    ywn

    g

    wn

    appfoamrw

    gw

    wcgrwc

    n

    appfoamrw

    gw

    gg

    appfoamrg

    )(log,

    10 epv

    refgu

    fmmobxepvy

  • Log-log fit to experimental data

    (fg=0.7)

  • Match experimental data

    8693.0epv

    6883.5)(log,

    10 epvrefgu

    fmmob

    dayftuif refg /7.21,

    6883.58693.0

    )(log,

    10

    xy

    u

    fmmobxepvy

    epv

    refg

    33614fmmob

    7.0gf for shear-thinning modeling

  • Parameters obtained

    33614fmmob 044.0fmdry 8693.0epv

    ,

    ,

    dayftu refg /7.217.00.31,

    Shear-thinning modeling

    Dry-out modeling

    (assumed)

    (assumed)

    38799fmmob 044.0fmdry 0epv

    arbitraryu refg ,

    dayftutotal /0.31

    7.0gf

    Used in next slide

    Slide 25

  • Match experimental data

  • Conclusions

    1. A new method of fitting the parameters in the STARS foam

    model is presented and a unique group of parameters is

    found for modeling the foam property in silica sandpack with

    the surfactant 0.02%-0.2% IOS 1518 in 1.0% NaCl solution.

    2. A revised dry-out model for effect of surfactant

    concentration is proposed.

    3.The critical surfactant concentration (fmsurf) in the foam

    model is at least one order of magnitude above the CMC.

    4. The shear thinning effect is modeled using the STARS

    foam model.

  • Thank you!

  • Parameters for foam simulation

  • Match experimental data (System B)

    38799fmmob

    044.0fmdry

  • Effect of epdry

    An example using fmmob = 10000, and

    fmdry = 0.1:


Recommended