+ All Categories
Home > Documents > Estimation of Signal Models for Aerospace and Industrial Applications slides

Estimation of Signal Models for Aerospace and Industrial Applications slides

Date post: 18-Aug-2015
Category:
Upload: anirban-krishna-bhattacharyya
View: 5 times
Download: 2 times
Share this document with a friend
Popular Tags:
85
GoBack
Transcript
  1. 1. GoBack
  2. 2. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #1/77 Estimation of Signal Models for Aerospace and Industrial Applications Anirban Krishna Bhattacharyya Department of Electrical Engineering Indian Institute of Technology Kharagpur http://www.iitkgp.ac.in
  3. 3. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #2/77 Motivation and Overview Figure 1: Motivation
  4. 4. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #2/77 Motivation and Overview 1. Particle Swarm Optimization, proposed algorithms 2. Parametric Spectral Estimation of non-stationary rational stochastic processes 3. Noise modeling to enhance estimation (application to aerospace target tracking) 4. Model Predictive Guidance 5. Fault detection and monitoring for Hot Steel Rolling process 6. Conclusion Figure 1: Motivation
  5. 5. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #3/77 Particle Swarm Optimization (PSO) Evolutionary optimization - Kennedy and Eberhart [11]. Basic PSO: Velocity assignment for each of the M particles is given by vi(t + 1) = Wvi(t) + C1rand()(xpb,i(t) xi(t)) + C2rand()(xgb(t) xi(t)) where, t is iteration step , xi(t) = [x1 i (t), ...., xN i (t)]T is position vector in RN . Particles best: xpb,i(t) = arg max t [f (xi(t))] . Global best: xgb(t) = arg max i max t [f (xi(t))] .
  6. 6. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #4/77 Particle Swarm Optimization (PSO) Large number of function evaluations required to converge, so several variants have been proposed. Table 1: Literature map Innovation Literature Boundary Conditions [1, 27, 12, 24, 22] Variation of Weights [27, 23, 13, 3, 25] Preservation of Diversity [13, 3] Hierarchy [13, 3, 5, 15, 21] Probability of convergence to the global optimum increased, but number of function evaluations still quite large.
  7. 7. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #5/77 Particle Swarm Optimization (PSO) Kennedy and Mendes = fully informed swarms perform better [20, 14, 16]. I Number of iterations used is very high or the search space is very small. I In case of premature termination cannot be ascertained that the solution achieved is a local optima. Table 2: Comparison of Algorithms Algorithm/ Function Search Problem Paper Evaluations Space Dimension SEPSO [13] 200000 (10, 10) 30 ARPSO [13] 400000 (5.12, 5.12) 20 DoLPSO [13] 200000 (100, 100) 50 (H or M) PSO-TVAC [3] 200000 (10, 10) 30 CPSO [5] 200000 (5.12, 5.12) 30 FDR-PSO [15] 10000 (2.048, 2.048) 20
  8. 8. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #6/77 Redistributed Local Search PSO (RLSPSO) Redistribution of the Swarm: If xgb(t 1) = xgb(t). xi(t) = xpb,i(t) + ( rand() (xgb(t) xpb,i(t))); x axis yaxis 10 5 0 5 10 10 5 0 5 10 xpb,l(t) xpb,j(t) xpb,k(t) xgb(t) Local exploration around xgb(t): Explore the region around xgb(t). xi(t) = xi(t) + ( rand() (xgb(t) xi(t)))
  9. 9. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #7/77 Hybrid Gradient Descent PSO (HGDPSO) Hybrid between Levenberg-Marquardt (LM-NLS) and RLSPSO. Switches between the two based on the following conditions: Condition 1 if tness improves when doing LM-NLS then Continue LM-NLS else if LM-NLS terminates then Switch to PSO else if tness then Stop end if Condition 2 if tness at (xgb(t)) improves then Switch to LM-NLS else if tness not improving then Continue PSO else if tness then Stop end if Figure 2: Hybrid optimization scheme Guarantees that in case of premature termination local optima is reached.
  10. 10. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #8/77 Numerical Experiments Table 3: Test functions used in numerical experiments Sphere: fSph(x) = N i=1 x2 i Rosenbrock: fRos(x) = N1 i=1 (100(xi+1 x2 i ) 2 + (xi 1)2) Rastrigin: fRas(x) = N i=1 x2 i 10 cos(2xi) + 10 Griewank: fGri(x) = 1 4000 N i=1 x2 i N i=1 cos xi i + 1 Table 4: Parameters w c1 c2 Initial 0.9 2.5 0.5 Final 0.4 0.5 2.5 Table 5: Test Environment Function Dimension Initialization Search Space Goal Sphere 30 100 100 0.01 Rastrigin 30 100 100 100 Rosenbrock 30 100 100 100 Griewank 30 600 600 0.1
  11. 11. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #9/77 Results: RLSPSO Table 6: Number of iterations to convergence to set optimal value (1000 ensembles) Function Mean Median Mode Success Ratio Sphere 447 430 424 1.0 Rastrigin 518 515 405 1.0 Rosenbrock 933 743 1600 0.848 Griewank 424 395 391 0.99 Table 7: Optimal values in 200000 function evaluations (1000 ensembles) Function Mean Standard deviation Min Sphere 3.297 e-11 5.141 e-11 1.116 e-14 Rastrigin 1.4895 1.2208 1.345 e-13 Rosenbrock 30.989 38.075 6.578 Griewank 1.709 e-02 2.106 e-02 5.274 e-13
  12. 12. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #10/77 Results: RLSPSO 500 400 300 200 100 0 0 50 100 150 200 250 300 Gbest Frequency Histogram of f(xgb (t)) for 1000 ensembles of the Rosenbrock function (a) Rosenbrocks function. 7 6 5 4 3 2 1 0 0 50 100 150 200 250 Gbest Frequency Histogram of f(xgb (t)) for 1000 ensembles of the Rastigrin function (b) Rastrigins function. Figure 3: Histograms of tness
  13. 13. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #11/77 Results: HGDPSO 40 30 20 10 0 0 100 200 300 400 500 600 Gbest Frequency (a) Rastrigins function. 25 20 15 10 5 0 5 10 15 20 25 Gbest Frequency (b) Rosenbrocks function. Figure 4: Histograms of tness
  14. 14. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #12/77 Results: HGDPSO CF 6 proposed by Liang, Suganthan and Deb [10]. 500 400 300 200 100 0 0 50 100 150 Gbest Frequency Figure 5: Histogram of tness Table 8: Number of function evaluations Function Minimum Maximum Mean Rastrigin 78420 196510 175510 Rosenbrock 167470 191240 181949 CF 6 64844 68816 67185
  15. 15. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #13/77 Parametric Spectral Estimation Rao [18] = Evolutionary spectrum matching time varying autoregressive model (AR) Grenier [9, 8, 7] = Orthogonal basis function based Time varying autoregressive moving average (ARMA) model Kaderli and Kayhan [2] = Estimators tting the parametric spectrum expression to an estimated time-frequency distribution Matz and Hlawatsch [6] = ARMA models and parameter estimators for the underspread processes Jachan et. al. [17] and Matz and Hlawatsch [6] = spectral analysis furnishes satisfactory results only for underspread processes. I No method to determine the order of the AR and MA parts. I Applicable only to slow non-stationary/underspread processes. Singular value based order estimation Cadzow [4] Zhang and Zhang [26] for AR and for ARMA models resp.
  16. 16. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #14/77 Non-stationary Order Estimation Non-stationary rational stochastic process: p i=0 an i x(n i) = q j=0 bn j w(n j) Autocorrelation matrix is Rx = rx(0, 0) rx(0, 1) rx(0, N) rx(1, 1) rx(1, 0) rx(1, N 1) . . . . . . . . . rx(N, N) rx(N, N + 1) rx(N, 0) Articial auto-correlation matrix for time instant n Rn x = rx(n, 0) rx(n, 1) rx(n, n) rx(n, 1) rx(n, 0) rx(n, n + 1) . . . . . . . . . rx(n, n) rx(n, n + 1) rx(n, 0)
  17. 17. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #15/77 Non-stationary Order Estimation 1 2 3 4 5 6 0.9999 0.9999 0.9999 0.9999 1 1 1 k (k) (a) Order of AR part of model is 2. 2 4 6 8 0.85 0.9 0.95 1 k (k) (b) Order of AR part of model is 5. Figure 6: Model changes order suddenly from ARMA(2,2) to ARMA(5,5).
  18. 18. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #16/77 Time-varying ARMA Parameter Estimation rx(n, 0) + an 1 rx(n, 1) + + an 3 rx(n, 3) = f1 s (An) rx(n, 1) + an 1 rx(n, 0) + + an 3 rx(n, 2) = f2 s (An) rx(n, 2) + an 1 rx(n, 1) + + an 3 rx(n, 1) = bn 0 bn 2 rx(n, 3) + an 1 rx(n, 2) + + an 3 rx(n, 0) = 0 . . . rx(n, l) + an 1 rx(n, l + 1) + + an 3 rx(n, l + 3) = 0 where f1 s (An) = (bn 0 )2 + (bn 1 )2 + (bn 2 )2 an 1 bn 0 bn 1 an 1 bn 1 bn 2 + (an 1 )2bn 0 bn 2 an 2 bn 0 bn 2 f2 s (An) = bn 0 bn 1 + bn 1 bn 2 an 1 bn 0 bn 2 An = [an 1 an 2 an 3 bn 0 bn 1 bn 2 ]T and l is the maximum delay up to which the equations are considered.
  19. 19. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #17/77 Results:Spectrum Estimation Example used by Kaderli and Kayhan [2] an 1 = 0 an 2 = 0.55 1.2 n N 2 N1 2 bn 0 = 1 bn 1 = 0.7 1.2 n N 2 N1 2 bn 2 = 0.36 The signals length is N = 238.
  20. 20. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #18/77 Results:Spectrum Estimation Time (n) Frequency(rad./sample) Actual Frequency Characteristics 50 100 150 200 0 1 2 3 Time (n) Frequency(rad./sample) Modeled Frequency Characteristics 50 100 150 200 0 1 2 3 0.6 0.8 1 1.2 1.4 1.6 1.8 0.6 0.8 1 1.2 1.4 1.6 1.8 Figure 7: True and estimated spectrum erramp = n |S(n, ej)| n | S(n, ej)| n |S(n, ej)| erramp = 3.1785 105
  21. 21. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #19/77 Results:Spectrum Estimation Comparison of algorithms: Figure 8: Estimated parameters 50 100 150 200 0.04 0.02 0 0.02 0.04 Time (n) CoefficientValue a 1 true estimate 50 100 150 200 0.3 0.4 0.5 Time (n) CoefficientValue a 2 true estimate 50 100 150 200 0.996 0.998 1 1.002 1.004 Time (n) CoefficientValue b 0 true estimate 50 100 150 200 0.5 0.4 0.3 Time (n) CoefficientValue b 1 true estimate 50 100 150 200 0.34 0.35 0.36 0.37 0.38 Time (n) CoefficientValue b2 true estimate Figure 9: Estimated parameters
  22. 22. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #20/77 Results:Spectrum Estimation Time (n) Frequency(rad./sample) Actual Frequency Characteristics 20 40 60 80 100 0 1 2 3 Time (n) Frequency(rad./sample) Modeled Frequency Characteristics 20 40 60 80 100 0 1 2 3 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 Figure 10: True and estimated spectrum 20 40 60 80 100 0.2 0 0.2 Time (n) CoefficientValue a 1 true estimate 20 40 60 80 100 0 0.1 0.2 Time (n) CoefficientValue a 2 true estimate 20 40 60 80 100 0.2 0.3 0.4 0.5 Time (n) CoefficientValue b 0 true estimate 20 40 60 80 100 0.4 0.2 0 0.2 Time (n) CoefficientValue b 1 true estimate 20 40 60 80 100 0.4 0.2 0 0.2 0.4 Time (n) CoefficientValue b2 true estimate Figure 11: Estimated parameters erramp = 1.4913 103
  23. 23. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #21/77 Aerospace Target Tracking Figure 12: Typical interception geometry.
  24. 24. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #22/77 Seeker Noise Modeling - Why? 15 16 17 18 19 20 21 0.5 0 0.5 1 1.5 SLR(deg./sec.) Time (sec.) kinematic measurement Figure 13: Typical SLR variation Challenges: I Closing velocity 3km/sec I Terminal phase 5 6sec I Sampling rate is 40Hz I Required miss-distance 10m Estimator (Extended Kalman lter) used to im- prove signal quality
  25. 25. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #23/77 Seeker Noise Figure 14: Seeker block diagram Noise depends on relative displacement between the target and the interceptor (RT M ).
  26. 26. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #24/77 Seeker Noise Modeling Figure 15: Black box noise model
  27. 27. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #25/77 Noise Statistics Mean, standard deviation and correlation obtained by taking expectation over ensembles. Mean (RT M ) = E [ (RT M )] Standard deviation (RT M ) = 1 N 1 N i=1 [i (RT M ) (RT M )]2 Correlation R = 1 N 1 N i=1 (i. i ) N is the number of ensembles.
  28. 28. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #26/77 Noise Statistics 0 2 4 6 8 10 12 7 6 5 4 3 2 1 0 1 Range to Go (Km.) NoiseMean(rad./sec.) Z Channel (a) Mean of noise in the Z Channel. 0 2 4 6 8 10 12 5 0 5 10 15 20 25 Range to Go (Km.) NoiseMean(rad./sec.) Y Channel (b) Mean of noise in the Y Channel. Figure 16: Variation of noise mean with RT M .
  29. 29. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #27/77 Noise Statistics 0 2 4 6 8 10 12 0 0.05 0.1 0.15 0.2 0.25 Range to Go (Km.) NoiseStd(rad./sec.) Z Channel (a) Std of noise in the Z Channel. 0 2 4 6 8 10 12 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Range to Go (Km.) NoiseStd(rad./sec.) Y Channel (b) Std of noise in the Y Channel. Figure 17: Variation of noise standard deviation with RT M .
  30. 30. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #28/77 Noise Statistics 20 40 60 80 100 120 20406080100120 0 5 10 15 20 x 10 4 Delay Z Channel Delay Correlation(rad.2 /sec.2 ) (a) Auto-correlation of noise in the Z Channel. 20 40 60 80 100 120 20 40 60 80 100 120 0 5 10 15 20 x 10 4 Delay Y Channel Delay Correlation(rad.2 /sec.2 ) (b) Auto-correlation of noise in the Y Channel. Figure 18: Auto-correlation of noise in both channels.
  31. 31. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #29/77 Noise modeling: Approaches 1. White Noise with standard deviation (RTM ). 2. Colored Noise (Auto-Regressive (AR) spectrum) with standard deviation (RTM ). 3. Colored Noise ( RTM dependent Auto-Regressive Moving Average (ARMA) spectrum ).
  32. 32. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #30/77 White Noise with std. (RTM ) Figure 19: Noise modeled as white noise with standard deviation (RT M ) Varying noise standard deviation quantied as function of RT M by curve-tting. In real-time varying measurement variance (Rl) at each step l of the sequencing index used in Kalman lter by interpolation from curve based on the RT M measurement obtained. Kalman gain used in estimator Kl = Pl|l1HT l (HlPl|l1HT l + Rl)1
  33. 33. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #31/77 Colored Noise with std. (RTM ) Figure 20: Noise modeled as colored noise with standard deviation (RT M ) Noise sequence normalized with corresponding standard deviation producing the normalized colored noise sequence i(RT M ). i(RT M ) = i(RT M ) (RT M ) i = 1(1)N Auto-correlation of i(RT M ) computed. Order of the AR model estimated using i(RT M ) for the model i(RT M ) = a1i(RT M 1) a2i(RT M 2) + b0 is white noise with unity variance.
  34. 34. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #32/77 Colored Noise with std. (RTM ) 20 40 60 80 100 120 20 40 60 80 100 120 0.2 0 0.2 0.4 0.6 0.8 DelayDelay SLR2 (rad.2 /sec.2 ) (a) Gamma axis 20 40 60 80 100 12020406080100120 0.4 0.2 0 0.2 0.4 0.6 0.8 DelayDelay SLR2 (rad.2 /sec.2 ) (b) Phi axis Figure 21: Auto-correlation of normalized noise
  35. 35. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #33/77 Colored Noise with std. (RTM ) 1 2 3 4 5 0.7 0.75 0.8 0.85 0.9 0.95 1 k (k) (a) Gamma axis 1 2 3 4 5 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 k (k) (b) Phi axis Figure 22: AR model order of normalized noise
  36. 36. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #34/77 Colored Noise with std. (RTM ) Yule-Walker equations: rx(0) + a1rx(1) + + a4rx(3) = (b0)2 rx(1) + a1rx(0) + + a4rx(2) = 0 . .. rx(l) + a1rx(l + 1) + + a4rx(l + 3) = 0 Solved using the Data Least Square technique [19]. Augmentation of states [x(k) Y (k) Y (k 1) Y (k 2) Y (k 3) Y (k 4) Z (k) Z (k 1) Z (k 2) Z (k 3) Z (k 4)]T where the Y s and Zs depict noise states in the Y and Z channels respectively and x(k) is the kinematic state
  37. 37. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #35/77 Colored Noise ( ARMA(RTM )) Figure 23: Seeker noise modeled as colored noise. 1 2 3 4 5 6 0.9 0.95 1 p Value 1 2 3 4 5 6 7 8 0.8 0.9 1 q Value Figure 24: Order estimation of ARMA model for Z axis seeker noise
  38. 38. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #36/77 Results:Noise Modeling 20 40 60 80 100 120 20 40 60 80 100 120 1 0 1 2 x 10 5 Delay Delay SLR2 (rad.2 /sec.2 ) (a) Phi axis 20 40 60 80 100 120 20 40 60 80 100 120 1 0 1 2 3 x 10 5 DelayDelay SLR2 (rad.2 /sec.2 ) (b) Gamma axis Figure 25: SLR measurement error covariance
  39. 39. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #37/77 Results:Noise Modeling (a) Phi axis (b) Gamma axis Figure 26: SLR estimation error covariance with stationary white noise model
  40. 40. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #38/77 Results:Noise Modeling White Noise with standard deviation (RT M ): 50 100 150 50 100 150 1 2 3 4 5 x 10 7 Delay Delay SLR2 (rad.2 /sec.2 ) (a) Phi axis 50 100 150 50 100 150 0 2 4 6 8 x 10 7 Delay Delay SLR2 (rad.2 /sec.2 ) (b) Gamma axis Figure 27: Estimation error covariance
  41. 41. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #39/77 Results:Noise Modeling Colored Noise with standard deviation (RT M ): AY = [0.0584 0.0405 0.0358 + 0.0007] and AZ = [0.0146 0.0405 0.0221 0.017] 50 100 150 50 100 150 2 4 6 8 10 x 10 7 Delay Delay SLR2 (rad.2 /sec.2 ) (a) Phi axis. 50 100 150 50 100 150 0 2 4 6 8 x 10 7 Delay Delay SLR2 (rad.2 /sec.2 ) (b) Gamma axis. Figure 28: Estimation error covariance
  42. 42. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #40/77 Results:Noise Modeling Colored Noise ( RT M dependent ARMA spectrum ): RTM Frequency(rad./sample) 20 40 60 80 100 0 0.5 1 1.5 2 2.5 3 0.01 0.02 0.03 0.04 (a) Phi axis. RTM Frequency(rad./sample) 20 40 60 80 100 0 0.5 1 1.5 2 2.5 3 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 (b) Gamma axis. Figure 29: Spectrogram of noise
  43. 43. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #41/77 Results:Noise Modeling 50 100 150 50 100 150 0 2 4 6 x 10 7 Delay Delay SLR2 (rad.2 /sec.2 ) (a) Phi axis. 50 100 150 50 100 150 0 5 10 15 x 10 7 Delay Delay SLR2 (rad.2 /sec.2 ) (b) Gamma axis. Figure 30: Estimation error covariance
  44. 44. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #42/77 Model Predictive Guidance (MPG) Figure 31: Guidance Loop
  45. 45. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #43/77 Model Predictive Guidance (MPG) TPNCa Target y Ta TV MV x r y PPNCa LOS Missile Figure 32: Lateral acceleration (Latax)
  46. 46. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #44/77 Model Predictive Guidance (MPG) Figure 33: General Model Predictive Problem Plant [28] . Y(t) = AY(t) + Bu(t) where Y = . y .. y . aT . aM T , . aT is the tar- get acceleration, . aM is the achieved acceleration. Optimization problem, min |y(tf )| such that tf t0 |u(t)| dt is minimum ulim u(t) ulim, t0 t tf | . u | . ul , t0 t tf The constraints are |ulim| = 120m/sec2, ul = 3m/sec3, t0 = 0 and tf = 50.
  47. 47. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #45/77 Model Predictive Guidance (MPG) Figure 34: Model Predictive Guidance
  48. 48. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #46/77 Results:MPG 52 42 32 22 12 2 0 10 20 30 40 50 60 Time to go (sec) ComputedCommandedAcceleration(m/sec2 ) Figure 35: Input proles computed by optimizer
  49. 49. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #47/77 Results:MPG 42 32 22 12 2 15 20 25 30 35 40 45 Time to go (sec) CommandedAcceleration(m/sec2 ) (a) Commanded Acceleration. 42 32 22 12 2 20 40 60 80 100 120 140 Time to go (sec) LateralMiss(m) (b) Lateral Miss. Figure 36: Predictive Guidance.
  50. 50. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #48/77 Results:MPG 0 10 20 30 40 50 60 10 0 10 20 30 40 50 Time samples Commandedacceleration(m./s.2 ) T model known T model unknown (a) Commanded Acceleration. 0 10 20 30 40 50 60 0 20 40 60 80 100 120 140 160 Time samples Lateralmiss(m.) T model known T model unknown (b) Lateral Miss. Figure 37: Comparison between correct and wrong models
  51. 51. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #49/77 Fault detection and monitoring The typical operational modes of rolling drive are as following: I No Load (idling) I Single forward Rolling (Single Load) I One forward and one reverse Rolling (Double Load) Figure 38: State transitions
  52. 52. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #50/77 Fault detection and monitoring 10 20 30 40 50 60 1000 500 0 500 1000 time (s) Ia(Amp) (a) Armature current 10 20 30 40 50 60 0 100 200 300 400 500 600 700 800 time (s) Va(V) (b) Armature voltage Figure 39: Typical signals under idling condition.
  53. 53. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #51/77 Fault detection and monitoring 10 20 30 40 50 60 0 1 2 3 4 5 time (s) (rad/s) Figure 40: Rotational velocity
  54. 54. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #52/77 Fault detection and monitoring 10 20 30 40 50 60 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 time (s) Ia(Amp) (a) Armature current 10 20 30 40 50 60 1050 1100 1150 1200 1250 time (s) Va(V) (b) Armature voltage Figure 41: Typical signals under loaded conditions
  55. 55. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #53/77 Fault detection and monitoring 10 20 30 40 50 60 7 7.5 8 8.5 time (s) (rad/s) Figure 42: Rotational velocity
  56. 56. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #54/77 Fault detection and monitoring 600 400 200 0 200 400 8 6 4 2 0 2 4 6 8 Va constant decreasing increasing Figure 43: Pattern of and Va.
  57. 57. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #55/77 Fault detection and monitoring p(x) = K k=1 N(x|k, k)P(k) where, P(k) is mixture weight, subject to constraints 0 P(k) 1 and K k=1 P(k) = 1, and N(x|k, k) is height of the kth component p.d.f. at vector x, given by a Gaussian distribution of mean k and standard deviation k. GMMs are developed for Va t and t . Va t gives a measure of the health of power supply circuit, t gives a measure of the torque. min|k,k,P (k) ||p(x) K k=1 N(x|k, k)P(k)|| such that 1 P(k) 0 K k=1 P(k) = 1
  58. 58. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #56/77 Fault detection and monitoring 100 200 300 400 500 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 x 10 3 Motor Current (A.) Probability pdf GMM (a) Probability of Ia (idling). 1500 2000 2500 3000 3500 4000 4500 0.5 1 1.5 2 2.5 3 3.5 4 4.5 x 10 3 Motor Current (A.)Probability pdf GMM (b) Probability of Ia (single load). Figure 44: Probability distribution functions of Ia.
  59. 59. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #57/77 Fault detection and monitoring 10 20 30 40 50 60 0 2000 4000 6000 8000 time (s) Ia(Amp) 10 20 30 40 50 0 0.5 1 1.5 2 time (s) LoadFlag Figure 45: Load change detection algorithm using CUSUM
  60. 60. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #58/77 Fault detection and monitoring 10 20 30 40 50 60 0 2000 4000 6000 8000 time (s) Ia(Amp) 10 20 30 40 50 60 0 2 4 6 8 time (s) (rad/s) 10 20 30 40 50 0 0.5 1 time (s) FaultFlag (a) Algorithm used on normal motor. 10 20 30 40 50 0 2000 4000 6000 time (s) Ia(Amp) 10 20 30 40 50 0 2 4 6 8 time (s) (rad/s) 10 20 30 40 50 0 0.5 1 time (s) FaultFlag (b) Algorithm used on wobble bearing vibration fault. Figure 46: Fault detection algorithm using KL-divergence.
  61. 61. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #59/77 Conclusion Major contributions: I A hybrid optimization algorithm, which combines the speed of gradient descent techniques with the robustness of the PSO. I A model order estimation algorithm for fast non-stationary stochastic processes with rational power spectra. I A parametric spectral estimation algorithm for non-stationary rational stochastic processes. I An algorithm for estimation of a statistical noise model of measurement noise and associated estimator design for seeker-based aerospace target tracking for homing missiles. I A Model Predictive Guidance algorithm for interception of maneuvering aerospace targets which explicitly considers practical technological constraints of the guidance and control loops. I A fault and load detection algorithm for a steel rolling mill using classier based on a Gaussian Mixture Model using motor current, voltage and speed measurement.
  62. 62. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #60/77 References 1. A. Carlisle and G. Dozier. An off-the-shelf pso. In Proceedings of the 2001 Workshop on Particle Swarm Optimization, Indianapolis, IN, 2001 2. A. Kaderli and S. Kayhan. A Spectral Matching Approach for Parameter and Spectral Estimation of Nonstationary Rational Processes. Signal Processing, IEEE Trans., 49(10):2223 2231, Oct. 2001 3. Asanga Ratnaweera, Saman K. Halgamuge, and Harry C. Watson. Self-Organizing Hierarchical Particle Swarm Optimizer With Time-Varying Acceleration Coefcients. Evolutionary Computation, IEEE Trans., 8(3):240 255, Jun. 2004 4. J. A. Cadzow. Spectral Estimation: An Overdetermined Rational Model Equation Approach. Proc. IEEE, 70(9):907 939, Sep. 1982 5. Frans van den Bergh and Andries P. Engelbrecht. A cooperative approach to particle swarm optimization. Evolutionary Computation, IEEE Trans., 8(3):225 239, Jun. 2004 6. G. Matz and F. Hlawatsch. Nonstationary Spectral Analysis Based on Time-Frequency Operator Symbols and Underspread Approximations. Information Theory, IEEE Trans., 52(3):1067 1086, Mar. 2006 7. Y. Grenier. Rational Non-stationary Spectra and Their Estimation. In 1st ASSP Workshop on Spectral Estimation, Hamilton, Ont., Canada, 1981
  63. 63. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #61/77 References 8. Y. Grenier. Tme Varying Lattices and Autoregressive Models: Parameter Estimation. In ASSP, IEEE International Conference on ICASSP, volume 7, pages 1337 1340, May. 1982 9. Y. Grenier. Time-dependent ARMA Modeling of Nonstationary Signals. Acoustics, Speech and Signal Processing, IEEE Trans., 31(4):899 911, Aug. 1983 10. J. J. Liang, P. N. Suganthan, and K. Deb. Novel Composition Test Functions for Numerical Global Optimization. In Swarm Intelligence Symposium, 2005. SIS 2005. Proceedings 2005 IEEE, pages 68 75, 2005 11. J. Kennedy and R. Eberhart. Particle swarm optimization. In Proc. IEEE Int. Conf. Neural Networks, volume 4, pages 1942 1947, 1995 12. J. Robinson and Y. Rahmat-Samii. Particle swarm optimization in electromagnetics. Antennas and Propagation, IEEE Trans., 52(2):397 407, Feb. 2004 13. Jakob Vesterstrm and Jacques Riget. Particle swarms. Masters thesis, Department of Computer Science, University of Aarhus, May 2002 14. James Kennedy and Rui Mendes. Neighborhood Topologies in Fully Informed and Best-of-Neighborhood Particle Swarms. System, Man and Cybernetics, Part C: Applications and Reviews, IEEE Trans., 36(4):515 519, Jul. 2006
  64. 64. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #62/77 References 15. Kalyan Veeramachaneni, Thanmaya Peram, Chilukuri Mohan, and Lisa Ann Osadciw. Optimization Using Particle Swarms with Near Neighbor Interactions. In E. C.-P. et al., editor, GECCO, pages 110 121. Springer-Verlag Berlin Heidelberg, 2003 16. J. Kennedy. Small worlds and mega-minds: Effects of neighborhood topology on particle swarm performance. In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, volume 3, pages 1931 1938, 1999 17. M. Jachan, G. Matz, and F. Hlawatsch. Time-Frequency ARMA Models and Parameter Estimators for Underspread Nonstationary Random Processes. Signal Processing, IEEE Trans., 55(9):4366 4381, Sept. 2007 18. T. S. Rao. The Fitting of Non-stationary Time-series Models with Time-dependent Parameters. Journal of the Royal Statistical Society. Series B (Methodological), 32(2):312322, 1970 19. Ronald D. DeGroat and Eric M. Dowling. The Data Least Squares Problem and Channel Equalization. Signal Processing, IEEE Trans., 41(1):407 411, Jan. 1993 20. Rui Mendes, James Kennedy, and Jos Neves. The Fully Informed Particle Swarm: Simpler, May be Better. Evolutionary Computation, IEEE Trans., 8(3):204 210, Jun. 2004 21. S. Janson and M. Middendorf. A hierarchical particle swarm optimizer and its adaptive variant. Systems, Man and Cybernatics - Part B: Cybernatics, IEEE Trans., 35(6):1272 1282, Dec. 2005
  65. 65. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #63/77 References 22. Shenheng Xu and Yahya Rahmat-Samii. Boundary Conditions in Particle Swarm Optimization Revisited. Antennas and Propagation, IEEE Trans., 55(3):760 765, Mar. 2007 23. P. N. Suganthan. Particle Swarm Optimiser with Neighbourhood Operator. In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, volume 3, pages 1958 1962, 1999 24. T. Huang and A. Mohan. A hybrid boundary condition for robust particle swarm optimization. IEEE Antennas Wireless Propagation Lett., 5:112 117, 2005 25. Tan Ying, Yang Ya-ping, and Zeng Jian-chao. An Enhanced Hybrid Quadratic Particle Swarm Optimization. In Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications, volume 2, pages 980 985, Oct. 2006 26. X. Zhang and Y. Zhang. Singular Value Decomposition-Based MA Order Determination of Non-Gaussian ARMA Models. Signal Processing, IEEE Trans., 41(8):2657 2664, Aug. 1993 27. Y Shi and R. Eberhart. A modied particle swarm optimizer. In Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on, pages 69 73, May 1998 28. P. Zarchan. Tactical and Strategic Missile Guidance. American Institute of Aeronautics and Astronautics Inc., Virginia, 5 edition, 2007
  66. 66. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #64/77 Publications 1. "Particle swarm based robust predictive control: application to guidance"In SIAM Conference on Control and Its Applications (CT09) , Denver, Colorado, USA, July 2009 2. "Modeling of RF seeker dynamics and noise characteristics for estimator design in homing guidance applications" In Industrial and Information Systems, 2008. ICIIS 2008. IEEE Region 10 and the Third international Conference on , IEEE, pages 1 - 7, 8-10 Dec. 2008 3. "Noise modeling of RF Seeker for homing guidance applications" In Proceedings of International Conference on Avionics Systems, Hyderabad, India, pages 255- 261, Feb. 2008.
  67. 67. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #65/77 Thank You!!!!!
  68. 68. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #66/77 RLSPSO Algorithm: Initialize Population repeat for some iterations do update w by w = (wmax wmin) (itermax iter) /itermax + wmin update c1 by c1 = (c1min c1max) (itermax iter) /itermax + c1max update c2 by c2 = (c2max c2min) (itermax iter) /itermax + c2min update xpb,i(t) update xgb(t) update vi(t + 1) by vi(t + 1) = Wvi(t) + C1rand()(xpb,i(t) xi(t)) + C2rand()(xgb(t) xi(t)) x velocity of errant particles using boundary conditions if xgb(t) has not improved then Redistribute particles if errant particles produced then Place them at the boundary end if end if end for for some iterations do xi(t) = xi(t) + ( rand() (xgb(t) xi(t))) update xpb,i(t) update xgb(t) end for until termination criteria is met or itermax is reached
  69. 69. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #67/77 HGDPSO Algorithm: Start optimization using LM-NLS from one of the search boundaries When LM-NLS stops improving assign nal value of variables to xgb(t) Initialize Population and assign xpb,i(t) Update xgb(t) repeat if xgb(t) does not improve then Continue PSO with redistribution else if xgb(t) has improved then Take xgb(t) as starting point for LM-NLS Continue LM-NLS When LM-NLS stops improving assign nal value of variables to xgb(t) Tell algorithm that xgb(t) has not improved end if until termination criteria is met or itermax is reached
  70. 70. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #68/77 Results: RLSPSO 1 0.8 0.6 0.4 0.2 0 x 10 9 0 50 100 150 200 250 300 350 400 450 500 Gbest Frequency Histogram of f(xgb (t)) for 1000 ensembles of the Sphere function (a) Sphere function. 0.2 0.15 0.1 0.05 0 0 50 100 150 200 250 300 350 400 GbestFrequency Histogram of f(xgb (t)) for1000 ensembles of the Griewank function (b) Griewanks function. Figure 47: Histograms of tness
  71. 71. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #69/77 Stationary Order Estimation p i=0 aix(n i) = q j=0 bjw(n j) where a0 = 1 and w(n) is a white noise sequence. Extended order ARMA (pe, qe) model considered. pe much larger than p. MA order assumed as qe so chosen that qe pe q p. Extended order t (pe + 1) autocorrelation matrix Re constructed rx(qe + 1) rx(qe) rx(qe pe + 1) rx(qe + 2) rx(qe + 1) rx(qe pe + 2) . . . . . . . . . rx(qe + t) rx(qe + t 1) rx(qe pe + t) t is at least equal to p. The rank of Re will then give the AR order p.
  72. 72. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #70/77 AR Order Estimation AR order estimation: Singular values ii of Re computed and ordered such that 11 22 tt 0 Effective rank of Re determined using (k) = 2 11 + 2 22 + + 2 kk 2 11 + 2 22 + + 2 tt 1 2 1 Effective rank thus obtained is the AR order p.
  73. 73. G Title G Motivation and Overview G Particle Swarm Optimization (PSO) G Redistributed Local Search PSO (RLSPSO) G Hybrid Gradient Descent PSO (HGDPSO) G Numerical Experiments G Results: RLSPSO G Results: HGDPSO G Parametric Spectrum G Non-stationary Order Estimation G Time-varying ARMA Parameter Estimation G Results:Spectrum Estimation G Aerospace Target Tracking G Noise Statistics G Noise modeling: Approaches G Results:Noise Modeling G Model Predictive Guidance (MPG) G Model Predictive Guidance (MPG) G Fault detection and monitoring G Conclusion G References G References G References G References G Publications A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #71/77 MA Order Estimation MA order estimation: Extended order matrix Fe = f(0) f(1) f(qe) f(1) f(qe) . . . 0 f(qe) where f() = p i=0 airx( i) Effective rank of Fe identied using singular value decomposition and index and rank(Fe) = q + 1
  74. 74. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #72/77 Noise P.d.f 0.25 0.2 0.15 0.1 0.05 0 0.05 0.1 0.15 0 50 100 150 200 250 300 350 Noise (rad./sec.) Frequency Noise in Z Channel (a) Estimated p.d.f. of noise in the Z Channel. 0.08 0.06 0.04 0.02 0 0.02 0.04 0.06 0.08 0 50 100 150 200 250 300 350 400 Noise (rad./sec.) Frequency Noise in Y Channel (b) Estimated p.d.f. of noise in the Y Channel. Figure 48: Estimated p.d.f. of noise in both channels.
  75. 75. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #73/77 2 Test Results 10 5 0 5 0 0.2 0.4 0.6 0.8 Seeker Noise (rad./sec.) CumulativeFrequency data true gaussian distribution (a) C.d.f of normalized noise in SLR of Gamma Axis 10 5 0 5 0 0.2 0.4 0.6 0.8 Seeker Noise (rad./sec.) CumulativeFrequency data true gaussian distribution (b) C.d.f of normalized noise in SLR of Phi Axis Figure 49: C.d.f of normalized noise in SLR for a particular RT M . 2 test done and observed that at 5% condence noise may be assumed to come from Gaussian Distribution.
  76. 76. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #74/77 Eqns. Method 2 State Equations: x(k + 1) Y (k + 1) Y (k) Y (k 1) Y (k 2) Z (k + 1) Z (k) Z (k 1) Z (k 2) = F (k) x(k) Y (k) Y (k 1) Y (k 2) Y (k 3) Z (k) Z (k 1) Z (k 2) Z (k 3) + G W d (k) Y (k) 0 0 0 Z (k) 0 0 0 + U(k) F(k) = F d(k) O154 O154 O115 AY O14 O315 I33 O35 O115 O14 AZ O315 O34 I33 O31 , G = [E115 bY 0 O13 bZ 0 O13], AY = [aY 1 aY 2 aY 3 aY 4 ], AZ = [aZ 1 aZ 2 aZ 3 aZ 4 ], U(k) = Ud(k) O81
  77. 77. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #75/77 Eqns. Method 2 Process noise covariance: Q(k) = Qd(k) O158 O115 RY O17 O323 O119 RZ O13 O323 Measurement Equation: rm(k) Y m(k) Z m(k) Y m(k) Z m(k) = x(k)vx(k)+y(k)vy (k)+z (k)vz(k) 2 x(k)+2 y (k)+2 z (k) tan1 n l tan1 m n2+l2 Y t (k) + Y (k)Y (k) Z t (k) + Z (k)Z (k) + r(k) Y (k) Z (k) 0 0 Here, the unit LOS vector in ndash frame is given by l m n = C fd f C f b Cb i Ci l 1 0 0 = cosY cosZ sinZ cosZ sinY
  78. 78. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #76/77 Eqns. Method 3 State Equations: X(k + 1) Y (k + 1) Y (k) Y (k 1) Y (k 2) Z (k + 1) Z (k) Z (k 1) Z (k 2) = F(k) X(k) Y (k) Y (k 1) Y (k 2) Y (k 3) Z (k) Z (k 1) Z (k 2) Z (k 3) + G W d (k) Y (k + 1) Y (k) Y (k 1) Y (k 2) Z (k + 1) Z (k) Z (k 1) Z (k 2) + U(k) F(k) = F d(k) O154 O154 O115 AY O14 O315 I33 O35 O115 O14 AZ O315 O34 I33 O31 , G = [E115 BY O11 BZ O11], AY = a (k+1)Y 1 a (k+1)Y 2 a (k+1)Y 3 a (k+1)Y 4 , AZ = a (k+1)Z 1 a (k+1)Z 2 a (k+1)Z 3 a (k+1)Z 4 , BY = b (k+1)Y 0 b (k+1)Y 1 b (k+1)Y 2 b (k+1)Y 3 , BZ = b (k+1)Z 0 b (k+1)Z 1 b (k+1)Z 2 b (k+1)Z 3
  79. 79. A. K. Bhattacharyya, Synopsis Seminar on 29/October/2009 Estimation of Signal Models for Aerospace and Industrial Applications - slide #77/77 Eqns. Method 3 Process noise covariance: Q(k) = Qd(k) O158 O115 RY O17 O323 O119 RZ O13 O323 The measurement equation: Z(k) Y m(k) Z m(k) = M(k) Y t (k) + Y (k) Z t (k) + Z (k) + N(k) 0 0
  80. 80. References [1] A. Carlisle and G. Dozier. An off-the-shelf pso. In Pro- ceedings of the 2001 Workshop on Particle Swarm Opti- mization, Indianapolis, IN, 2001. [2] A. Kaderli and S. Kayhan. A Spectral Matching Approach for Parameter and Spectral Estimation of Nonstationary Rational Processes. Signal Processing, IEEE Trans., 49(10):2223 2231, Oct. 2001. [3] Asanga Ratnaweera, Saman K. Halgamuge, and Harry C. Watson. Self-Organizing Hierarchical Particle Swarm Op- timizer With Time-Varying Acceleration Coefcients. Evo- lutionary Computation, IEEE Trans., 8(3):240 255, Jun. 2004. [4] J. A. Cadzow. Spectral Estimation: An Overdeter- mined Rational Model Equation Approach. Proc. IEEE, 70(9):907 939, Sep. 1982. [5] Frans van den Bergh and Andries P. Engelbrecht. A co- operative approach to particle swarm optimization. Evo- lutionary Computation, IEEE Trans., 8(3):225 239, Jun. 2004. 77-1
  81. 81. [6] G. Matz and F. Hlawatsch. Nonstationary Spectral Anal- ysis Based on Time-Frequency Operator Symbols and Underspread Approximations. Information Theory, IEEE Trans., 52(3):1067 1086, Mar. 2006. [7] Y. Grenier. Rational Non-stationary Spectra and Their Es- timation. In 1st ASSP Workshop on Spectral Estimation, Hamilton, Ont., Canada, 1981. [8] Y. Grenier. Tme Varying Lattices and Autoregressive Mod- els: Parameter Estimation. In ASSP, IEEE International Conference on ICASSP, volume 7, pages 1337 1340, May. 1982. [9] Y. Grenier. Time-dependent ARMA Modeling of Nonsta- tionary Signals. Acoustics, Speech and Signal Process- ing, IEEE Trans., 31(4):899 911, Aug. 1983. [10] J. J. Liang, P. N. Suganthan, and K. Deb. Novel Compo- sition Test Functions for Numerical Global Optimization. In Swarm Intelligence Symposium, 2005. SIS 2005. Pro- ceedings 2005 IEEE, pages 68 75, 2005. [11] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proc. IEEE Int. Conf. Neural Networks, volume 4, pages 1942 1947, 1995. 77-2
  82. 82. [12] J. Robinson and Y. Rahmat-Samii. Particle swarm opti- mization in electromagnetics. Antennas and Propagation, IEEE Trans., 52(2):397 407, Feb. 2004. [13] Jakob Vesterstrm and Jacques Riget. Particle swarms. Masters thesis, Department of Computer Science, Uni- versity of Aarhus, May 2002. [14] James Kennedy and Rui Mendes. Neighborhood Topolo- gies in Fully Informed and Best-of-Neighborhood Particle Swarms. System, Man and Cybernetics, Part C: Appli- cations and Reviews, IEEE Trans., 36(4):515 519, Jul. 2006. [15] Kalyan Veeramachaneni, Thanmaya Peram, Chilukuri Mo- han, and Lisa Ann Osadciw. Optimization Using Particle Swarms with Near Neighbor Interactions. In E. C.-P. et al., editor, GECCO, pages 110 121. Springer-Verlag Berlin Heidelberg, 2003. [16] J. Kennedy. Small worlds and mega-minds: Effects of neighborhood topology on particle swarm performance. In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, volume 3, pages 1931 1938, 1999. 77-3
  83. 83. [17] M. Jachan, G. Matz, and F. Hlawatsch. Time-Frequency ARMA Models and Parameter Estimators for Underspread Nonstationary Random Processes. Signal Processing, IEEE Trans., 55(9):4366 4381, Sept. 2007. [18] T. S. Rao. The Fitting of Non-stationary Time-series Mod- els with Time-dependent Parameters. Journal of the Royal Statistical Society. Series B (Methodological), 32(2):312 322, 1970. [19] Ronald D. DeGroat and Eric M. Dowling. The Data Least Squares Problem and Channel Equalization. Signal Pro- cessing, IEEE Trans., 41(1):407 411, Jan. 1993. [20] Rui Mendes, James Kennedy, and Jose Neves. The Fully Informed Particle Swarm: Simpler, May be Better. Evo- lutionary Computation, IEEE Trans., 8(3):204 210, Jun. 2004. [21] S. Janson and M. Middendorf. A hierarchical parti- cle swarm optimizer and its adaptive variant. Systems, Man and Cybernatics - Part B: Cybernatics, IEEE Trans., 35(6):1272 1282, Dec. 2005. [22] Shenheng Xu and Yahya Rahmat-Samii. Boundary Con- ditions in Particle Swarm Optimization Revisited. Anten- 77-4
  84. 84. nas and Propagation, IEEE Trans., 55(3):760 765, Mar. 2007. [23] P. N. Suganthan. Particle Swarm Optimiser with Neigh- bourhood Operator. In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, volume 3, pages 1958 1962, 1999. [24] T. Huang and A. Mohan. A hybrid boundary condition for robust particle swarm optimization. IEEE Antennas Wire- less Propagation Lett., 5:112 117, 2005. [25] Tan Ying, Yang Ya-ping, and Zeng Jian-chao. An En- hanced Hybrid Quadratic Particle Swarm Optimization. In Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications, volume 2, pages 980 985, Oct. 2006. [26] X. Zhang and Y. Zhang. Singular Value Decomposition- Based MA Order Determination of Non-Gaussian ARMA Models. Signal Processing, IEEE Trans., 41(8):2657 2664, Aug. 1993. [27] Y Shi and R. Eberhart. A modied particle swarm op- timizer. In Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 77-5
  85. 85. 1998 IEEE International Conference on, pages 69 73, May 1998. [28] P. Zarchan. Tactical and Strategic Missile Guidance. American Institute of Aeronautics and Astronautics Inc., Virginia, 5 edition, 2007. 77-6

Recommended