+ All Categories
Home > Documents > Estimation of VOC Incremental Reactivities in Winter...

Estimation of VOC Incremental Reactivities in Winter...

Date post: 01-May-2018
Category:
Upload: vanduong
View: 215 times
Download: 1 times
Share this document with a friend
53
Supplementary Materials Winter Ozone Formation and VOC Incremental Reactivities in the Upper Green River Basin of Wyoming William P. L. Carter and John H. Seinfeld November 10, 2011 1. Low Temperature Mechanisms for Individual VOCs Table A-1 gives a listing of the reactions and rate constants derived for the individual compounds for which separate low-temperature mechanisms could be derived using the SAPRC-07 mechanism estimation and generation system (Carter, 2000, 2010). These consist of most of the compounds in the UGRB ambient mixtures used in this work, except for aromatic compounds whose mechanisms at low temperatures could not be estimated. The model species names employed are the same as used in the SAPRC-07 mechanism documentation (Carter, 2010). That document should be for details and also for the listings for the standard SAPRC-07 mechanisms for these compounds, which are derived to be appropriate for 300 K. Although changing the temperature affected almost all the product yield parameters for most of the compounds whose 265 K mechanisms could be estimated, in terms of reactivity effects the most important parameters are probably the number of NO to NO 2 conversions and the overall yield of nitrate formation in the reactions of the VOCs with OH radicals. These are important because NO to NO 2 conversions is the primary process responsible for O 3 formation and because reactions of peroxy radicals with NO forming nitrates is a significant radical and NO x sink for many compounds. These are reflected in the yields of the "RO2C" and "RO2XC" model species, which measure numbers of NO to NO 2 conversions and NO to organic nitrate conversions in the peroxy radical reactions. The effects of the temperature reduction on the values of these parameters for the listed compounds are shown on Figure A-1, which gives plots of values of those parameters A-1
Transcript

Supplementary Materials

Winter Ozone Formation and VOC Incremental Reactivities in the Upper Green River Basin of Wyoming

William P. L. Carter and John H. SeinfeldNovember 10, 2011

1. Low Temperature Mechanisms for Individual VOCs

Table A-1 gives a listing of the reactions and rate constants derived for the individual compounds for which separate low-temperature mechanisms could be derived using the SAPRC-07 mechanism estimation and generation system (Carter, 2000, 2010). These consist of most of the compounds in the UGRB ambient mixtures used in this work, except for aromatic compounds whose mechanisms at low temperatures could not be estimated. The model species names employed are the same as used in the SAPRC-07 mechanism documentation (Carter, 2010). That document should be for details and also for the listings for the standard SAPRC-07 mechanisms for these compounds, which are derived to be appropriate for 300 K.

Although changing the temperature affected almost all the product yield parameters for most of the compounds whose 265 K mechanisms could be estimated, in terms of reactivity effects the most important parameters are probably the number of NO to NO2 conversions and the overall yield of nitrate formation in the reactions of the VOCs with OH radicals. These are important because NO to NO2 conversions is the primary process responsible for O3 formation and because reactions of peroxy radicals with NO forming nitrates is a significant radical and NOx sink for many compounds. These are reflected in the yields of the "RO2C" and "RO2XC" model species, which measure numbers of NO to NO2 conversions and NO to organic nitrate conversions in the peroxy radical reactions. The effects of the temperature reduction on the values of these parameters for the listed compounds are shown on Figure A-1, which gives plots of values of those parameters derived for 265 K against values of those parameters derived for 300 K for the standard mechanism (Carter, 2010). It can be seen that the lower temperature causes higher nitrate yields (by a factor of ~1.4) for almost all compounds, and causes lower NO to NO2 conversions (also by a factor of ~1.4) for alkanes. The effects on NO to NO 2 conversions are much less for alkenes, aldehydes, and ketones because in most cases the main reaction routes are less affected by competition reactions involving temperature-sensitive alkoxy radical decompositions than is the case for the reactions of alkanes.

Table A-3 lists the reactions and rate constants for the lumped model species used in the baseline calculations for this study. These were derived from mechanisms derived for 265 K for the individual components of these mixtures and the compositions of the 2008 Jonah and 2008 Boulder ambient mixtures as given in Table A-2. In the case of the ALK and OLE model species the mechanisms for the individual compounds were those derived for 265 K and given in Table A-1. The mechanisms for the individual aromatic compounds were not modified for the lower temperature, except for the "low reactivity aromatics" sensitivity calculations discussed below in Section 5, but the ARO1 and ARO2 mechanisms were different because of the differences in the

A-1

compositions of the Jonah and 2008 Boulder ambient mixtures compared to the ambient mixture used to derive the lumped species mechanisms in standard SAPRC-07 (Carter, 2010). Table A-3 also includes the "low reactivity aromatics" mechanisms for ARO1 and ARO2, which were derived as discussed in Section 5 based on the mixture of aromatics in the Jonah 2008 simulations.

2. Photolysis Rate Calculation Input and Results

As discussed in Section 2.2 in the main text, photolysis rates used for most model simulations for this work were calculated using the TUV model version 5.0, (TUV 2010) using inputs considered appropriate for wintertime conditions in the UGRB. The TUV model inputs employed are listed in Table A-4, along with a discussion of the choices in inputs used. As discussed there, most inputs were TUV inputs, with the major difference being the value of the parameter "alsurf", which is the surface reflectivity or albedo. These calculations use a high value of 75% to reflect the effects of snow cover, based on the value used in the Environ (2010) study. The default value for this parameter in the input files provided with the TUV model (TUV 2010) is 10%.

The photolysis rates used in the MIR and other reactivity scale calculations of Carter (1994, 2000, 2010) were calculated using solar light intensities and spectra calculated by Jeffries (1991) for 640 meters, the approximate mid-point of the mixed layer during daylight hours for the box model scenarios used. This is referred to as the "standard" light model in the presentation of the results in this section. That model gives very similar photolysis rates as calculated using the TUV 5.0 model used in this work with the default albedo of 10%, being within 10% in most cases.

Table A-5 shows mid-day SAPRC-07 photolysis rates calculated for the latitude of the UGRB for February 22, the date of the 2008 ozone episodes modeled for this study and also for June 20, the summer solstice (solar zenith angles of 54 and 20 degrees, respectively). The photolysis rates are calculated both for the Jeffries (1991) model used for the Carter (1994, 2000, 2010) scenarios and for the TUV 5.0 model using the winter surface albedo of 75% for the February scenario and using the default albedo of 10% for the June scenario. The factor differences between various calculations are also shown, and also the averages and ranges of these differences. The photolysis rates calculated using the two light models are very similar for the summer scenario, but differ significantly for the wintertime scenario because of the different surface albedos used. The differences are less when comparing the summer and winter photolysis rates because the effect of the larger albedo in the winter is cancelled out in part by the effect of the higher zenith angle compared to the summer.

The differences in photolysis rates calculated for the summer and depending on the reaction and also the time of day. This is shown for two representative photolysis reactions on Figure A-2, which shows photolysis rates calculated for the winter episode as a function of the time of day. The summer simulation gives much higher photolysis rates at the beginning and the end of the simulation, but gives lower values at midday in most cases, except for reactions such as O3 photolysis to O1D that are highly sensitive to UV. This is because the season has a much

A-2

larger effect on solar zenith angles in the morning and the evening compared to the middle of the day.

3. Scenario Input Details

The box model scenarios used to simulate the ozone episodes in the UGRB that were modeled in this work are discussed in general terms in Section 3 of the main text. More detailed information concerning the model inputs is given in Table A-6 and Table A-7. Table A-6 gives the parameter values that were used and a brief discussion of their source or how they were derived, and Table A-7 gives the values of the parameters that varied with time. The compositions of the mixtures used to represent the ambient VOC mixtures are given in Table A-2. In addition, to assess the effects of varying pollutant levels, simulations of the four scenarios were also carried out with initial NOx or total NMHC levels varied but with all other inputs held constant. These were used to produce the data shown in Figure 5 and Figure 9 in the main text. Additional simulation inputs were varied for the purpose of conducting various sensitivity calculations, as discussed below in Section 5.

4. Incremental Reactivity Tabulations

The methods used to calculate the incremental reactivities of individual VOCs for this work are discussed in Section 3.4 of the main text, and selected results are shown on Figure 8 through Figure 11. Table A-2 gives the incremental reactivities in selected reactivity scales calculated for all of the individual VOCs present in the ambient mixtures used in the UGRB simulations. These include the baseline scale for the 2008 Jonah scenario and also the scale where the HONO inputs (both initial and formed from NO2) are adjusted to yield [HONO]/[NO2] ratios of ~3%. Reactivities in the MIR scale are shown for comparisons. These data were used to create the reactivity comparisons plots shown in the main text.

5. Sensitivity Calculations

A number of sensitivity calculations were carried out to assess the sensitivities of peak ozone levels in the simulations in the 2008 UGRB scenarios to modifications of various scenario inputs. These sensitivity calculations and their results are summarized in Figure A-3, and the major results are also summarized briefly in the main text. Most of these sensitivity calculations were carried out using the inputs of the 2008 Jonah episode because that episode was found to be the most sensitive to most scenario inputs, and that episode was the most similar to the 2011 episodes as discussed in the main text, at least in terms of the composition of the NMHC mixture and the sensitivity of O3 to changes in VOC and NOx emissions. However, for comparison purposes sensitivity calculations were also carried out using the inputs of the highly NOx-sensitive 2008 Boulder episode.

The inputs for these 2008 scenarios that were varied and the results of the various sensitivity calculations are described below. Reference is made to the simulation numbers shown on the left side of the figure. Note that "baseline" in the discussion below refers to the default simulations with no additional HONO input or formation from NO2.

A-3

Simulation S1 (Jonah only): Environ Scenario, CB05 mechanism. This simulation used the same inputs for the Jonah 2008 scenario as used in the Environ (2010) study, except that a different software system was used and the speciation of the NMHC mixture was slightly different (Environ, 2011). The speciation of the NMHC was derived using the compositions given in Table A-2 and the CB05 model species assignments given by Carter (2011). The calculated maximum O3 was 110 ppb, which is reasonably close to the 120 ppb reported by Environ (2011) using the same mechanism and similar inputs.

Simulation S2 (Jonah only): Environ Scenario, SAPRC-07 mechanism. This simulation used the same inputs for Jonah 2008 as used in the Environ (2010) study and was the same as Simulation 1 except that the low-temperature SAPRC-07 mechanism used for the baseline simulations for this work was used. Thus, comparing Simulations 1 and 2 shows the effects of changing the mechanism alone. This simulation gave 128 ppb O3, which was 16% higher than the simulation using CB05. This is despite the fact that the CB05 mechanism was not revised to represent low temperature conditions, while the SAPRC-07 mechanism was. The use of the Environ (2010) inputs with the baseline mechanism resulted in ~10% higher peak O3 calculated compared to the baseline results obtained in this work

Simulation S3: Default Urban Albedos. The photolysis rates for these simulations were calculated with the same solar actinic fluxes as a function of zenith angle as used in the Carter (1994, 2000, 2010) reactivity scale calculations, which are appropriate for urban albedos. All the other model inputs, including the zenith angles as a function of time of day, were the same as the baseline simulations. A comparison of these with the baseline simulations shows the effects of the albedos only. This resulted lower photolysis rates at all times during the simulations, causing in a 49% reduction in the maximum O3 for the Jonah scenario, but only a ~17% reduction for the less sensitive 2008 Boulder scenario.

Simulation S4 (Jonah only): "Low Temperature" Aromatics Mechanism. We were unable to derive modified mechanisms for aromatics to represent low temperature conditions, since parameters in the mechanisms are adjusted to fit results of chamber experiments conducted around 300 K (Carter, 2010). For this reason, the mechanisms for aromatics were not modified for low temperature conditions for the baseline calculations. However, for this sensitivity simulation a "low temperature" mechanisms for the lumped aromatic species ARO1 and ARO2 were derived to determine how these simulations may be affected if the lower temperature caused significantly less reactive mechanisms for aromatics. In this model, the model species used to represent photoreactive products such as glyoxal, methyl glyoxal, and photoreactive unsaturated dicarbonyls such as 2-butene-1,4-dial were replaced by those used to represent non-photoreactive products. This can be considered a reasonable lower limit reactivity assumption for sensitivity calculation purposes; the actual aromatics mechanisms probably do not change anywhere near this much. The "low temperature" ARO1 and ARO2 mechanisms are included in the listing on Table A-3. This revision resulted in a 30% decrease in the peak O3 in the Jonah 2008 scenario, from 115 to 80 ppb.

Simulation S5: Standard Lumped Species Mechanisms. These simulations used the standard SAPRC-07 mechanisms for the lumped model species (ALKx, OLEx, and AROx), as opposed to the lumped mechanisms derived for 265 K and the compositions of the NMHC mixtures in the UGRB as used in the baseline calculations. Thus, both the temperature for the

A-4

non-aromatics mechanisms and the compositions used to derive the mechanisms of the lumped species were modified, but all the other inputs, including the compositions of the ambient mixtures are the same as in the baseline calculations. These changes resulted in a ~19% increase in maximum O3 for the Jonah simulation but only a 2% increase for the less sensitive Boulder 2008 simulation.

Simulation S6 (Jonah only): Lumped Mechanisms Based on the Standard Ambient Mixture. In order to assess whether the differences between simulation S5 for the Jonah scenario was due mostly to the different temperature for the lumped model species or the different composition of the ambient mixtures, this simulation used the lumped mechanisms derived for 265 K but for the composition of the standard ambient mixture used to derive standard SAPRC-07 lumped mechanisms (Carter, 2010). Thus, only the composition of the ambient mixture used to derive the lumped mechanisms is different in this mechanism used in the baseline calculation. All other model inputs, including the composition of the ambient mixture in terms of total amounts of lumped and explicit model species present, were the same as in the baseline calculation. This change resulted in only a 1% change in the maximum O3, indicating that the composition of the mixture used to derive the lumped model species mechanisms is relatively unimportant compared to the effect of the temperature used to derive the mechanisms in the S5 simulations. The effect of changing only the temperature used to derive the mechanisms can be obtained by comparing simulations S6 and S5, which indicates that the temperature increase causes a ~18% increase in calculated O3 for this scenario.

Simulation S7 (Jonah only): Urban ROG Mixture. In this simulation the composition of the initially present NMHC's (in terms of moles of lumped model species initially present) is based on that of the urban ambient mixture used by Carter (1994, 2000, 2010) rather than the UGRB-specific mixtures used in the baseline calculations. The mechanisms and total ppmC of the were the same as used in the baseline calculations, along with the other inputs. As discussed in the main text, the reactivity of the urban mixture is much higher than that used in the 2007 Jonah simulations, and as a result this simulation, which is highly sensitive to VOC inputs, gave almost 2.8 times more O3 than the baseline simulation.

Simulation S8: NOx Adjusted to yield MIR Conditions. In these simulations the NOx

inputs were adjusted to give the highest incremental reactivities of the ambient mixtures used in the simulations. All the other inputs were the same as the baseline calculations. This amounted to a reduction in initial NOx levels in the Jonah simulations and an increase in the NOx levels in the 2008 Boulder simulations. This resulted in a 43% increase in O3 in the Jonah simulation and a 31% increase in the Boulder 2008 simulation.

Simulation S9: NOx Adjusted to yield Maximum Ozone. In these simulations the NOx

inputs were adjusted to give the highest peak ozone concentrations in the simulations, with all other inputs held the same. This also resulted in a reduction of initial NOx levels in the Jonah simulations and an increase in the NOx levels in the 2008 Boulder simulations, as shown in Figure 5 in the main text. This resulted in a 71% increase in O3 in the Jonah simulation and a 74% increase in the Boulder 2008 simulation.

Simulation S10: Summer Temperatures and Light Intensities. These simulations used had inputs modified to use summer temperatures and light intensities and also used the standard

A-5

SAPRC-07 mechanism derived for 300 K. Although this mechanism uses lumped model species mechanisms derived for the urban ambient mixture (Carter, 2010), Simulation S6 shows that the results should not be significantly different if these were derived for the UGRB mixtures. The temperature inputs were those of the "averaged conditions" scenario of Carter (2000, 2010), the solar zenith angles were calculated for the summer solstice (June 20) at Jonah, and the light model used in the Carter (1994, 2000, 2010) scenarios was employed. This resulted in a 131% increase in maximum O3 for the Jonah scenario, but only a 33% increase for the less sensitive Boulder scenario.

6. References

Carter, W. P. L. (1994): Development of Ozone Reactivity Scales for Volatile Organic Compounds, J. Air & Waste Manage. Assoc., 44, 881-899.

Carter, W. P. L. (2000): Documentation of the SAPRC-99 Chemical Mechanism for VOC Reactivity Assessment, Report to the California Air Resources Board, Contracts 92-329 and 95-308, May 8. Available at http://cert.ucr.edu/~carter/absts.htm#saprc99 and http://www.cert.ucr.edu/~carter/ reactdat.htm.

Carter, W. P. L. (2010): Development of the SAPRC-07 Chemical Mechanism, Atmospheric Environment, 44, 5324-5335. See also Carter, W. P. L. (2010): “Development of the SAPRC-07 Chemical Mechanism and Updated Ozone Reactivity Scales,” Final report to the California Air Resources Board Contract No. 03-318. January 27. Available at www.cert.ucr.edu/ ~carter/SAPRC.

Carter, W. P. L. (2011): “Current Project Information Page: Development of an Improved Chemical Speciation Database for Processing Emissions of Volatile Organic Compounds for Air Quality Models,” Web page available at http://www.cert.ucr.edu/~carter/emitdb/, updated April 28.

Environ (2010): Final technical report, 2008 Winter Box Model Study, Prepared by U. Nopmongcol, G. Yarwood, and T. Stoeckenius, Environ International Corporation, Novato, CA. Available at: http://deq.state.wy.us/aqd/Ozone/Appendix%20A_BoxModel _WY_RevFinal.pdf.

Environ (2011): Input files used in the Environ simulations provided by Uarporn Nopmongcol of Environ on January 11, 2011.

Jeffries, H. E. (1991): "UNC Solar Radiation Models," unpublished draft report for EPA Cooperative Agreements CR813107, CR813964 and CR815779".

TUV (2010). TUV 3.0 model version 3, November 2010. downloaded from http://cprm.acd.ucar.edu/ Models/TUV/. Madronich, S. and S. Flocke, Theoretical estimation of biologically effective UV radiation at the Earth's surface, in Solar Ultraviolet Radiation - Modeling, Measurements and Effects (Zerefos, C., ed.). NATO ASI Series Vol. I52, Springer-Verlag, Berlin, 1997.

A-6

7. List of Tables

Table A-1. Mechanisms derived for individual VOC compounds for a temperature of 265 K. Aromatic compounds are not shown because their mechanisms were not changed..........................................................................................................................8

Table A-2. Weight fractions and incremental reactivities for the VOCs measured in conjunction with the UGRB episodes modeled in this study......................................19

Table A-3. Mechanisms derived for lumped VOC model species based on the mechanisms of the mixtures of compounds measured at the Jonah and Boulder site at 265 K.................................................................................................................22

Table A-4. TUV model inputs used to calculate solar actinic fluxes the conditions of the Jonah site on February 20, 2008. The resulting actinic fluxes were used for all UGRB winter simulations discussed in this work.......................................................25

Table A-5. SAPRC-07 photolysis rate constants calculated for solar noon in the UGRB for the February 22 winter episode and for the summer solstice.................................27

Table A-6. Box model inputs used in the simulations of the UGRB scenarios.............................28

Table A-7. Time-dependent parameter values used in the box model inputs. See Table A-4 for discussion and documentation of these values....................................................31

8. List of Figures

Figure A-1. Plots of low vs. standard temperature numbers of NO to NO2 conversions and overall organic nitrate yields in the mechanisms derived for the reactions of OH radicals with alkanes, alkenes, and alcohols and ethers...................................32

Figure A-2. Plots of selected photolysis rates as a function of simulated hour for both summertime and wintertime conditions in the UGRB.................................................32

Figure A-3. Comparison of maximum ozone levels calculated using modified mechanisms and inputs for the conditions of the 2008 Jonah and Boulder Scenarios......................................................................................................................33

A-7

Table A-. Mechanisms derived for individual VOC compounds for a temperature of 265 K. Aromatic compounds are not shown because their mechanisms were not changed.

Compound Rate parameters [a] Reactionk(265) A Ea B

Ethane 1.58e-13 1.34e-12 0.992 2.0 ETHANE + OH = xHO2 + RO2C + xCCHO + yROOHPropane 8.34e-13 1.49e-12 0.173 2.0 PROPANE + OH = #.964 xHO2 + #.964 RO2C +

#.036 RO2XC + #.036 zRNO3 + #.22 xRCHO + #.745 xACET + yROOH + #-.111 XC

n-Butane 1.95e-12 1.63e-12 -0.227 2.0 N-C4 + OH = #.884 xHO2 + #.944 RO2C + #.116 RO2XC + #.116 zRNO3 + #.045 xCCHO + #.095 xRCHO + #.767 xMEK + yROOH + #-.139 XC

Isobutane 1.83e-12 1.05e-12 -0.423 2.0 2-ME-C3 + OH = #.139 xHO2 + #.806 xTBUO + #.948 RO2C + #.056 RO2XC + #.056 zRNO3 + #.004 xHCHO + #.135 xRCHO + #.004 xACET + yROOH + #.019 XC

n-Pentane 3.21e-12 2.27e-12 -0.314 2.0 N-C5 + OH = #.799 xHO2 + #1.108 RO2C + #.201 RO2XC + #.201 zRNO3 + #.009 xCCHO + #.063 xRCHO + #.515 xMEK + #.22 xPROD2 + yR6OOH + #.207 XC

Iso-Pentane 3.60e-12 3.60e-12 - - 2-ME-C4 + OH = #.895 xHO2 + #.016 xMEO2 + #1.711 RO2C + #.089 RO2XC + #.089 zRNO3 + #.002 xHCHO + #.757 xCCHO + #.075 xRCHO + #.751 xACET + #.085 xMEK + yR6OOH + #.116 XC

Cyclopentane 4.29e-12 2.46e-12 -0.425 2.0 CYCC5 + OH = #.711 xHO2 + #1.873 RO2C + #.289 RO2XC + #.289 zRNO3 + #.01 xCO + #.514 xRCHO + #.197 xMEK + yR6OOH + #.926 XC

n-Hexane 4.40e-12 7.62e-12 0.223 1.0 N-C6 + OH = #.684 xHO2 + #1.214 RO2C + #.316 RO2XC + #.316 zRNO3 + #.035 xRCHO + #.649 xPROD2 + yR6OOH + #.105 XC

2,2-Dimethyl Butane 1.58e-12 3.37e-11 1.608 - 22-DM-C4 + OH = #.245 xHO2 + #.003 xMEO2 + #.491 xTBUO + #1.607 RO2C + #.261 RO2XC + #.261 zRNO3 + #.139 xHCHO + #.648 xCCHO + #.117 xRCHO + #.128 xACET + #.003 xMEK + yR6OOH + #.285 XC

2,3-Dimethyl Butane 5.40e-12 1.49e-12 -0.809 2.0 23-DM-C4 + OH = #.814 xHO2 + #1.642 RO2C + #.186 RO2XC + #.186 zRNO3 + #.002 xHCHO + #.001 xCCHO + #.063 xRCHO + #1.531 xACET + yR6OOH + #.098 XC

2-Methyl Pentane 5.20e-12 5.20e-12 - - 2-ME-C5 + OH = #.73 xHO2 + #1.43 RO2C + #.27 RO2XC + #.27 zRNO3 + #.548 xRCHO + #.199 xACET + #.053 xMEK + #.134 xPROD2 + yR6OOH + #1.123 XC

3-Methylpentane 5.20e-12 5.20e-12 - - 3-ME-C5 + OH = #.782 xHO2 + #1.557 RO2C + #.218 RO2XC + #.218 zRNO3 + #.696 xCCHO + #.045 xRCHO + #.657 xMEK + #.074 xPROD2 + yR6OOH + #.093 XC

Cyclohexane 6.13e-12 2.93e-12 -0.521 2.0 CYCC6 + OH = #.755 xHO2 + #.777 RO2C + #.245 RO2XC + #.245 zRNO3 + #.009 xRCHO + #.746 xPROD2 + yR6OOH + #.027 XC

A-8

Table A-1 (continued)

Compound Rate parameters [a] Reactionk(265) A Ea B

Methylcyclopentane 5.57e-12 5.57e-12 - - ME-CYCC5 + OH = #.361 xHO2 + #.222 xMECO3 + #1.873 RO2C + #.417 RO2XC + #.417 zRNO3 + #.002 xCO + #.001 xHCHO + #.527 xRCHO + #.055 xPROD2 + yR6OOH + #1.14 XC

n-Heptane 6.35e-12 1.76e-12 -0.807 2.0 N-C7 + OH = #.567 xHO2 + #1.198 RO2C + #.433 RO2XC + #.433 zRNO3 + #.027 xRCHO + #.542 xPROD2 + yR6OOH + #1.069 XC

2,3-Dimethyl Pentane 7.39e-12 7.39e-12 - - 23-DM-C5 + OH = #.704 xHO2 + #1.511 RO2C + #.296 RO2XC + #.296 zRNO3 + #.001 xHCHO + #.111 xCCHO + #.042 xRCHO + #.647 xACET + #.6 xMEK + #.033 xPROD2 + yR6OOH + #.336 XC

2,4-Dimethyl Pentane 4.77e-12 4.77e-12 - - 24-DM-C5 + OH = #.794 xHO2 + #1.687 RO2C + #.206 RO2XC + #.206 zRNO3 + #.051 xHCHO + #.001 xCCHO + #.738 xRCHO + #.134 xACET + #.011 xMEK + #.047 xPROD2 + yR6OOH + #2.769 XC

2-Methyl Hexane 6.60e-12 6.60e-12 - - 2-ME-C6 + OH = #.614 xHO2 + #1.262 RO2C + #.386 RO2XC + #.386 zRNO3 + #.105 xRCHO + #.069 xACET + #.512 xPROD2 + yR6OOH + #1.09 XC

3-Methyl Hexane 7.02e-12 7.02e-12 - - 3-ME-C6 + OH = #.621 xHO2 + #1.349 RO2C + #.379 RO2XC + #.379 zRNO3 + #.048 xCCHO + #.405 xRCHO + #.182 xMEK + #.19 xPROD2 + yR6OOH + #1.547 XC

Methylcyclohexane 9.64e-12 9.64e-12 - - ME-CYCC6 + OH = #.564 xHO2 + #1.282 RO2C + #.436 RO2XC + #.436 zRNO3 + #.001 xHCHO + #.254 xRCHO + #.31 xPROD2 + yR6OOH + #1.761 XC

n-Octane 7.46e-12 2.45e-12 -0.717 2.0 N-C8 + OH = #.473 xHO2 + #1.106 RO2C + #.527 RO2XC + #.527 zRNO3 + #.015 xRCHO + #.458 xPROD2 + yR6OOH + #2.045 XC

2,2,4-Trimethyl Pentane 2.80e-12 2.12e-12 -0.278 2.0 224TM-C5 + OH = #.512 xHO2 + #.245 xTBUO + #2.343 RO2C + #.243 RO2XC + #.243 zRNO3 + #.714 xHCHO + #.441 xRCHO + #.198 xACET + #.232 xMEK + #.002 xPROD2 + yR6OOH + #1.991 XC

2,3,4-Trimethyl Pentane 6.60e-12 6.60e-12 - - 234TM-C5 + OH = #.631 xHO2 + #1.609 RO2C + #.369 RO2XC + #.369 zRNO3 + #.004 xHCHO + #.247 xCCHO + #.039 xRCHO + #.889 xACET + #.368 xMEK + yR6OOH + #1.032 XC

2,3-Dimethyl Hexane 8.70e-12 8.70e-12 - - 23-DM-C6 + OH = #.582 xHO2 + #1.402 RO2C + #.418 RO2XC + #.418 zRNO3 + #.001 xHCHO + #.039 xCCHO + #.097 xRCHO + #.424 xACET + #.333 xMEK + #.19 xPROD2 + yR6OOH + #1.378 XC

2,4-Dimethyl Hexane 8.70e-12 8.70e-12 - - 24-DM-C6 + OH = #.502 xHO2 + #1.41 RO2C + #.498 RO2XC + #.498 zRNO3 + #.066 xHCHO + #.156 xCCHO + #.281 xRCHO + #.024 xACET + #.096 xMEK + #.183 xPROD2 + yR6OOH + #2.237 XC

2,5-Dimethyl Hexane 8.29e-12 8.29e-12 - - 25-DM-C6 + OH = #.492 xHO2 + #1.662 RO2C + #.508 RO2XC + #.508 zRNO3 + #.046 xHCHO + #.353 xRCHO + #.414 xACET + #.143 xPROD2 +

A-9

Table A-1 (continued)

Compound Rate parameters [a] Reactionk(265) A Ea B

yR6OOH + #1.747 XC2-Methyl Heptane 7.91e-12 7.91e-12 - - 2-ME-C7 + OH = #.501 xHO2 + #1.141 RO2C + #.499

RO2XC + #.499 zRNO3 + #.033 xRCHO + #.006 xACET + #.471 xPROD2 + yR6OOH + #2.063 XC

3-Methyl Heptane 8.32e-12 8.32e-12 - - 3-ME-C7 + OH = #.508 xHO2 + #1.175 RO2C + #.492 RO2XC + #.492 zRNO3 + #.01 xCCHO + #.083 xRCHO + #.052 xMEK + #.432 xPROD2 + yR6OOH + #1.979 XC

4-Methyl Heptane 8.32e-12 8.32e-12 - - 4-ME-C7 + OH = #.511 xHO2 + #1.195 RO2C + #.489 RO2XC + #.489 zRNO3 + #.27 xRCHO + #.064 xMEK + #.257 xPROD2 + yR6OOH + #2.458 XC

n-Nonane 9.21e-12 2.28e-12 -0.866 2.0 N-C9 + OH = #.409 xHO2 + #1.012 RO2C + #.591 RO2XC + #.591 zRNO3 + #.01 xRCHO + #.398 xPROD2 + yR6OOH + #3.036 XC

n-Decane 1.03e-11 2.85e-12 -0.807 2.0 N-C10 + OH = #.366 xHO2 + #.949 RO2C + #.634 RO2XC + #.634 zRNO3 + #.008 xRCHO + #.358 xPROD2 + yR6OOH + #4.024 XC

n-Undecane 1.23e-11 1.23e-11 - - N-C11 + OH = #.339 xHO2 + #.91 RO2C + #.661 RO2XC + #.661 zRNO3 + #.006 xRCHO + #.332 xPROD2 + yR6OOH + #5.024 XC

n-Dodecane 1.32e-11 1.32e-11 - - N-C12 + OH = #.323 xHO2 + #.887 RO2C + #.677 RO2XC + #.677 zRNO3 + #.005 xRCHO + #.317 xPROD2 + yR6OOH + #6.021 XC

Propene 3.26e-11 4.85e-12 -1.002 - PROPENE + OH = #.984 xHO2 + #.984 RO2C + #.016 RO2XC + #.016 zRNO3 + #.957 xHCHO + #.957 xCCHO + #.027 xMEK + yROOH + #-.075 XC

4.55e-18 5.51e-15 3.732 - PROPENE + O3 = #.165 HO2 + #.35 OH + #.355 MEO2 + #.525 CO + #.215 CO2 + #.5 HCHO + #.5 CCHO + #.185 HCOOH + #.075 CCOOH + #.07 XC

5.81e-15 4.59e-13 2.297 - PROPENE + NO3 = #.927 xHO2 + #.927 RO2C + #.073 RO2XC + #.073 zRNO3 + yROOH + XN + #2.562 XC

3.54e-12 1.02e-11 0.556 - PROPENE + O3P = #.45 RCHO + #.55 MEK + #-.55 XC

1-Butene 3.83e-11 6.55e-12 -0.928 - 1-BUTENE + OH = #.973 xHO2 + #.982 RO2C + #.027 RO2XC + #.027 zRNO3 + #.913 xHCHO + #.926 xRCHO + #.024 xMEK + #.002 xMACR + #.013 xMVK + #.008 xIPRD + yROOH + #-.049 XC

4.11e-18 3.36e-15 3.525 - 1-BUTENE + O3 = #.095 HO2 + #.063 xHO2 + #.128 OH + #.063 RO2C + #.303 CO + #.088 CO2 + #.5 HCHO + #.063 xCCHO + #.5 RCHO + #.185 HCOOH + #.425 RCOOH + #.063 yROOH + #.023 XC

9.06e-15 3.14e-13 1.864 - 1-BUTENE + NO3 = #.88 xHO2 + #.88 RO2C + #.12 RO2XC + #.12 zRNO3 + #.88 xRNO3 + yROOH + #.12 XN + #-2 XC

3.57e-12 1.34e-11 0.696 - 1-BUTENE + O3P = #.45 RCHO + #.55 MEK + #.45 XC

cis-2-Butene 6.93e-11 1.10e-11 -0.968 - C-2-BUTE + OH = #.965 xHO2 + #.965 RO2C + #.035

A-10

Table A-1 (continued)

Compound Rate parameters [a] Reactionk(265) A Ea B

RO2XC + #.035 zRNO3 + #1.93 xCCHO + yROOH + #-.07 XC

8.29e-17 3.22e-15 1.924 - C-2-BUTE + O3 = #.17 HO2 + #.54 OH + #.71 MEO2 + #.54 CO + #.31 CO2 + CCHO + #.15 CCOOH + #.14 XC

3.52e-13 3.52e-13 - - C-2-BUTE + NO3 = #.742 xHO2 + #.137 xNO2 + #.88 RO2C + #.12 RO2XC + #.12 zRNO3 + #.275 xCCHO + #.742 xRNO3 + yROOH + #.12 XN + #-1.722 XC

1.87e-11 1.10e-11 -0.278 - C-2-BUTE + O3P = MEKtrans-2-Butene 8.08e-11 1.01e-11 -1.093 - T-2-BUTE + OH = #.965 xHO2 + #.965 RO2C + #.035

RO2XC + #.035 zRNO3 + #1.93 xCCHO + yROOH + #-.07 XC

1.21e-16 6.64e-15 2.104 - T-2-BUTE + O3 = #.17 HO2 + #.54 OH + #.71 MEO2 + #.54 CO + #.31 CO2 + CCHO + #.15 CCOOH + #.14 XC

3.62e-13 1.10e-13 -0.759 2.0 T-2-BUTE + NO3 = #.742 xHO2 + #.137 xNO2 + #.88 RO2C + #.12 RO2XC + #.12 zRNO3 + #.275 xCCHO + #.742 xRNO3 + yROOH + #.12 XN + #-1.722 XC

2.15e-11 1.09e-11 -0.358 - T-2-BUTE + O3P = MEK1,3-Butadiene 8.05e-11 1.48e-11 -0.890 - 13-BUTDE + OH = #.931 xHO2 + #1.167 RO2C +

#.069 RO2XC + #.069 zRNO3 + #.695 xHCHO + #.472 xMACR + #.459 xIPRD + yROOH + #-1.292 XC

2.39e-18 1.34e-14 4.537 - 13-BUTDE + O3 = #.08 HO2 + #.08 OH + #.255 CO + #.185 CO2 + #.5 HCHO + #.185 HCOOH + #.5 MACR + #.375 MVK + #.125 PROD2 + #-1.375 XC

1.00e-13 1.00e-13 - - 13-BUTDE + NO3 = #.788 xHO2 + #.118 xNO2 + #1.024 RO2C + #.094 RO2XC + #.094 zRNO3 + #.111 xHCHO + #.44 xMVK + #.118 xIPRD + #.348 xRNO3 + yROOH + #.534 XN + #-1.113 XC

1.94e-11 2.26e-11 0.079 - 13-BUTDE + O3P = #.25 HO2 + #.118 xHO2 + #.11 xMACO3 + #.228 RO2C + #.022 RO2XC + #.022 zRNO3 + #.11 xCO + #.11 xMACR + #.004 xAFG1 + #.004 xAFG2 + #.75 PROD2 + #.25 yROOH + #-1.662 XC

1-Pentene 3.14e-11 3.14e-11 - - 1-PENTEN + OH = #.883 xHO2 + #1.096 RO2C + #.117 RO2XC + #.117 zRNO3 + #.649 xHCHO + #.029 xCCHO + #.78 xRCHO + #.028 xMACR + #.015 xMVK + #.007 xIPRD + #.053 xPROD2 + yR6OOH + #.726 XC

5.42e-18 2.13e-15 3.140 - 1-PENTEN + O3 = #.095 HO2 + #.061 xHO2 + #.128 OH + #.061 RO2C + #.001 RO2XC + #.001 zRNO3 + #.303 CO + #.088 CO2 + #.5 HCHO + #.5 RCHO + #.061 xRCHO + #.013 MEK + #.185 HCOOH + #.425 RCOOH + #.063 yR6OOH + #.908 XC

1.50e-14 1.50e-14 - - 1-PENTEN + NO3 = #.78 xHO2 + #1.22 RO2C + #.22 RO2XC + #.22 zRNO3 + #.78 xRNO3 + yR6OOH + #.22 XN + #-1 XC

3.92e-12 1.78e-11 0.795 - 1-PENTEN + O3P = #.45 RCHO + #.55 MEK + #1.45

A-11

Table A-1 (continued)

Compound Rate parameters [a] Reactionk(265) A Ea B

XC3-Methyl-1-Butene 3.99e-11 5.32e-12 -1.059 - 3M-1-BUT + OH = #.873 xHO2 + #.026 xMEO2 +

#1.038 RO2C + #.102 RO2XC + #.102 zRNO3 + #.604 xHCHO + #.117 xCCHO + #.614 xRCHO + #.112 xACET + #.008 xMACR + #.026 xMVK + #.02 xIPRD + #.118 xPROD2 + yR6OOH + #.402 XC

4.52e-18 3.36e-15 3.476 - 3M-1-BUT + O3 = #.095 HO2 + #.06 xHO2 + #.128 OH + #.06 RO2C + #.003 RO2XC + #.003 zRNO3 + #.303 CO + #.088 CO2 + #.5 HCHO + #.5 RCHO + #.06 xACET + #.013 MEK + #.185 HCOOH + #.425 RCOOH + #.063 yR6OOH + #.899 XC

1.39e-14 1.39e-14 - - 3M-1-BUT + NO3 = #.805 xHO2 + #1.215 RO2C + #.195 RO2XC + #.195 zRNO3 + #.393 xACET + #.822 xRNO3 + yR6OOH + #.178 XN + #-2.281 XC

3.71e-12 1.03e-11 0.537 - 3M-1-BUT + O3P = #.45 RCHO + #.55 MEK + #1.45 XC

2-Methyl-1-Butene 6.10e-11 6.10e-11 - - 2M-1-BUT + OH = #.904 xHO2 + #.905 RO2C + #.096 RO2XC + #.096 zRNO3 + #.893 xHCHO + #.892 xMEK + #.001 xMVK + #.011 xIPRD + yR6OOH + #-.096 XC

6.79e-18 4.90e-15 3.460 - 2M-1-BUT + O3 = #.053 HO2 + #.72 OH + #.565 xMECO3 + #.065 xRCO3 + #.63 RO2C + #.037 RO2XC + #.037 zRNO3 + #.17 CO + #.04 CO2 + #.667 HCHO + #.065 xHCHO + #.565 xCCHO + #.333 MEK + #.123 HCOOH + #.667 yR6OOH + #-.074 XC

3.32e-13 3.32e-13 - - 2M-1-BUT + NO3 = #.894 xHO2 + #.011 xNO2 + #1.799 RO2C + #.095 RO2XC + #.095 zRNO3 + #.011 xHCHO + #.894 xCCHO + #.011 xMEK + yR6OOH + #.989 XN + #2.587 XC

1.80e-11 1.80e-11 - - 2M-1-BUT + O3P = #.4 RCHO + #.6 MEK + #1.4 XC2-Methyl-2-Butene 1.05e-10 1.92e-11 -0.894 - 2M-2-BUT + OH = #.905 xHO2 + #.905 RO2C +

#.095 RO2XC + #.095 zRNO3 + #.905 xCCHO + #.905 xACET + yR6OOH + #-.095 XC

2.83e-16 6.51e-15 1.647 - 2M-2-BUT + O3 = #.051 HO2 + #.862 OH + #.213 MEO2 + #.7 xMECO3 + #.7 RO2C + #.162 CO + #.093 CO2 + #.7 xHCHO + #.7 CCHO + #.3 ACET + #.045 CCOOH + #.7 yR6OOH + #.042 XC

9.37e-12 9.37e-12 - - 2M-2-BUT + NO3 = #.905 xNO2 + #.905 RO2C + #.095 RO2XC + #.095 zRNO3 + #.905 xCCHO + #.905 xACET + yR6OOH + #.095 XN + #-.095 XC

5.61e-11 2.44e-11 -0.437 - 2M-2-BUT + O3P = MEK + XCcis-2-Pentene 6.50e-11 6.50e-11 - - C-2-PENT + OH = #.904 xHO2 + #.907 RO2C + #.096

RO2XC + #.096 zRNO3 + #.897 xCCHO + #.893 xRCHO + #.01 xIPRD + yR6OOH + #-.099 XC

8.38e-17 3.70e-15 1.991 - C-2-PENT + O3 = #.1 HO2 + #.063 xHO2 + #.318 OH + #.355 MEO2 + #.063 RO2C + #.318 CO + #.183 CO2 + #.5 CCHO + #.063 xCCHO + #.5 RCHO + #.075 CCOOH + #.425 RCOOH + #.063 yR6OOH +

A-12

Table A-1 (continued)

Compound Rate parameters [a] Reactionk(265) A Ea B

#.093 XC3.70e-13 3.70e-13 - - C-2-PENT + NO3 = #.697 xHO2 + #.106 xNO2 +

#1.004 RO2C + #.197 RO2XC + #.197 zRNO3 + #.106 xCCHO + #.106 xRCHO + #.697 xRNO3 + yR6OOH + #.197 XN + #-.894 XC

1.79e-11 1.14e-11 -0.238 - C-2-PENT + O3P = MEK + XCtrans-2-Pentene 6.70e-11 6.70e-11 - - T-2-PENT + OH = #.904 xHO2 + #.906 RO2C + #.096

RO2XC + #.096 zRNO3 + #.895 xCCHO + #.893 xRCHO + #.01 xIPRD + yR6OOH + #-.095 XC

9.83e-17 7.10e-15 2.250 - T-2-PENT + O3 = #.1 HO2 + #.063 xHO2 + #.318 OH + #.355 MEO2 + #.063 RO2C + #.318 CO + #.183 CO2 + #.5 CCHO + #.063 xCCHO + #.5 RCHO + #.075 CCOOH + #.425 RCOOH + #.063 yR6OOH + #.093 XC

3.70e-13 3.70e-13 - - T-2-PENT + NO3 = #.697 xHO2 + #.106 xNO2 + #1.004 RO2C + #.197 RO2XC + #.197 zRNO3 + #.106 xCCHO + #.106 xRCHO + #.697 xRNO3 + yR6OOH + #.197 XN + #-.894 XC

2.27e-11 1.15e-11 -0.358 - T-2-PENT + O3P = MEK + XCCyclopentene 6.70e-11 6.70e-11 - - CYC-PNTE + OH = #.892 xHO2 + #.006 xMACO3 +

#.941 RO2C + #.102 RO2XC + #.102 zRNO3 + #.008 xCO + #.016 xHCHO + #.875 xRCHO + #.001 xGLY + #.009 xMACR + #.006 xMVK + #.001 xIPRD + yR6OOH + #1.648 XC

4.79e-16 1.80e-15 0.696 - CYC-PNTE + O3 = #.03 HO2 + #.002 xHO2 + #.095 OH + #.116 xRCO3 + #.118 RO2C + #.007 RO2XC + #.007 zRNO3 + #.095 CO + #.055 CO2 + #.875 RCHO + #.002 xRCHO + #.125 yR6OOH + #1.829 XC

4.20e-13 4.20e-13 - - CYC-PNTE + NO3 = #.183 xHO2 + #.63 xNO2 + #.905 RO2C + #.187 RO2XC + #.187 zRNO3 + #.613 xRCHO + #.017 xMGLY + #.183 xRNO3 + yR6OOH + #.187 XN + #.89 XC

2.06e-11 2.40e-11 0.079 - CYC-PNTE + O3P = #.24 MEK + #.76 PROD2 + #-.52 XC

1-Hexene 3.70e-11 3.70e-11 - - 1-HEXENE + OH = #.843 xHO2 + #1.448 RO2C + #.157 RO2XC + #.157 zRNO3 + #.289 xHCHO + #.463 xRCHO + #.031 xMACR + #.012 xMVK + #.006 xIPRD + #.361 xPROD2 + yR6OOH + #1.012 XC

6.02e-18 1.62e-15 2.941 - 1-HEXENE + O3 = #.095 HO2 + #.058 xHO2 + #.128 OH + #.08 RO2C + #.005 RO2XC + #.005 zRNO3 + #.303 CO + #.088 CO2 + #.5 HCHO + #.5 RCHO + #.058 xRCHO + #.013 MEK + #.185 HCOOH + #.425 PROD2 + #.063 yR6OOH + #.618 XC

1.80e-14 1.80e-14 - - 1-HEXENE + NO3 = #.648 xHO2 + #1.39 RO2C + #.352 RO2XC + #.352 zRNO3 + #.648 xRNO3 + yR6OOH + #.352 XN

4.34e-12 1.51e-11 0.656 - 1-HEXENE + O3P = #.45 RCHO + #.55 MEK + #2.45 XC

A-13

Table A-1 (continued)

Compound Rate parameters [a] Reactionk(265) A Ea B

3-methylcyclopentene 6.67e-11 6.67e-11 - - 3MECC5E + OH = #.835 xHO2 + #.003 xMECO3 + #.004 xMACO3 + #.891 RO2C + #.158 RO2XC + #.158 zRNO3 + #.005 xCO + #.016 xHCHO + #.821 xRCHO + #.001 xGLY + #.008 xMACR + #.007 xIPRD + #.002 xAFG1 + #.002 xAFG2 + yR6OOH + #2.457 XC

1.15e-16 1.15e-16 - - 3MECC5E + O3 = #.03 HO2 + #.003 xHO2 + #.095 OH + #.105 xRCO3 + #.109 RO2C + #.017 RO2XC + #.017 zRNO3 + #.095 CO + #.055 CO2 + #.875 RCHO + #.003 xRCHO + #.125 yR6OOH + #2.799 XC

3.70e-13 3.70e-13 - - 3MECC5E + NO3 = #.229 xHO2 + #.441 xNO2 + #1.038 RO2C + #.33 RO2XC + #.33 zRNO3 + #.382 xRCHO + #.058 xMGLY + #.229 xRNO3 + yR6OOH + #.33 XN + #1.326 XC

2.05e-11 2.05e-11 - - 3MECC5E + O3P = PROD22-methyl-1-hexene 6.15e-11 6.15e-11 - - 2M1C6E + OH = #.759 xHO2 + #.896 RO2C + #.241

RO2XC + #.241 zRNO3 + #.635 xHCHO + #.016 xRCHO + #.015 xMACR + #.01 xIPRD + #.734 xPROD2 + yR6OOH + #.357 XC

1.18e-17 1.18e-17 - - 2M1C6E + O3 = #.053 HO2 + #.72 OH + #.521 xMECO3 + #.047 xRCO3 + #.568 RO2C + #.099 RO2XC + #.099 zRNO3 + #.17 CO + #.04 CO2 + #.667 HCHO + #.047 xHCHO + #.521 xRCHO + #.123 HCOOH + #.333 PROD2 + #.667 yR6OOH + #.615 XC

3.32e-13 3.32e-13 - - 2M1C6E + NO3 = #.624 xHO2 + #1.414 RO2C + #.376 RO2XC + #.376 zRNO3 + #.624 xRNO3 + yR6OOH + #.376 XN + XC

1.73e-11 1.73e-11 - - 2M1C6E + O3P = #.4 RCHO + #.6 MEK + #3.4 XC1-Octene 3.77e-11 3.77e-11 - - 1-OCTENE + OH = #.574 xHO2 + #1.112 RO2C +

#.426 RO2XC + #.426 zRNO3 + #.184 xHCHO + #.287 xRCHO + #.028 xMACR + #.009 xMVK + #.007 xIPRD + #.271 xPROD2 + yR6OOH + #2.59 XC

7.00e-18 3.36e-15 3.245 - 1-OCTENE + O3 = #.095 HO2 + #.046 xHO2 + #.128 OH + #.098 RO2C + #.017 RO2XC + #.017 zRNO3 + #.303 CO + #.088 CO2 + #.5 HCHO + #.5 RCHO + #.046 xRCHO + #.013 MEK + #.185 HCOOH + #.425 PROD2 + #.063 yR6OOH + #2.582 XC

1.39e-14 1.39e-14 - - 1-OCTENE + NO3 = #.47 xHO2 + #1.104 RO2C + #.53 RO2XC + #.53 zRNO3 + #.47 xRNO3 + yR6OOH + #.53 XN + #2 XC

5.60e-12 5.60e-12 - - 1-OCTENE + O3P = #.45 RCHO + #.55 PROD2 + #3.35 XC

1-Nonene 3.90e-11 3.90e-11 - - 1-C9E + OH = #.493 xHO2 + #1.012 RO2C + #.507 RO2XC + #.507 zRNO3 + #.163 xHCHO + #.247 xRCHO + #.025 xMACR + #.008 xMVK + #.006 xIPRD + #.233 xPROD2 + yR6OOH + #3.494 XC

1.01e-17 1.01e-17 - - 1-C9E + O3 = #.095 HO2 + #.039 xHO2 + #.128 OH +

A-14

Table A-1 (continued)

Compound Rate parameters [a] Reactionk(265) A Ea B

#.088 RO2C + #.023 RO2XC + #.023 zRNO3 + #.303 CO + #.088 CO2 + #.5 HCHO + #.5 RCHO + #.039 xRCHO + #.185 HCOOH + #.438 PROD2 + #.063 yR6OOH + #3.541 XC

1.40e-14 1.40e-14 - - 1-C9E + NO3 = #.404 xHO2 + #1.016 RO2C + #.596 RO2XC + #.596 zRNO3 + #.404 xRNO3 + yR6OOH + #.596 XN + #3 XC

5.60e-12 5.60e-12 - - 1-C9E + O3P = #.45 RCHO + #.55 PROD2 + #4.35 XCa-Pinene 6.29e-11 1.21e-11 -0.866 - A-PINENE + OH = #.793 xHO2 + #.002 xRCO3 +

#.946 RO2C + #.204 RO2XC + #.204 zRNO3 + #.001 xHCHO + #.773 xRCHO + #.011 xACET + #.001 xMGLY + #.02 xBACL + yR6OOH + #6.334 XC

6.74e-17 5.00e-16 1.053 - A-PINENE + O3 = #.009 HO2 + #.146 xHO2 + #.728 OH + #.109 xRCO3 + #.972 RO2C + #.483 RO2XC + #.483 zRNO3 + #.029 CO + #.008 xCO + #.017 CO2 + #.104 xHCHO + #.077 xRCHO + #.234 xACET + #.008 MEK + #.004 xGLY + #.127 xBACL + #.255 PROD2 + #.737 yR6OOH + #3.606 XC

7.59e-12 1.19e-12 -0.974 - A-PINENE + NO3 = #.026 xHO2 + #.52 xNO2 + #.008 xRCO3 + #.759 RO2C + #.447 RO2XC + #.447 zRNO3 + #.524 xRCHO + #.033 xACET + #.026 xRNO3 + yR6OOH + #.455 XN + #5.467 XC

3.20e-11 3.20e-11 - - A-PINENE + O3P = PROD2 + #4 XCb-Pinene 9.06e-11 1.55e-11 -0.928 - B-PINENE + OH = #.811 xHO2 + #.004 xRCO3 +

#.916 RO2C + #.185 RO2XC + #.185 zRNO3 + #.799 xHCHO + #.014 xRCHO + #.015 xACET + #.799 xPROD2 + yR6OOH + #3.198 XC

8.81e-18 1.20e-15 2.583 - B-PINENE + O3 = #.123 HO2 + #.064 xHO2 + #.353 OH + #.037 xRCO3 + #.311 RO2C + #.129 RO2XC + #.129 zRNO3 + #.393 CO + #.092 CO2 + #.23 HCHO + #.078 xACET + #.285 HCOOH + #.003 xMGLY + #.061 xBACL + #.77 PROD2 + #.23 yR6OOH + #3.008 XC

2.51e-12 2.51e-12 - - B-PINENE + NO3 = #.143 xHO2 + #.053 xRCO3 + #1.435 RO2C + #.804 RO2XC + #.804 zRNO3 + #.001 xCO + #.001 xHCHO + #.034 xRCHO + #.183 xACET + #.001 xGLY + #.143 xRNO3 + yR6OOH + #.857 XN + #3.504 XC

2.70e-11 2.70e-11 - - B-PINENE + O3P = #.4 RCHO + #.6 PROD2 + #5.2 XC

d-Limonene 1.95e-10 4.28e-11 -0.797 - D-LIMONE + OH = #.823 xHO2 + #.004 xRCO3 + #.927 RO2C + #.173 RO2XC + #.173 zRNO3 + #.296 xHCHO + #.526 xRCHO + #.044 xMEK + #.01 xMVK + #.006 xIPRD + #.296 xPROD2 + yR6OOH + #5.054 XC

1.53e-16 2.95e-15 1.556 - D-LIMONE + O3 = #.009 HO2 + #.016 xHO2 + #.729 OH + #.4 xMECO3 + #.036 xRCO3 + #.49 RO2C + #.285 RO2XC + #.285 zRNO3 + #.029 CO + #.017 CO2 + #.061 xHCHO + #.407 xRCHO + #.004

A-15

Table A-1 (continued)

Compound Rate parameters [a] Reactionk(265) A Ea B

xMACR + #.011 xIPRD + #.263 PROD2 + #.738 yR6OOH + #4.405 XC

1.22e-11 1.22e-11 - - D-LIMONE + NO3 = #.033 xHO2 + #.524 xNO2 + #.002 xRCO3 + #.779 RO2C + #.441 RO2XC + #.441 zRNO3 + #.008 xHCHO + #.006 xCCHO + #.532 xRCHO + #.006 xMACR + #.005 xMVK + #.022 xIPRD + #.03 xRNO3 + yR6OOH + #.446 XN + #5.398 XC

7.20e-11 7.20e-11 - - D-LIMONE + O3P = PROD2 + #4 XCEthanol 3.17e-12 5.49e-13 -1.053 2.0 ETOH + OH = #.95 HO2 + #.05 xHO2 + #.05 RO2C +

#.022 xHCHO + #.95 CCHO + #.039 xCCHO + #.05 yROOH

Acrolein 1.99e-11 1.99e-11 - - ACROLEIN + OH = #.25 xHO2 + #.75 MACO3 + #.25 RO2C + #.161 xCO + #.079 xHCHO + #.161 xCCHO + #.003 xRCHO + #.079 xGLY + #.007 xMGLY + #.25 yROOH + #-.75 XC

9.90e-20 1.40e-15 5.024 - ACROLEIN + O3 = #.83 HO2 + #.33 OH + #1.005 CO + #.31 CO2 + #.5 HCHO + #.185 HCOOH + #.5 GLY

1.18e-15 1.18e-15 - - ACROLEIN + NO3 = #.067 xHO2 + #.928 MACO3 + #.067 RO2C + #.005 RO2XC + #.005 zRNO3 + #.928 HNO3 + #.064 xCO + #.003 xMGLY + #.064 xRNO3 + #.072 yROOH + #.008 XN + #-1.199 XC

2.37e-12 2.37e-12 - - ACROLEIN + O3P = RCHO Phot Set = MACR-06 ACROLEIN + HV = #1.066 HO2 + #.178 OH + #.234

MEO2 + #.33 MACO3 + #1.188 CO + #.102 CO2 + #.34 HCHO + #.05 CCOOH + #-.284 XC

Isopropyl Alcohol 5.64e-12 3.63e-13 -1.574 2.0 I-C3-OH + OH = #.973 HO2 + #.026 xHO2 + #.026 RO2C + #.026 xHCHO + #.026 xCCHO + #.973 ACET + #.027 yROOH + #.003 XC

n-Propyl Alcohol 5.99e-12 4.60e-12 -0.139 - N-C3-OH + OH = #.792 HO2 + #.206 xHO2 + #.206 RO2C + #.003 RO2XC + #.003 zRNO3 + #.176 xHCHO + #.176 xCCHO + #.792 RCHO + #.021 xRCHO + #.008 xMEK + #.208 yROOH + #-.017 XC

Crotonaldehyde 3.64e-11 3.64e-11 - - CROTALD + OH = #.515 xHO2 + #.455 MACO3 + #.515 RO2C + #.03 RO2XC + #.03 zRNO3 + #.024 xCO + #.491 xCCHO + #.024 xRCHO + #.491 xGLY + #.545 yROOH + #-.06 XC

1.58e-18 1.58e-18 - - CROTALD + O3 = #.835 HO2 + #.52 OH + #.355 MEO2 + #1.02 CO + #.405 CO2 + #.5 CCHO + #.075 CCOOH + #.5 GLY + #.07 XC

5.12e-15 5.12e-15 - - CROTALD + NO3 = #.52 xHO2 + #.076 xNO2 + #.323 MACO3 + #.596 RO2C + #.081 RO2XC + #.081 zRNO3 + #.323 HNO3 + #.286 xCO + #.076 xCCHO + #.076 xGLY + #.011 xMGLY + #.509 xRNO3 + #.677 yROOH + #.093 XN + #-1.455 XC

7.29e-12 7.29e-12 - - CROTALD + O3P = #.88 RCHO + #.12 MGLY + XC Phot Set = MACR-06 CROTALD + HV = #2 HO2 + #2 CO + CCHO

Butanal 2.83e-11 6.00e-12 -0.815 - 1C4RCHO + OH = #.064 xHO2 + #.927 RCO3 + #.065

A-16

Table A-1 (continued)

Compound Rate parameters [a] Reactionk(265) A Ea B

RO2C + #.009 RO2XC + #.009 zRNO3 + #.027 xCO + #.001 xCCHO + #.063 xRCHO + #.073 yROOH + #.947 XC

5.86e-15 1.70e-12 2.981 - 1C4RCHO + NO3 = #.011 xHO2 + #.988 RCO3 + #.011 RO2C + #.001 RO2XC + #.001 zRNO3 + HNO3 + #.01 xRCHO + #.012 yROOH + XC

Phot Set = C2CHO 1C4RCHO + HV = HO2 + #.98 xHO2 + #.98 RO2C + #.02 RO2XC + #.02 zRNO3 + CO + #.98 xRCHO + yROOH + #-.06 XC

t-Butyl Alcohol 9.58e-13 3.66e-13 -0.638 2.0 T-C4-OH + OH = #.66 xHO2 + #.275 TBUO + #.66 RO2C + #.065 RO2XC + #.065 zRNO3 + #.66 xHCHO + #.66 xACET + #.725 yROOH + #-.13 XC

3-Methylbutanal (Isovaleraldehyde)

2.70e-11 2.70e-11 - - 3MC4RCHO + OH = #.113 xHO2 + #.001 xMEO2 + #.871 RCO3 + #.203 RO2C + #.015 RO2XC + #.015 zRNO3 + #.082 xCO + #.059 xHCHO + #.024 xRCHO + #.089 xACET + #.03 xGLY + #.001 xMGLY + #.129 yR6OOH + #1.753 XC

1.90e-14 1.90e-14 - - 3MC4RCHO + NO3 = #.056 xHO2 + #.001 xMEO2 + #.938 RCO3 + #.112 RO2C + #.006 RO2XC + #.006 zRNO3 + HNO3 + #.037 xCO + #.037 xHCHO + #.001 xRCHO + #.056 xACET + #.019 xGLY + #.062 yR6OOH + #1.866 XC

Phot Set = C2CHO 3MC4RCHO + HV = HO2 + #.943 xHO2 + #.971 RO2C + #.057 RO2XC + #.057 zRNO3 + CO + #.028 xHCHO + #.916 xRCHO + #.027 xACET + yR6OOH + #.801 XC

Pentanal (Valeraldehyde)

3.20e-11 9.90e-12 -0.616 - 1C5RCHO + OH = #.066 xHO2 + #.88 RCO3 + #.032 xRCO3 + #.103 RO2C + #.022 RO2XC + #.022 zRNO3 + #.021 xCO + #.001 xHCHO + #.002 xCCHO + #.063 xRCHO + #.003 xMGLY + #.12 yR6OOH + #1.908 XC

1.50e-14 1.50e-14 - - 1C5RCHO + NO3 = #.014 xHO2 + #.972 RCO3 + #.009 xRCO3 + #.024 RO2C + #.005 RO2XC + #.005 zRNO3 + HNO3 + #.001 xCCHO + #.014 xRCHO + #.028 yR6OOH + #1.983 XC

Phot Set = C2CHO 1C5RCHO + HV = HO2 + #.924 xHO2 + #1.287 RO2C + #.076 RO2XC + #.076 zRNO3 + CO + #.924 xRCHO + yR6OOH + #.772 XC

Methyl t-Butyl Ether 2.84e-12 5.89e-13 -0.960 2.0 MTBE + OH = #.764 xHO2 + #.156 xMEO2 + #1.106 RO2C + #.08 RO2XC + #.08 zRNO3 + #.206 xHCHO + #.02 xACET + yR6OOH + #4.098 XC

Hexanal 3.00e-11 3.00e-11 - - 1C6RCHO + OH = #.078 xHO2 + #.838 RCO3 + #.036 xRCO3 + #.176 RO2C + #.048 RO2XC + #.048 zRNO3 + #.003 xCO + #.065 xRCHO + #.015 xMGLY + #.162 yR6OOH + #2.847 XC

1.60e-14 1.60e-14 - - 1C6RCHO + NO3 = #.019 xHO2 + #.956 RCO3 + #.012 xRCO3 + #.045 RO2C + #.013 RO2XC + #.013 zRNO3 + HNO3 + #.02 xRCHO + #.044 yR6OOH + #2.958 XC

A-17

Table A-1 (continued)

Compound Rate parameters [a] Reactionk(265) A Ea B

Phot Set = C2CHO 1C6RCHO + HV = HO2 + #.822 xHO2 + #1.699 RO2C + #.178 RO2XC + #.178 zRNO3 + CO + #.822 xRCHO + yR6OOH + #1.466 XC

Ethyl t-Butyl Ether 9.65e-12 6.03e-13 -1.590 2.0 ETBE + OH = #.603 xHO2 + #.217 xMEO2 + #.029 xTBUO + #.881 RO2C + #.151 RO2XC + #.151 zRNO3 + #.032 xHCHO + #.037 xCCHO + #.011 xRCHO + #.009 xACET + #.02 xMEK + yR6OOH + #4.515 XC

Methyl t-Amyl Ether 6.31e-12 6.80e-13 -1.304 2.0 MTAE + OH = #.511 xHO2 + #.308 xMEO2 + #1.385 RO2C + #.181 RO2XC + #.181 zRNO3 + #.131 xHCHO + #.447 xCCHO + #.032 xRCHO + #.039 xACET + #.359 xMEK + #.003 xPROD2 + yR6OOH + #1.914 XC

diisopropyl ether 4.58e-11 4.58e-11 - - IPROIPR + OH = #.019 xHO2 + #.832 xMEO2 + #.858 RO2C + #.149 RO2XC + #.149 zRNO3 + #.002 xRCHO + #.033 xACET + #.827 xMEK + #.005 xPROD2 + yR6OOH + #.831 XC

[a] Rate constants are in units of cm3 molec-1 s-1. Temperature dependence is given by k(T) = A exp(-Ea/RT) (T/300)B, where T is the temperature in degrees k and R = 0.0019872. For photolysis reactions, the "Phot set" is the set of absorption cross sections and wavelength-dependent quantum yields (if any) given by Carter (2010).

A-18

Table A-. Weight fractions and incremental reactivities for the VOCs measured in conjunction with the UGRB episodes modeled in this study.

Compound

Mass Percent [a]   Incremental Reactivities [b]

Jonah (2008)

Boulder (2008)

Boulder (2011)

Mobile Trailer (2011)

Standard MIR

Jonah (2008) Boulder (2008)

Baseline  Baseline HONO 3% NOx

Alkanesethane 22.03 1.78 31.67 28.50 0.28 0.02 0.04 0.01propane 19.37 0.38 15.58 13.17 0.49 0.05 0.14 0.05n-butane 7.86 6.16 4.72 4.53 1.15 0.06 0.19 0.04isobutane 7.76 16.65 4.72 4.71 1.23 0.00 0.16 0.09n-pentane 3.56 2.57 2.31 5.28 1.31 0.02 0.21 0.01isopentane 5.12 0.23 2.83 7.51 1.45 0.14 0.35 0.08cyclopentane 0.40 0.30 0.25 0.49 2.39 0.09 0.33 -0.07n-hexane 1.59 1.50 1.31 1.19 1.24 -0.05 0.15 -0.072,2-dimethyl butane 0.18 0.21 0.15 0.19 1.17 0.01 0.09 -0.022,3-dimethyl butane 0.06 0.13 0.12 0.15 0.97 0.07 0.37 0.112-methyl pentane 1.38 1.27 0.96 2.11 1.50 0.06 0.20 -0.093-methyl pentane 0.88 0.38 0.55 1.26 1.80 0.08 0.27 -0.04cyclohexane 1.65 1.28 1.61 1.98 1.25 -0.05 0.20 -0.08methyl cyclopentane 0.06 0.83 - - 2.19 -0.02 0.11 -0.29n-heptane 0.79 1.00 1.56 1.52 1.07 -0.17 0.04 -0.232,3-dimethyl pentane 0.23 0.20 0.32 0.40 1.34 -0.01 0.22 -0.052,4-dimethyl pentane 1.14 0.94 1.24 1.56 1.55 0.12 0.26 -0.032-methyl hexane 0.42 0.46 0.75 0.94 1.19 -0.09 0.09 -0.153-methyl hexane 0.38 0.58 0.48 0.61 1.61 -0.03 0.10 -0.20methyl cyclohexane 2.58 2.66 1.24 1.56 1.70 -0.15 0.04 -0.31n-octane 0.52 0.83 0.37 1.15 0.90 -0.26 -0.09 -0.343-Ethyl-3-methylpentane 0.12 0.32 - - 1.45 -0.14 -0.01 -0.302,2,4-trimethyl pentane 0.54 0.26 - - 1.26 0.17 0.39 0.032,3,4-trimethyl pentane 0.21 0.32 0.25 0.32 1.03 -0.04 0.12 -0.102,3-dimethyl hexane 0.13 0.32 - - 1.19 -0.11 0.07 -0.192,4-dimethyl hexane 0.15 0.32 - - 1.73 -0.12 0.02 -0.322,5-dimethyl hexane 0.21 0.32 - - 1.46 -0.11 0.05 -0.282-methyl heptane 0.24 0.40 - - 1.07 -0.19 -0.05 -0.263-methyl heptane 0.20 0.37 0.59 0.75 1.24 -0.19 -0.03 -0.284-methyl heptane 0.12 0.32 0.25 0.31 1.25 -0.15 -0.04 -0.30n-nonane 0.23 0.44 1.18 0.64 0.78 -0.35 -0.20 -0.45n-decane 0.16 0.29 3.98 0.66 0.68 -0.39 -0.26 -0.51n-undecane 0.17 0.44 - - 0.61 -0.36 -0.26 -0.47n-dodecane 0.19 0.48 - - 0.55 -0.36 -0.27 -0.47Alkenesethene 0.04 25.83 0.62 0.34 9.00 3.64 5.34 0.86propene 0.10 0.30 0.25 1.93 11.66 6.34 5.54 0.231-butene 0.04 0.17 0.04 0.12 9.73 4.84 4.00 -0.21cis-2-butene 0.04 0.11 - - 14.24 15.32 5.27 -1.77trans-2-butene 0.04 0.11 - - 15.16 16.89 5.71 -1.881,3-butadiene 0.03 0.08 0.04 - 12.61 6.09 5.84 -0.22

A-19

Table A-2 (continued)

Compound

Mass Percent [a]   Incremental Reactivities [b]

Jonah (2008)

Boulder (2008)

Boulder (2011)

Mobile Trailer (2011)

Standard MIR

Jonah (2008) Boulder (2008)

Baseline  Baseline HONO 3% NOx

1-pentene 0.05 0.13 0.06 - 7.21 2.70 2.32 -0.443-methyl-1-butene 0.05 0.13 - - 6.99 2.88 2.53 -0.302-methyl-1-butene 0.05 0.13 0.13 0.35 6.40 4.86 3.47 0.232-methyl-2-butene 0.05 0.13 0.07 0.18 14.08 19.21 6.72 -2.76cis-2-pentene 0.05 0.13 0.57 1.53 10.38 8.65 2.77 -2.06trans-2-pentene 0.05 0.13 0.28 0.75 10.56 9.01 2.87 -2.09cyclopentene 0.04 0.10 0.05 0.15 6.77 4.80 0.94 -2.84isoprene 0.05 3.80 - 0.33 10.61 5.68 4.77 -0.631-hexene 0.06 0.18 0.20 0.54 5.49 1.63 1.57 -0.163-methyl cyclopentene 0.06 0.16 - - 5.10 3.11 0.69 -1.932-methyl-1-hexene 0.11 0.22 0.18 0.47 5.10 3.31 2.07 -0.642-Methyl-1-heptene 0.12 0.32 - - 3.25 0.35 0.38 -0.891-nonene 0.14 0.36 - - 2.60 0.25 0.18 -1.03alpha-pinene 0.15 0.16 - - 4.51 4.25 1.43 -1.77beta-pinene 0.15 0.39 - - 3.52 1.82 1.55 -0.16d-limonene 0.15 0.39 - - 4.55 4.70 1.51 -1.49Aromaticsbenzene 2.15 0.17 3.78 2.62 0.72 0.12 0.23 -0.04toluene 4.84 3.44 6.78 6.13 4.00 1.20 1.71 -0.35ethyl benzene 0.20 0.24 0.38 0.28 3.04 0.70 1.11 -0.20m-xylene 0.75 0.69 1.53 0.79 9.75 4.31 4.46 -1.24o-xylene 0.22 0.38 0.76 0.30 7.64 2.50 2.99 -0.92p-xylene 0.75 0.69 1.53 0.79 5.84 1.80 2.54 -0.57styrene 0.15 0.30 0.12 0.25 1.73 1.13 0.93 -0.63n-propyl benzene 0.13 0.34 - - 2.03 0.41 0.70 -0.13isopropyl benzene (cumene) 0.13 0.16 - - 2.52 0.57 0.91 -0.18m-ethyl toluene 0.13 0.34 - - 7.39 2.89 3.24 -0.89o-ethyl toluene 0.13 0.34 - - 5.59 1.67 2.10 -0.65p-ethyl toluene 0.13 0.34 - - 4.44 1.22 1.83 -0.401,2,3-trimethyl benzene 0.13 0.34 0.58 - 11.97 5.74 5.12 -2.061,2,4-trimethyl benzene 0.14 0.50 1.15 - 8.87 3.93 3.97 -1.371,3,5-trimethyl benzene 0.11 0.23 0.86 - 11.76 7.55 5.60 -1.96indane 0.13 0.34 - - 3.32 0.94 1.23 -0.54n-butyl benzene 0.10 0.25 - - 2.36 0.52 0.86 -0.17m-diethyl benzene 0.15 0.38 - - 7.10 3.13 3.24 -0.97p-diethyl benzene 0.15 0.38 - - 4.43 1.33 1.91 -0.451,2,4,5-tetramethyl benzene 0.15 0.23 - - 9.26 4.86 4.15 -1.601,2-dimethyl-4-ethyl benzene 0.15 0.36 - - 7.55 3.32 3.36 -1.231,3-dimethyl-4-ethyl benzene 0.15 0.39 - - 7.55 3.32 3.36 -1.231,4-dimethyl-2-ethyl benzene 0.15 0.38 - - 7.55 3.32 3.36 -1.231,2,3,5-tetramethyl benzene 0.15 0.38 - - 9.26 4.86 4.15 -1.60naphthalene 0.14 0.38 - - 3.34 0.71 0.89 -0.87Alkynesacetylene 0.08 0.46 1.05 0.67 0.95 0.31 0.47 0.00

A-20

Table A-2 (continued)

Compound

Mass Percent [a]   Incremental Reactivities [b]

Jonah (2008)

Boulder (2008)

Boulder (2011)

Mobile Trailer (2011)

Standard MIR

Jonah (2008) Boulder (2008)

Baseline  Baseline HONO 3% NOx

Oxygenatesformaldehyde 0.13 0.19 - - 9.46 13.85 6.24 0.18acetaldehyde 0.01 0.03 - - 6.54 2.42 0.80 -2.12acrolein 0.01 0.04 - - 7.45 1.75 0.80 -2.37propionaldehyde 0.01 0.02 - - 7.08 4.17 0.63 -2.31acetone 0.01 0.02 - - 0.36 0.15 0.09 -0.02crotonaldehyde 0.14 0.29 - - 9.39 4.59 3.32 -1.72butanal 0.03 0.09 - - 5.97 3.40 0.41 -2.083-methylbutanal 0.07 0.17 - - 4.97 3.06 0.65 -1.56pentanal (valeraldehyde) 0.07 0.51 - - 5.08 2.66 0.28 -1.85hexanal 0.10 0.25 - - 4.35 2.29 0.31 -1.56methanol 0.06 0.26 - - 0.67 0.15 0.27 0.04ethanol 0.02 0.03 - - 1.53 0.17 0.23 -0.05isopropyl alcohol 0.01 0.02 - - 0.61 0.13 0.31 0.17n-propyl alcohol 0.01 0.23 - - 2.50 0.41 0.46 -0.09tert-butyl alcohol 5.09 0.13 - - 0.41 0.07 0.16 0.03methyl t-butyl ether 0.08 5.80 - - 0.73 0.14 0.34 0.11ethyl tert-butyl ether 0.11 0.29 - - 2.01 0.19 0.52 0.12methyl tert-amyl ether 0.07 0.34 - - 1.69 0.28 0.62 0.06diisopropyl ether 0.11 0.29 - - 3.52 1.76 2.16 0.50Aromatic Aldehydesbenzaldehyde 0.01 0.02 - - -0.67 -0.57 -0.75 -1.11Tolualdehydes 0.00 0.02 - - -0.59 -0.50 -0.66 -0.98

Ambient Mixtures used for Base ROGsCarter (2010) Urban Mixture 3.60 1.70 1.30 -0.41Boulder (2008) 100 4.36 1.65 2.05 0.04Jonah (2008) 100 1.40 0.31 0.39 -0.08Boulder (2011) 100 1.67 0.49 0.55 -0.15Mobile Trailer (2011) 100 1.75 0.60 0.54 -0.10

[a] Mass fractions of measured VOCs used to determine the base ROG compositions from for the model simulations of the UGRB scenarios. See text for a discussion of the derivations of these compositions.

[b] Incremental reactivities are in units of grams O3 per gram VOC. "Standard MIR" is the SAPRC-07 MIR values from Carter (2010). Jonah and Boulder baseline are the incremental reactivities calculated for the baseline 2008 Jonah and Boulder scenarios, respectively. Jonah HONO 3% NOx are incremental reactivities calculated for the Jonah 2008 scenario with HONO formed from NO2 at a rate adjusted to yield HONO/NO2 ratios of approximately 3%.

A-21

Table A-. Mechanisms derived for lumped VOC model species based on the mechanisms of the mixtures of compounds measured at the Jonah and Boulder site at 265 K.

Model Species

Rate parameters [a] Reactionk(265) A Ea B

Derived for the Jonah ambient mixture

ALK1 1.58e-13 1.34e-12 0.992 2.0 ALK1 + OH = xHO2 + RO2C + xCCHO + yROOHALK2 8.34e-13 1.49e-12 0.173 2.0 ALK2 + OH = #.963 xHO2 + #.001 TBUO + #.963 RO2C + #.036

RO2XC + #.036 zRNO3 + #.002 xHCHO + #.219 xRCHO + #.745 xACET + #.999 yROOH + #-.114 XC

ALK3 2.70e-12 1.67e-12 -0.251 - ALK3 + OH = #.271 HO2 + #.381 xHO2 + #.284 xTBUO + #.711 RO2C + #.064 RO2XC + #.064 zRNO3 + #.018 xHCHO + #.271 CCHO + #.03 xCCHO + #.086 xRCHO + #.005 xACET + #.271 xMEK + #.709 yROOH + #.02 yR6OOH + #.503 XC

ALK4 4.43e-12 3.75e-12 -0.088 - ALK4 + OH = #.01 HO2 + #.792 xHO2 + #.007 xMEO2 + #.001 xMECO3 + #1.445 RO2C + #.19 RO2XC + #.19 zRNO3 + #.005 xHCHO + #.318 xCCHO + #.004 RCHO + #.155 xRCHO + #.005 ACET + #.31 xACET + #.21 xMEK + #.156 xPROD2 + #.001 yROOH + #.989 yR6OOH + #.012 XC

ALK5 1.06e-11 2.58e-12 -0.744 - ALK5 + OH = #.589 xHO2 + #.015 xMEO2 + #1.127 RO2C + #.396 RO2XC + #.396 zRNO3 + #.003 xHCHO + #.011 xCCHO + #.14 xRCHO + #.04 xACET + #.048 xMEK + #.417 xPROD2 + yR6OOH + #2.35 XC

OLE1 4.03e-11 6.05e-12 -0.996 - OLE1 + OH = #.818 xHO2 + #.003 xMEO2 + #1.067 RO2C + #.179 RO2XC + #.179 zRNO3 + #.597 xHCHO + #.323 xCCHO + #.347 xRCHO + #.011 xACET + #.011 xMEK + #.014 xMACR + #.009 xMVK + #.006 xIPRD + #.125 xPROD2 + #.419 yROOH + #.581 yR6OOH + #.69 XC

5.14e-18 3.19e-15 3.379 - OLE1 + O3 = #.118 HO2 + #.036 xHO2 + #.2 OH + #.115 MEO2 + #.053 RO2C + #.007 RO2XC + #.007 zRNO3 + #.375 CO + #.129 CO2 + #.5 HCHO + #.161 CCHO + #.006 xCCHO + #.339 RCHO + #.024 xRCHO + #.006 xACET + #.006 MEK + #.185 HCOOH + #.024 CCOOH + #.123 RCOOH + #.166 PROD2 + #.006 yROOH + #.037 yR6OOH + #.776 XC

8.18e-15 4.28e-13 2.081 - OLE1 + NO3 = #.727 xHO2 + #1.062 RO2C + #.273 RO2XC + #.273 zRNO3 + #.038 xACET + #.43 xRNO3 + #.419 yROOH + #.581 yR6OOH + #.57 XN + #.668 XC

4.04e-12 1.38e-11 0.648 - OLE1 + O3P = #.45 RCHO + #.391 MEK + #.159 PROD2 + #1.132 XC

OLE2 8.17e-11 1.29e-11 -0.969 - OLE2 + OH = #.889 xHO2 + #.001 xMACO3 + #.937 RO2C + #.11 RO2XC + #.11 zRNO3 + #.001 xCO + #.239 xHCHO + #.657 xCCHO + #.329 xRCHO + #.091 xACET + #.089 xMEK + #.039 xMACR + #.001 xMVK + #.04 xIPRD + #.109 xPROD2 + #.275 yROOH + #.725 yR6OOH + #.152 XC

9.15e-17 1.05e-14 2.494 - OLE2 + O3 = #.084 HO2 + #.013 xHO2 + #.46 OH + #.235 MEO2 + #.204 xMECO3 + #.033 xRCO3 + #.25 RO2C + #.021 RO2XC + #.021 zRNO3 + #.266 CO + #.141 CO2 + #.203 HCHO + #.084 xHCHO + #.37 CCHO + #.069 xCCHO + #.254 RCHO + #.078 xRCHO + #.03 ACET + #.033 MEK + #.044 HCOOH + #.05 CCOOH + #.085 RCOOH + #.037 MACR + #.028 MVK + #.059 PROD2 + #.271 yR6OOH + #.329 XC

A-22

Table A-3 (continued)

Model Species

Rate parameters [a] Reactionk(265) A Ea B

1.48e-12 3.49e-13 -0.759 - OLE2 + NO3 = #.566 xHO2 + #.241 xNO2 + #1.107 RO2C + #.193 RO2XC + #.193 zRNO3 + #.009 xHCHO + #.257 xCCHO + #.106 xRCHO + #.091 xACET + #.001 xMEK + #.007 xMGLY + #.033 xMVK + #.009 xIPRD + #.444 xRNO3 + #.275 yROOH + #.725 yR6OOH + #.315 XN + #-.138 XC

2.33e-11 1.53e-11 -0.220 - OLE2 + O3P = #.019 HO2 + #.009 xHO2 + #.008 xMACO3 + #.017 RO2C + #.002 RO2XC + #.002 zRNO3 + #.008 xCO + #.1 RCHO + #.668 MEK + #.008 xMACR + #.214 PROD2 + #.019 yROOH + #.66 XC

ARO1 5.70e-12 5.70e-12 - - ARO1 + OH = #.177 HO2 + #.462 xHO2 + #.304 OH + #.462 RO2C + #.058 RO2XC + #.058 zRNO3 + #.232 xGLY + #.147 xMGLY + #.177 CRES + #.06 xBALD + #.185 xAFG1 + #.195 xAFG2 + #.304 AFG3 + #.023 xPROD2 + #.095 yR6OOH + #.426 yRAOOH + #-.078 XC

ARO2 2.39e-11 2.39e-11 - - ARO2 + OH = #.127 HO2 + #.537 xHO2 + #.214 OH + #.021 RCO3 + #.537 RO2C + #.101 RO2XC + #.101 zRNO3 + #.139 xGLY + #.26 xMGLY + #.058 xBACL + #.127 CRES + #.041 xBALD + #.181 xAFG1 + #.175 xAFG2 + #.214 AFG3 + #.103 xAFG3 + #.038 xPROD2 + #.094 yR6OOH + #.543 yRAOOH + #1.638 XC

Used for the "low reactivity" aromatics model for Jonah

ARO1 5.70e-12 ARO1 + OH = #.177 HO2 + #.462 xHO2 + #.304 OH + #.462 RO2C + #.058 RO2XC + #.058 zRNO3 + #.177 CRES + #.06 xBALD + #.684 AFG3 + #.095 yR6OOH + #.426 yRAOOH + #.023 xPROD2

ARO2 2.39e-11 ARO2 + OH = #.127 HO2 + #.537 xHO2 + #.214 OH + #.021 RCO3 + #.537 RO2C + #.101 RO2XC + #.101 zRNO3 + #.570 xAFG3 + #.038 xPROD2 + #.094 yR6OOH + #.543 yRAOOH

Derived for the Boulder ambient mixture

ALK1 1.58e-13 1.34e-12 0.992 2.0 ALK1 + OH = xHO2 + RO2C + xCCHO + yROOHALK2 8.02e-13 1.43e-12 0.173 2.0 ALK2 + OH = #.69 xHO2 + #.248 TBUO + #.69 RO2C + #.062

RO2XC + #.062 zRNO3 + #.594 xHCHO + #.022 xRCHO + #.668 xACET + #.752 yROOH + #-1.028 XC

ALK3 2.35e-12 1.46e-12 -0.251 - ALK3 + OH = #.007 HO2 + #.342 xHO2 + #.001 xMEO2 + #.577 xTBUO + #.954 RO2C + #.074 RO2XC + #.074 zRNO3 + #.009 xHCHO + #.007 CCHO + #.016 xCCHO + #.124 xRCHO + #.005 xACET + #.203 xMEK + #.974 yROOH + #.019 yR6OOH + #-.007 XC

ALK4 5.10e-12 4.32e-12 -0.088 - ALK4 + OH = #.074 HO2 + #.654 xHO2 + #.008 xMEO2 + #.017 xMECO3 + #1.266 RO2C + #.246 RO2XC + #.246 zRNO3 + #.02 xHCHO + #.075 xCCHO + #.052 RCHO + #.207 xRCHO + #.022 ACET + #.09 xACET + #.2 xMEK + #.218 xPROD2 + #.014 yROOH + #.912 yR6OOH + #.091 XC

ALK5 1.15e-11 2.80e-12 -0.744 - ALK5 + OH = #.547 xHO2 + #.03 xMEO2 + #.001 xTBUO + #1.145 RO2C + #.422 RO2XC + #.422 zRNO3 + #.005 xHCHO + #.014 xCCHO + #.14 xRCHO + #.043 xACET + #.064 xMEK + #.366 xPROD2 + yR6OOH + #2.4 XC

OLE1 4.00e-11 6.00e-12 -0.996 - OLE1 + OH = #.833 xHO2 + #.002 xMEO2 + #1.063 RO2C + #.165 RO2XC + #.165 zRNO3 + #.625 xHCHO + #.328 xCCHO + #.365 xRCHO + #.01 xACET + #.012 xMEK + #.013 xMACR + #.009

A-23

Table A-3 (continued)

Model Species

Rate parameters [a] Reactionk(265) A Ea B

xMVK + #.006 xIPRD + #.115 xPROD2 + #.469 yROOH + #.531 yR6OOH + #.746 XC

5.09e-18 3.15e-15 3.379 - OLE1 + O3 = #.118 HO2 + #.036 xHO2 + #.201 OH + #.117 MEO2 + #.051 RO2C + #.006 RO2XC + #.006 zRNO3 + #.376 CO + #.13 CO2 + #.5 HCHO + #.165 CCHO + #.009 xCCHO + #.335 RCHO + #.022 xRCHO + #.005 xACET + #.005 MEK + #.185 HCOOH + #.025 CCOOH + #.133 RCOOH + #.153 PROD2 + #.009 yROOH + #.033 yR6OOH + #.835 XC

8.15e-15 4.27e-13 2.081 - OLE1 + NO3 = #.743 xHO2 + #1.05 RO2C + #.257 RO2XC + #.257 zRNO3 + #.034 xACET + #.438 xRNO3 + #.469 yROOH + #.531 yR6OOH + #.562 XN + #.728 XC

3.99e-12 1.37e-11 0.648 - OLE1 + O3P = #.45 RCHO + #.407 MEK + #.143 PROD2 + #1.164 XC

OLE2 8.18e-11 1.29e-11 -0.969 - OLE2 + OH = #.893 xHO2 + #.001 xMACO3 + #.938 RO2C + #.106 RO2XC + #.106 zRNO3 + #.001 xCO + #.226 xHCHO + #.677 xCCHO + #.339 xRCHO + #.094 xACET + #.092 xMEK + #.04 xMACR + #.001 xMVK + #.041 xIPRD + #.09 xPROD2 + #.284 yROOH + #.716 yR6OOH + #.203 XC

9.41e-17 1.08e-14 2.494 - OLE2 + O3 = #.085 HO2 + #.013 xHO2 + #.452 OH + #.242 MEO2 + #.194 xMECO3 + #.032 xRCO3 + #.24 RO2C + #.018 RO2XC + #.018 zRNO3 + #.269 CO + #.145 CO2 + #.189 HCHO + #.085 xHCHO + #.382 CCHO + #.071 xCCHO + #.262 RCHO + #.064 xRCHO + #.031 ACET + #.034 MEK + #.042 HCOOH + #.051 CCOOH + #.088 RCOOH + #.039 MACR + #.029 MVK + #.05 PROD2 + #.258 yR6OOH + #.385 XC

1.51e-12 3.57e-13 -0.759 - OLE2 + NO3 = #.564 xHO2 + #.248 xNO2 + #1.098 RO2C + #.187 RO2XC + #.187 zRNO3 + #.01 xHCHO + #.265 xCCHO + #.109 xRCHO + #.094 xACET + #.001 xMEK + #.007 xMGLY + #.034 xMVK + #.009 xIPRD + #.438 xRNO3 + #.284 yROOH + #.716 yR6OOH + #.314 XN + #-.105 XC

2.34e-11 1.54e-11 -0.220 - OLE2 + O3P = #.019 HO2 + #.009 xHO2 + #.008 xMACO3 + #.018 RO2C + #.002 RO2XC + #.002 zRNO3 + #.008 xCO + #.09 RCHO + #.67 MEK + #.008 xMACR + #.22 PROD2 + #.019 yROOH + #.646 XC

ARO1 5.85e-12 5.85e-12 - - ARO1 + OH = #.171 HO2 + #.474 xHO2 + #.292 OH + #.474 RO2C + #.064 RO2XC + #.064 zRNO3 + #.224 xGLY + #.142 xMGLY + #.171 CRES + #.053 xBALD + #.173 xAFG1 + #.194 xAFG2 + #.292 AFG3 + #.055 xPROD2 + #.126 yR6OOH + #.412 yRAOOH + #-.035 XC

ARO2 2.58e-11 2.58e-11 - - ARO2 + OH = #.114 HO2 + #.547 xHO2 + #.198 OH + #.032 RCO3 + #.547 RO2C + #.109 RO2XC + #.109 zRNO3 + #.121 xGLY + #.263 xMGLY + #.077 xBACL + #.114 CRES + #.032 xBALD + #.171 xAFG1 + #.2 xAFG2 + #.198 AFG3 + #.092 xAFG3 + #.054 xPROD2 + #.104 yR6OOH + #.552 yRAOOH + #1.68 XC

[a] Rate constants are in units of cm3 molec-1 s-1. Temperature dependence is given by k(T) = A exp(-Ea/RT) (T/300)B, where T is the temperature in degrees k and R = 0.0019872.

A-24

Table A-. TUV model inputs used to calculate solar actinic fluxes the conditions of the Jonah site on February 20, 2008. The resulting actinic fluxes were used for all UGRB winter simulations discussed in this work.

Parameter Value Discussion

o3col 317 Total vertical ozone column, in Dobson Units, from surface to space. From Table 3-1 of Environ (2010).

alsurf 0.75 Surface reflectivity (albedo: min = 0, max = 1). From Table 3-1 of Environ (2010).

zstart 2.087 Surface elevation, km, above sea level. Number given is provided by DEQ (2010) and also used for Environ simulation

zout 2.212 Altitude (km) above sea level for the calculated actinic fluxes. This was set as the surface elevation + ½ the maximum inversion height.

ztemp 264.5 Temperature input. This is the average temperature used in the scenarios. It is uncertain whether this is actually used in the flux calculation.

tauaer 0.188 Aerosol vertical optical depth at 550 nm. The default value is 0.235 for continental aerosol profile given in the TUV documentation. However, in this application we use 0.188 because this is what was used in the Environ calculations (Environ, 2011).

For the following parameters the defaults provided in the sample input file with the TUV model that is recommended for photolysis rate calculation (TUV, 2010) are used without modification.

nstr 4 Number of streams for radiative transfer. If nstr < 2, uses 2-stream delta-Eddington. If nstr = 2 or > 2, uses n-stream discrete ordinates

psurf -999 Pressure (millibar) at surface. Set to negative value to use default US Standard Atmosphere pressure profile.

so2col 0 Total SO2 column from surface to space (Dobson Units). Default value is zero. Profile is mostly between 0 and 1 km asl.

no2col 0 Total NO2 column from surface to space (Dobson Units). Default value is zero. Profile is mostly between 0 and 1 km asl.

taucld 0 Total cloud optical depth. Cloud is assumed to cover entire sky uniformly.

zstop 120 Altitude, km, of top of atmosphere.

nz 121 Number of equally spaced atmospheric levels.

zbase 4 Altitude (km above sea level) of cloud base.

ztop 5 Altitude (km above sea level) of cloud top.

ssaaer 0.99 Single scattering albedo of aerosols. Must be in range 0.0 (purely

A-25

Table A-4 (continued)

Parameter Value Discussion

absorbing) to 1.0 (purely scattering).

alpha 1 Exponent for wavelength (w) dependence of aerosol optical depth (tauaer), so that tauaer1/tauaer2 = (w2/w1)^alpha.

dirsun 1 Weighting factor for direct sun component. Must be between 1.

difdn 1 Weighting factor for down-welling diffuse radiation Must be between 1.

difup 1 Weighting factor for up-welling diffuse radiation Must be between 1.

zaird -999 Air density (molec cm-3) at the selected output altitude zout. If negative, will use default value from US Standard Atm.

A-26

Table A-. SAPRC-07 photolysis rate constants calculated for solar noon in the UGRB for the February 22 winter episode and for the summer solstice.

Photolysis Reaction

Solar Noon Photolysis Rates (min-1)   Factor Change: Previous vs. TUV light modelPrevious model [a] TUV Model [b]

Feb 22 (Z=54)

June 20 (Z=20)

Feb 22 (Z=54)

June 20 (Z=20)   Feb 22

(Z=54)Feb vs.

JuneJune 20 (Z=20)

NO2 + h NO + O 0.512 0.704 0.975 0.698 1.9 1.4 1.0NO3 + h NO + O2 1.752 1.907 2.349 1.583 1.3 1.2 0.8NO3 + h NO2 + O 13.80 15.35 19.06 12.88 1.4 1.2 0.8O3 + h O1D + O2 8.24e-4 2.68e-3 1.93e-3 2.99e-3 2.3 0.7 1.1O3 + h O3P + O2 0.0304 0.0367 0.0453 0.0314 1.5 1.2 0.9HONO + h HO· + NO 0.0775 0.1106 0.1584 0.1133 2.0 1.4 1.0HNO3 + h products 2.06e-5 4.91e-5 4.87e-5 5.42e-5 2.4 1.0 1.1HO2NO2 + h products 2.46e-4 5.02e-4 5.77e-4 5.53e-4 2.3 1.1 1.1H2O2 + h 2 OH 2.88e-4 5.29e-4 6.75e-4 5.83e-4 2.3 1.3 1.1PAN + h products 2.71e-5 5.65e-5 6.42e-5 6.24e-5 2.4 1.1 1.1HCHO + h HCO· + H. 1.36e-3 2.59e-3 3.21e-3 2.84e-3 2.4 1.2 1.1HCHO + h H2 + CO 1.78e-3 2.97e-3 4.11e-3 3.22e-3 2.3 1.4 1.1CH3CHO + h CH3 + CHO 1.47e-4 3.76e-4 3.45e-4 4.14e-4 2.3 0.9 1.1C2H5CHO + h C2H5. + CHO· 5.59e-4 1.28e-3 1.32e-3 1.41e-3 2.4 1.0 1.1CH3C(O)CH3 + h Radicals 1.81e-5 5.69e-5 4.24e-5 6.32e-5 2.3 0.7 1.1MEK absorption cross sections 3.77e-4 8.81e-4 8.88e-4 9.71e-4 2.4 1.0 1.1CH3OOH + h products 2.09e-4 3.72e-4 4.81e-4 4.05e-4 2.3 1.3 1.1HCOCHO + h HCO· + HCO· 6.38e-3 8.81e-3 1.20e-2 8.70e-3 1.9 1.4 1.0HCOCHO + h HCHO + H2 1.74e-3 3.01e-3 3.84e-3 3.22e-3 2.2 1.3 1.1CH3COCHO + h products 0.0114 0.0153 0.0204 0.0147 1.8 1.3 1.0CH3COCOCH3 + h 2 CH3CO· 0.0202 0.0262 0.0358 0.0250 1.8 1.4 1.0Benzaldehyde cross sections 0.0314 0.0489 0.0695 0.0523 2.2 1.4 1.1Photoreactive aromatic ring-opening product absorption cross sections

0.241 0.371 0.504 0.387 2.1 1.4 1.0

Methacrolein + h products 1.06e-4 1.86e-4 2.46e-4 2.04e-4 2.3 1.3 1.1MVK + h products 3.99e-5 7.09e-5 9.35e-5 7.75e-5 2.3 1.3 1.1i-C3H7ONO2 + h products 9.56e-5 2.15e-4 2.27e-4 2.38e-4   2.4 1.1 1.1

Average: 2.1±0.3 1.2±0.2 1.0±0.1Range: 1.3-2.4 0.7-1.4 0.8-1.1

[a] Calculated for the zenith angles indicated using the Jeffries (1991) light model that was employed to calculate the photolysis rates for the reactivity calculations of Carter (2010).

[b] Calculated for zenith angle of 54 degrees using TUV 5.0 with inputs given in Table A-4 except for the surface albedo parameter (alsurf) for the June 20 simulation, which used the TUV default value of 0.1.

A-27

Table A-. Box model inputs used in the simulations of the UGRB scenarios.

A-28

Table A-6 (continued)

Parameter Jonah 2/20/08

Boulder 2/20/08

Boulder 3/2/11

Trailer 3/2/11 Discussion

Simulation control

T0 8 AM 7 AM 9 AM Simulation start and end time Initial time determined by time the data indicate the initial pollutants can be assumed to be present. Final time is determined by times of calculated ozone maximum.

Tend 5 PM

Tstart -33 0 Difference between solar and simulation time in minutes. For the 2011 scenarios this is set such that the computed zenith angles agree with those output in the Environ (2011) simulation. This was neglected in the 2011 simulations.

General environmental conditions

Latitude 42.44 42.72 The 2008 simulations used the latitude of Jonah, Wyoming. The 2011 simulations used the latitude of the Boulder site.

Declination -11.49 -7.82 Solar declination calculated for the latitude of Jonah for February 20 for the 2008 simulations, and calculated for the latitude of Boulder for March 2 for the 2011 simulations.

Temperature 264 262 267 Average temperatures in K. See Table A-7 in the Supplementary Materials for the hourly values. Values for the 2008 scenarios are averages of the 2m and 10m values given by DEQ (2010) for the Jonah episode. Values for the 2011 scenarios from data provided by DEQ (2011) for the two locations..

Mixing Height 85 250(See Table A-7

for hourly values)

Constant (therefore not

needed for calculation)

Initial and final inversion height in meters, in scenarios where it is assumed to increase and pollutants are diluted or entrained from aloft. For the 2008 episodes the values used in the Environ (2010) simulations were used. For the 2011 episodes the inversion height data provided by DEQ for the Boulder 3/2/11 episode indicated no signficant change in mixing height with time, so no entrainment of aloft polluants is assumed.

[H2O] 2611 2036 2133 Average water concentration in ppm, calculated from the humidity and temperature

A-29

Table A-6 (continued)

Parameter Jonah 2/20/08

Boulder 2/20/08

Boulder 3/2/11

Trailer 3/2/11 Discussion

inputs. Source of humidity inputs the same as source of the temperature inputs described above. See Table A-7 for hourly values

Pollutant input

Initial VOC 4.31 0.95 1.48 1.35 Initial VOC levels in ppmC. Inputs for the 2008 scenarios from the total NMHC measurements for 4-7 AM provided by DEQ (2010). The 2011 inputs are from averages of NMHC measurements provided by DEQ (2011).

Initial NOx 0.136 0.018 0.114 0.071 Initial NOx levels in ppm, based on NOx levels provided by DEQ (2010, 2011) for these episodes. The values used are as follows: Jonah 2008: averages between 3 AM and 7 AM; Boulder 2008: averages between 4 AM and 6 PM; Boulder 2011: 7 AM value (maximum daily value); Mobile Trailer 2011: 9 AM value (maximum daily value).

% NO0 51% 50% Fractions of the initial NOx that is NO, NO2, and HONO. For the 2008 Jonah scenario used in this work, the NO fraction is from the ratio of NO to NOx for the hour 4-7 average NO and NOx data provided by DEQ (2010). Because of the variability of the Boulder NOx

data, the same ratio was used for the Boulder scenario. The data for the 2011 episodes are reasonably consistent with assuming equal initial NO and NO2. Initial HONO was assumed to be zero in the baseline calculations, and derived as discussed in the text for the added HONO simulations..

% NO20 49% - % HONO0 50% - % HONO0

% HONO0 % HONO0 = (Nominal HONO/NO2

ratio) x % NO20

O3 24 20 20 Initial O3 in ppb, and CO and methane in PPM. Values for the 2008 scenarios are from Environ (2011). O3 and methane values for the 2011 scenarios from data provided by DEQ (2011) for the Boulder scenario for O3, and the individual scenarios for methane. Although the observed initial O3 in the Mobile Trailer scenario is higher, better fits to the 2nd hour data are obtained using 20 ppb. Initial CO values for the 2011 scenarios

CO 0.701 1.0 1.0CH4 17.9 5.5 5.5

A-30

Table A-6 (continued)

Parameter Jonah 2/20/08

Boulder 2/20/08

Boulder 3/2/11

Trailer 3/2/11 Discussion

are estimates.O3 Aloft 0.05

N/A

Aloft O3, CO, methane, NMOCs and NOx, respectively, which are entrained into the simulated parcel when the inversion height increases. This is only applicable to the 2008 scenarios because the inversion height is assumed to be constant in the 2011 scenarios. The Environ (2010) input values are used. The composition of the NMOC's aloft are assumed to be the same as the initial NMOC's, as used in the inputs provided by Environ (2011).

CO Aloft 0.2CH4 Aloft 2ROG Aloft 0.02NOx Aloft 0.001

Biogenics 0 Biogenic VOCs assumed to be negligible..VOC Speciation

See Table A-2 The distribution of individual VOCs used to derive the speciation of the base ROG mixture. See text for a discussion of how these were derived.

A-31

Table A-. Time-dependent parameter values used in the box model inputs. See Table A-4 for discussion and documentation of these values.

Hour [a]

  Temperature (K)   H2O Concentration (ppm)   Mixing Height (M)

 Jonah

2/20/08 [b]Boulder 3/2/11

Trailer 3/2/11   Jonah

2/20/08 [b]Boulder 3/2/11

Trailer 3/2/11   Jonah

2/20/08 [b]

7 253 10498 261 254 256 1938 1097 1116 859 261 254 261 1974 1157 1382 95

10 263 258 264 2345 1588 1723 11511 265 260 269 2408 2019 1994 12512 266 262 270 2448 2298 2171 13513 265 264 272 2681 2291 2347 15014 266 266 273 2917 2372 2615 16015 267 266 270 3102 2503 2692 20016 266 267 270 3175 2375 2646 25017   265 267 270   3123 2661 2646   250

[a] Hours after midnight of simulation time. Values at intermediate times determined by linear interpolation.

[b] Also used for the Boulder 2/22/08 episode.

A-32

(a) NO to NO2 Conversions (b) Overall Nitrate Formation

0.0

0.5

1.0

1.5

2.0

2.5

0.0 1.0 2.0 3.0

Standard SAPRC-07 Mechanism

Low

Tem

pera

ture

Mec

hani

sm

AlkanesAlkenesAlc., Eth.1:1 Line

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6

Standard SAPRC-07 Mechanims

Low

Tem

pera

ture

Mec

hani

sm

AlkanesAlkenesAlc., Eth.1:1 Line

Figure A-. Plots of low vs. standard temperature numbers of NO to NO2 conversions and overall organic nitrate yields in the mechanisms derived for the reactions of OH radicals with alkanes, alkenes, and alcohols and ethers.

NO2 + h O3P + NO O3 + h O1D + O2

Simulated time of day (hour)

Pho

toly

sis

rate

(min

-1)

0.0

0.2

0.4

0.6

0.8

1.0

8 9 10 11 12 13 14 15 16 17

Winter (higher albedosand higher zenith angles)Summer

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

8 9 10 11 12 13 14 15 16 17

Figure A-. Plots of selected photolysis rates as a function of simulated hour for both summertime and wintertime conditions in the UGRB.

A-33

Ambient measurement on 2/20/08

S1) Environ scenario, CB05 mechanism

S2) Environ scenario, SAPRC07 mechanism

- Baseline Jonah scenario and SAPRC-07 mechanism

S3) With urban actinic fluxes (default urban albedos)

S4) With low reactivity low-temperature aromatics mechanism

S5) With room-temperature non-aromatic mechanisms

S6) With lumped species based on standard ambient mixture

S7) With urban ROG mixture(amount added not adjusted)

S8) With urban ROG mixture(amount added reactivity adjusted)

S9) With NOx reduced to yield MIR conditions

S10) With NOx reduced further to yield to yield maximum ozone

S11) With NO2 converted to HONO to yield HONO/NO2=3%

S12) With Summer temperatures and solar actinic fluxes

Ambient measurement on 2/21/08

- Baseline Boulder scenario and SAPRC-07 mechanism

S3) With urban actinc fluxes (default urban albedos)

S5) With room-temperature non-aromatic VOC mechanisms

S10) With NOx increased to yield maximum ozone

S9) With NOx increased further to yield MIR conditions

S11) With NO2 converted to HONO to yield HONO/NO2=3%

S12) With Summer temperatures and solar actinic fluxes

88

110

128

115

58

80

137

116

317

97

165

196

252

300

143

132

110

134

229

173

131

176

0 50 100 150 200 250 300

Maximum Ozone (ppb)

Jonah 2008 Scenarios

Boulder 2008 Scenarios

Figure A-. Comparison of maximum ozone levels calculated using modified mechanisms and inputs for the conditions of the 2008 Jonah and Boulder Scenarios.

A-34


Recommended