+ All Categories
Home > Documents > Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada ....

Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada ....

Date post: 11-Jun-2020
Category:
Upload: others
View: 11 times
Download: 0 times
Share this document with a friend
61
Prof. Cesar de Prada. ISA. UVA 1 Control Structures (Advanced Control) Prof. Cesar de Prada Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain [email protected]
Transcript
Page 1: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 1

Control Structures (Advanced Control)

Prof. Cesar de Prada Dpt. Systems Engineering and Automatic Control

University of Valladolid, Spain [email protected]

Page 2: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 2

Control Structures

Changes made in conventional control loops in order to improve: – Disturbance rejection – Ratio between variables – Operation with several competing variables – Operation with several controllers – Operation with several actuators – Etc.

Page 3: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 3

Control structures

Cascade loops Feedforward compensators Ratio controllers Selective control Override control Split range Inferential control Examples of control of several process units Design methodology

Page 4: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 4

Standard control loop

TT

u TC

w

q T

Condensate

pa

Fv

If pa changes, T will change and the disturbance will be corrected by the controller using the signal u to the valve

No se puede mostrar la imagen en este momento.

Page 5: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 5

Block Diagram

u W T

pa

Reg Steam Heat exch.

q

Fv

TT

TC

T Condensate

Page 6: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 6

Cascade of controllers

TT

TC

w

q T

Condensate

pa

Fv

FC

FT

The external regulator (TC) changes the set point of the internal one (FC), which corrects the effect of the pressure change in pa over Fv before the disturbance affects the heat exchanger in a significant way

Page 7: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 7

Cascade control

W T

pa

TC Heat Exch.

q

Fv FC

The external regulator (TC) changes the set point of the internal one (FC), which corrects the effect of the pressure change in pa over Fv before the disturbance affects the heat exchanger in a significant way

Steam

Page 8: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 8

Cascade Control

W T

pa

TC Steam Heat Exch.

q

Fv FC

Main process (TC-Heat Exchanger) slow Secondary process (FC-Steam) fast Disturbances on the secondary part of the process that can be corrected More instrumentation

Page 9: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 9

Tuning/Operation

W R1 G2 G1 R2

y

Internal loops must be tuned first, then the external ones Generally speaking, cascade control is faster than single loop If a controller is in manual, all loops external to it must be in manual

Page 10: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 10

Closed loop TF W

R1 G2 G1 R2 y u1 y2

)s(G)s(R1)s(G)s(R

22

22

+

W R1 G1

y u1 y2

)s(WRGGR)RG1(

RGGR)s(W

RG1RGGR1

RG1RGGR

)s(Y 1221122

22111

22

2211

22

2211

1 ++=

++

+=

Page 11: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 11

Cascade Temp-Pressure

TT

TC

w

q T

Condensate

pa

Fv

PC

PT

An internal pressure controller (PC) can perform a more efficient operation

Page 12: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 12

Cascade Control

W T

pa

TC Steam Cambiador

q

ps PC

The external controller (TC) commands the SP of the internal one (PC) which corrects the effect of changes in pa over ps before they reach the heat exchanger

Page 13: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 13

Level control

q

LC

w

u LT

qi

h

Changes in pressure ps at the end of the line modify the flow q and the level h. The controller changes u to restore level

ps

Page 14: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 14

Cascade Control

q

FC

w

u LT

qi

h

LC

FT

The external regulator (LC) modifies the internal one (FC) SP, which corrects the disturbances on q before they affect in a significant way the tank level h

ps

Page 15: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 15

Cascade Level-Flow

W h

ps

LC Flow Tank

qi

q FC

The external regulator (LC) modifies the external one (FC) SP, which corrects the disturbances on q before they affect in a significant way the tank level h

Page 16: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 16

Temperature- Reactor

Reactor

TT

T

Coolant Product

TC

If the input refrigerant temperature Ti changes: Tr and T will change too and the TC controller will correct it by changing the control signal u

u

Ti

Reactant

Tr

Jacket

Coolant

Page 17: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 17

Cascade Temp-Temp

Reactor

TT

T Coolant

TC

Ti TT TC

Tr

The external regulator (TC1) modifies the internal one (TC2) SP, which corrects the effect of the disturbance Ti on Tr before they affect T in a significant way

Reactant

Jacket Coolant

Page 18: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 18

Cascade Temp-Temp

W T

Ti

TC1 Refrig Reactor Tr

TC2

The external regulator (TC1) modifies the internal one (TC2) SP, which corrects the effect of the disturbance Ti on Tr before they affect T in a significant way

Page 19: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 19

Temperature reactor control

50 45

1.5 ºC

10 min.

Page 20: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 20

Jacket temperature reactor control

Page 21: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 21

Cascade temp reactor control

50 45

0.3 ºC

4 min.

Page 22: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 22

Feedforward control

TT

u TC

w

q T

Condensate

pa

Fv

If there are changes in the flow q or in Ti: The controller only reacts when T has changed

Ti

Page 23: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 23

TT

u TC

w

q T

Condensado

pa

Fv

Feedforward

Changes in flow q : Feedforward compensator will modify the signal to the valve according to the flow changes as soon as they appear

FT

FY

Page 24: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 24

Feedforward

U(s) Y(s)

P(s) GF

G

Gp

The compensator will implement a change on Y(s) through GF and G, equal in magnitude and of opposite sign to the one produced by the disturbance P(s) through GP, in order to compensate it

Page 25: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 25

Feedforward

Measurable disturbances that cannot be controlled directly

Additional instrumentation and computation is needed

GP should be slower than G It is an open loop compensation. It must be

used in addition to closed loop control

Page 26: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 26

Block Diagram

u W Y R

P

G

GP

+ -

GF

[ ][ ] [ ]

)s(P)s(R)s(G1G)s(G)s(G)s(W

)s(R)s(G1)s(R)s(G)s(Y

)s(P)s(G)s(G)s(G)s(Y)s(W)s(R)s(G)s(P)s(G)s(P)s(G)s(U)s(G)s(Y

PF

PF

PF

++

++

=

++−==++=Closed loop

dynamics does not change

Page 27: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 27

How to compute GF?

U(s) Y(s)

P(s) GF

G

Gp

[ ][ ]

)s(G)s(G)s(G0)s(P)s(G)s(G)s(G)s(U)s(G)s(P)s(G)s(P)s(G)s(U)s(G)s(Y

PF

PF

PF

+=++=

=++=

)s(G)s(GG P

F −=

Page 28: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 28

Practical GF

)s(G)s(GG P

F −=

Realizability not assured Can be high order Linear approach: range of validity ( GP and G)

Practical GF :

)1as()1bs(KG F

F ++

−=KKK P

F =

Page 29: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 29

Lead/Lag

0 20 40 60 80 100 1200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

)1as()1bs(KG F

F ++

−=

b > a b < a

Page 30: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 30

Heat exchanger- disturbance

10 15

2 ºC

7 min.

Page 31: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 31

Model Temp - u

39 49

Open loop test

Page 32: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 32

Model Temp - u

)1s(ke)s(G

sd

+τ=

1s96.0e46.0 s87.0

+−

=−

Page 33: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 33

Model temp-warm flow

10 12

Open loop test

Page 34: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 34

Model Temp- warm flow

)1s)(1s(e)1s(k)s(G

21

sdL

p +τ+τ+τ

=−

2

s87.0

)1s82.0(e)1s07.4(17.0

++−− −

Page 35: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 35

Heat exchanger Feedforward compensator

2s87.0

2

s87.0

PF )1s82.0(

)1s4)(1s96.0(34.0

1s96.0e46.0

)1s82.0(e)1s4(17.0

)s(G)s(GG

++−+

=

+−

++−−

=−= −

Page 36: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 36

Heat exchanger with feedforward

0.2 ºC

? min. 10 15

10 15

Page 37: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 37

Static Compensator / model

TT

TC

w

q T

Condensado

pa

Fv

FC

FT

TT FT

v

ieH

)Tw(qcvF ρ∆

−=

Process dynamics must be included Static model provides KF

1s1as

++

τ

Page 38: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 38

TT

u TC

w

q T

Condensate

pa

Fv

Cascade+Feedforward

FT

FY PC

PT

Page 39: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 39

Control of proportions

Product A Product B

Aim: Keep the proportion (r) between B and A in the mixture

RC FT FT FY

FA FB/FA

FB

r

Page 40: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 40

Ratio Control

Product A Product B

r

FC FT FT FF

F rF

Best dynamic characteristics

Aim: Keep the proportion (r) between B and A in the mixture

Page 41: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 41

Ratio Control

FC FT FT FF RC FT FT FY

AB

2B

A

A

B

F1

Fr

FF

Fr

FFr

A

=∂∂

−=∂∂

=

1FF

rFF

rFF

B

B

A

B

AB

=∂∂

=∂∂=

A B

Controlled Variable

Gain disturbance

Gain Manipulated Var. Gain changes Gain is cte

Page 42: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 42

Block Diagram

rFA FB Reg Flow r

FA + -

The set point of flow FB is adjusted continuously as a function of the measured flow FA

Page 43: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 43

Selective Control

TT TT TT

TC

Tubular Reactor

Coolant

Raw products

Which temperature should be controlled?

T

x

Page 44: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 44

Selective Control

TT TT TT

TC

HS

Tubular Reactor

Coolant

Raw products

The highest temperature is selected as the one to be controlled at every time instant

Page 45: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 45

Selective Control

FT FC

FT FC

FT FC

SC

PT

ST

PC

Air

As the demand of every user changes with time, w is selected in order to cope with the highest one. This is not the best policy

w

Compressor Motor

Page 46: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 46

Selective Control / VPC

FT FC

FT FC

FT FC

SC

PT

ST

PC

Gas

w

Compressor Motor

HS VPC

90%

Pressure is adjusted continuously, so that the most wide opened valve is at ,let’s say, 90% opening VPC: Valve position control

Page 47: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 47

Selective Control / Safety

Reactor AT AT

HS AC

Catalyst

Reactant

If a transmitter fails (signal to zero) the selector maintains the reading of the correct one. (but if the failure is signal to 100%, the controller stops the plant)

Page 48: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 48

Selective Control / Safety

Reactor AT AT

MS AC

Catalyst

Reactant

Another option is a two against one policy or a intermedium value selector

AT

< <

>

<

Selects the signal in the middle

Page 49: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 49

Override Control

q

LC

wL

u

LT

qi

h FT FC

wF LS

wL

< Aims : Flow q as constant as possible

Minimum level above wL (Pump protection)

Page 50: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 50

Override Control

FC

FT

TC

TT

LS

TC TT

wT

Aims: Keep T as constant as possible

Smoke temperature below wT

T

Gas

Disturbance: oil input temperature decreases

Page 51: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 51

Override Control

PT

PC

FT

FC

LS

Pmin

Surge (low input pressure)

Usually at 100%. If any problem appears it will decrease until the controller overrides the FC

Protection against cavitation in the pump

Page 52: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Override control

Prof. Cesar de Prada. ISA. UVA 52

q

FC w u

M

LC

LT

Lmin

FT

LS

well Protection against running out of water in the well

Page 53: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 53

Override Control

FT

FC

SC

PT

ST

PC

Compressor Motor

LS

wP

Aims:

Flow as constant as possible,

Maximum pressure on the line below wP in spite of changing demands

Page 54: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 54

Override Control

FT

FC

SC

PT

ST

PC

Compressor Motor

LS

wP

p

F

wP

Page 55: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 55

Safety

FT FC

PC

PT

Pmax To the atmosphere

Limits the maximum pressure in the supply line

Page 56: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 56

Split-range Control

q

u

FT

FC wF

v1 v2

u

v1 v2

v1

v2

Table

Page 57: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 57

Split-range Control

Gas Consumer

PT

PC

UY

v1 v2

v1 v2

u

u

Split range

v1

v2

Under normal operating conditions, pressure regulation is performed with V2, but if it reaches its minimum, then V1 is used as a release valve

Page 58: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 58

Split range Control

u TT TC

TT TC UY Reactor

Water

Coolant

v1 v2

u

v1 v2

v2

v1

cooling heating

Page 59: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 59

Inferential Control

u XC

Inferred value of x XY PT

TT

Very often, we faced variables that are expensive or difficult to measure, or which measurements are unreliable or slow. In these cases, it is possible to substitute the transmitter signal by an estimation made from physical laws, models like NN, inferences, etc.

Page 60: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 60

Inferential Control

q

u FT FC

TT PT

FY

Compute or estimate a non-measured controlled variable. Compute mass flow from volumetric flow, pressure and temperature

Mass flow

Page 61: Estructuras de control - UVaprada/controlstructuresUK.pdf(Advanced Control) Prof. Cesar de Prada . Dpt. Systems Engineering and Automatic Control University of Valladolid, Spain .

Prof. Cesar de Prada. ISA. UVA 61

Physical laws

Saturator TT

TC

PT PY

Overheated steam

Saturation temperature is computed from steam pressure

Tsat PC

Agua


Recommended