+ All Categories
Home > Documents > European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte...

European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte...

Date post: 18-Dec-2015
Category:
Upload: coleen-mclaughlin
View: 213 times
Download: 1 times
Share this document with a friend
Popular Tags:
52
European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis
Transcript
Page 1: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

European and French solar physics from space

Jean ARNAUDLaboratoire FIZEAU

Observatoire de la côte d’AzurUniversité de Nice Sophia Antipolis

Page 2: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

Introduction

Space Solar Physics is a very active field of research in many countries including the US, Europe and Japan.

A strong tradition of international cooperation exist here.

Observing programs can be proposed by scientists world while on almost all solar physics missions and data generally

become public domain very soon.

I will present major missions the European community is largely involved in, like SoHO, STEREO, HINODE and SDO and two

smaller missons: PICARD and SMESE

Page 3: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

Solar and Heliospheric Observatory (SoHO)

Main goals of the SOHO mission: study the internal structure and outer atmosphere of the Sun, as well as the origin of the solar wind.

12 Instruments for the study of:-Corona and solar wind -Helioseismology- Solar constant- In situ particules measurements

an ESA/NASA Observatory launch on December 2 1995Still working very well after 12 years of mission

Page 4: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

SoHO 12 Instruments Acronym

Coronal Diagnostics Spectrometer CDS

Charge, Element, and Isotope Analysis System CELIAS

Comprehensive Suprathermal and Energetic Particle Analyzer COSTEP

Extreme ultraviolet Imaging Telescope EIT

Energetic and Relativistic Nuclei and Electron experiment ERNE

Global Oscillations at Low Frequencies GOLF

Large Angle and Spectrometric Coronagraph LASCO

Michelson Doppler Imager/Solar Oscillations Investigation MDI/SOI

Solar Ultraviolet Measurements of Emitted Radiation SUMER

Solar Wind Anisotropies SWAN

Ultraviolet Coronagraph Spectrometer UVCS

Variability of Solar Irradiance and Gravity Oscillations VIRGO

Page 5: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

CDS monochromatic imagesChromosphere and Corona

Page 6: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

Loops at different temperatures in the same solar atmosphere region observed by CDS

Page 7: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

• SUMER Observation of a coronal hole

10 000 K C I 124.9 nm

30 000 K S II 125 nm

190 000 K N V 123.8 nm

250 000 K O V 62.9 nm

1 100 000 K Mg X 62.4nm

1 400 000 K Fe XII 124nm

Page 8: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

VIRGO complements 3 solar cycles of solar

irradiance measurements

Page 9: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

Tornado in the Fe XI corona

(about 1 million K), EIT Observation

Page 10: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

Wave propagating in the 1.4 MKlow corona

observed in Fe XII

Page 11: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

Post flare waves propagating in

the photosphere (MDI observation)

Page 12: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

The magnetic carpetdriven by near solar surface dynamos

Thousands of magnetic field loops over the photosphere, enough energy to heat the corona

Page 13: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

Coronal Masses Ejections (CMEs)

• CMEs are linked to flares (energetic particules events) and eruptives prominences for at least 75% of them.

• CMEs are triggered by magnetic field instabilites.• Waves in the low corona can be associated to CMEs

(EIT)• Most CMEs originate from the chromosphere (EIT and

LASCO)• SoHO (UVCS) demonstrated that the CME is colder than

the corona (prominence material).

Page 14: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

. Flux cancellation creates twisted flux ropes (Amari et al., 2007)

Page 15: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

SoHO/LASCO C2 Active corona and CMEs

Page 16: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

SoHO/LASCO C3 CMEs and protons shower

Page 17: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

Open questions concerning CMEs

• CMEs result from magnetic field instabilities but we do not know the precise mechanisms which trigger and accelerate CMEs.

• We do not know why and how CMEs are linked to flares and prominences.

• We do not know the actual 3D geometry of CMEs

Page 18: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

MDI deep interior of the Sun speed of sound determination

In red sound travels faster than theoretical prediction, implying higher temperaturesthan expected; in blue lowerthan expeted temperatures.

The shear layer between the radiative and the convection zones, where most of the solar magnetic field is generated, ishotter than expected.The solar core is 0.1% cooler than the standard model Sun.

Page 19: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

MDI determination of the solar interior rotation rate

Page 20: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

Subsurface structure above a sunspot as derived from MDI measurements

Page 21: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

Upper convectionzone mapped from MDI observations

Page 22: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

HINODE Solar ObservatoryLaunch in September 2006

• Hinode is a japanese mission with important US and UK participation.

Hinode (Solar-B) is equipped with three advanced solar telescopes.

Its solar optical telescope (SOT) has an unprecedented 0.2 arcsec resolution for the observation of solar magnetic fields.

The X-ray telescope (XRT) image the corona with a resolution of three times as high as Yohkoh (Solar-A).

The EUV imaging spectrometer (EIS) has very high sensitivity

Page 23: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

SOT G-Band (420 nm) movie

Page 24: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

Movie made from SOT images showing prominences above an active region at the limb. Detailed analysis of those high-resolution (0.25 arcsec) images in the visible attributes the waving motion of

a prominence to Alfvén waves in the corona.

Page 25: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

Hinode X-Ray telescope observation of soft X-ray corona for one solar rotation

Page 26: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

X-ray corona and G band photosphere

Page 27: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

STEREO MISSIONLaunch in October 2006

• This two-year mission employs two nearly identical space-based observatories - one ahead of Earth in its orbit, the other trailing behind - to provide the first-ever stereoscopic measurements to study the Sun and the nature of its coronal mass ejections, or CMEs.

• STEREO's scientific objectives are to:• Understand the causes and mechanisms of coronal mass ejection

(CME) initiation. • Characterize the propagation of CMEs through the heliosphere. • Discover the mechanisms and sites of energetic particle

acceleration in the low corona and the interplanetary medium. • Improve the determination of the structure of the ambient solar wind.

Page 28: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

                                

Sun Earth Connection Coronal and Heliospheric Investigation(SECCHI)   

four instruments  mounted on each of the two STEREO spacecraft

- an extreme ultraviolet imager (EUVI)- two white-light coronagraphs COR1: Inner Coronagraph and COR2: Outer Coronagraph - a heliospheric imager (HI)

These instruments will study the 3-D evolution of CME's from birth at the Sun's surface through the corona and interplanetary medium to its eventual impact at Earth.

Page 29: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

The Heliospheric imager

• The HI-1 and HI-2 telescopes are set to 13.98 and 53.68 degrees from the Sun, along the ecliptic line, with fields of view of 20 and 70 degrees, respectively. This provides on overlap of about 5 degrees.

Page 30: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

Stereo COR2 vision of a CME a CME early phase seen both edge & face-on

A. Vourlidas

Page 31: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

COR2 A and B 2 to 15 solar raduis field

Page 32: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

CMEs and waves in the fields of vue of COR2, HI-1 and HI-2

Page 33: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

Solar Dynamics ObservatoryTo be launched in August 2008

NASA Mission with international participation

• HMI (Helioseismic and Magnetic Imager) – The Helioseismic and Magnetic Imager will extend the capabilities of the

SOHO/MDI instrument with continuous full-disk coverage at higher spatial resolution.

• AIA (Atmospheric Imaging Assembly)

– The Atmospheric Imaging Assembly will image the solar atmosphere in multiple wavelengths to link changes in the surface to interior changes. Data will include images of the Sun in 10 wavelengths every 10 seconds. Will extend the capabilities of TRACE: same spatial resolution,larger field.

• EVE (Extreme Ultraviolet Variablity Experiment) – The Extreme Ultraviolet Variablity Experiment will measure the solar

extreme-ultraviolet (EUV) irradiance with unprecedented spectral resolution, temporal cadence, and precision. Measures the solar extreme ultraviolet (EUV) spectral irradiance to understand variations on the timescales which influence Earth's climate and near-Earth space.

Page 34: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

THE PICARD satelliteA CNES (French space agency) mission

with Belgium and Swiss participationTo be launched in June 2009

  Three instruments SODISM measures the solar shape and diameter. SOVAP measures the total solar irradiance.   PREMOS measures irradiance in four spectral domains and the total solar l'irradiance.   

  

Page 35: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

1999

Début

Doraysol

959,20

959,40

959,60

959,80

2000 4000 6000 8000 10000 12000 14000 16000

SUNSPOT(Ech. arbitraire)

DEMI-DIAMETRE Obs.: F. LACLARE (40 Mesures au znith)

ACTIVITE PREVISIONNELLE

DATE JJ :(2440000 +)

ASTROLABE SOLAIRE CALERN: (1978 - 2006)

1980 1985 199O 1995 2000 2005 2010

30 years of ground based solar diameter measurements

Page 36: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

Authors Location Cycle Amplitude (mas)

duration Meth./Inst.

Ulrich, 1995 Mt Wilson In phase 400 1982-1995 Scanning

Penna et al, 2002 Rio - 0 1998-2000 Astrolabe

Noel, 2003 Santiago In Phase 1000 1991-2002 Astrolabe

Sveshnikov, 2004 In Phase 500 1631-1973 Transit de Mercure

Delmas, 2002 Calern Opposition 200 1978-2004 Astrolabe

Sofia et al., 1985 Opposition 470 1925/1979 Eclipses

Brown, 1998 HAO - 0 1981-1987 Méridien

Wittmann, 2003 Tenerife - <50 1990-1992 Méridien

G. Thuillier

Ground based solar radius measurements situation

Page 37: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

Lack of constitency between results due to:

- Diameter definition

- Quality of measurements

- Spectral domains (Fraunhofer lines)

- Data processing

- Atmospheric (seeing) effects

Page 38: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

SODISM (SOlar Diameter Imager and Surface Mapper) is a telescope, inside a temperature stabilized carbone-carbone structure, 11 cm in diameter, a filter system and a 2048 x 2048 CCD. SODISM will measure the solar diameter in three spectral regions at 535, 607 and 782 nm free of Fraunhofer lines.

Page 39: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

SODISM Optical design

4 prisms in a ring at the telescope entrance give 4 auxiliary solar images usedfor guiding and for calibration of the telescope focal length.The aim of SODISM is to get a precision of about 1 milliarcsec on the diameter measurement. This mean that the focal length has to be know with a relativeprecision of 10-6.

Page 40: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

PICARD scientific objectives

- Precise measurement of the solar diameter and of its variations (if any) with the solar cycle phase and determine if solar diameter

variations are linked to the solar activity.

- Determine with the help of PicardSol (a SODISM copy + a atmospheric monitor on ground) if the solar diameter can be monitor

using groung based instruments.

- Help to understand the effect of solar activity on climate. The Maunder minimum (1645–1715) of solar activity did correspond to a ‘little ice age” in Europe and America. Jean Picard (1620-1682) measured the solar diameter. It was 1 arc sec larger than its present value.

Page 41: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

The Small Explorer for Solar Eruptions (SMESE)

A French-Chinese cooperation in solar PhysicsTo be launched in 2013

China: PMO : Purple Mountain Observatory, CAS

NJU : Nanjing University CSSAR : Center for Space Science and Applied Research

(Beijing)NAOC : National Astronomical Observatory, CAS (Beijing)

CNSA : Chinese National Space Agency

France : LESIA/OP : Laboratoire d’Etudes Spatiales et d’Instrumentation

en Astrophysique (Paris Observatory)IAS : Institut d‘Astrophysique Spatiale (Orsay)

CNES : Centre National d‘Etudes Spatiales

Collaborations with other Institutes (LAM, LPCE, MPS, Torino/Firenze, CSL, Brazil, ...)

Page 42: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

SMESE Instrumentation

- LYOT: LYman imaging Orbiting TelescopeA Ly coronagraph & disk imager with high

cadence (~10 s), high sensitivity and polarimetric capability

- DESIR: Detection of Eruptive Solar InfraRed emission A Far IR telescope performing photometry and

source localisation to catch synchrotron (particles) and thermal (chromosphere) radiations : a first

- HEBS: High Energy Burst Spectrometer A HXR & gamma-ray spectrograph over an

unprecedented energy range, going well above the RHESSI limit (10 MeV) : 10 keV – 600 MeV

Page 43: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

Conclusion• Solar Physics from Space is a very active area of research • SoHO and succeeding missions are giving a new vision of the Sun,

demonstrating how active is its atmosphere and how its influences the earth environment. They are giving new insights on the solar interior and its rotation, on the solar wind acceleration, on flares and CMEs, on the origins of the magnetic field among many other things.

• Those missions also emphasized the importance of the magnetic field for heating the solar corona, accelerating the solar wind, triggering flares and CMEs ejections. Even if we still miss the detailed mechanisms at the origin of a large part of those phenomenon, progress in solar physics are very important.

• Improving spatial resolution and determining the magnetic field in the full solar atmosphere are keys for further improvements in understanding the physics of our star.

Page 44: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

The Milky Way in the HI 1 A

field

Field of 14 degres

centered 20 degres from

the Sun

Page 45: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

A very active Sun

Page 46: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

CMEs impact the magnetosphere (CLUSTER)

Page 47: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

SOT observation of a prominence

Page 48: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

A movie of a coronal active region above the Sun « surface », close to an equatorial coronal hole. Looking to the left of center in the sequence of

images, an outflow of material (plasma) was measured to be movinng at 10 km/s. Material outflow in regions like this one, is thought to be a source of the

low-speed solar wind.

High-speed solar wind has speeds of 600-800 km/s.

Page 49: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

Soft X-Ray active region followed 12 days

Page 50: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

Hinode Soft X-Rays telescope

Page 51: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

Mercury as seen by the two COR1 telescopes

The planet Mercury as seen by the two COR1 telescopes on May 3, 2007.Also shown is the calculated position and size of

the solar disk.

Page 52: European and French solar physics from space Jean ARNAUD Laboratoire FIZEAU Observatoire de la côte d’Azur Université de Nice Sophia Antipolis.

Heliospheric imager (HI) Optical flow observation


Recommended