+ All Categories
Home > Documents > Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1...

Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1...

Date post: 20-Dec-2015
Category:
View: 213 times
Download: 0 times
Share this document with a friend
Popular Tags:
26
Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1 , C.A. Pio 1 and M.E. Jenkin 2 1 Departamento de Ambiente e Ordenamento, Universidade de Aveiro, 3800-193 Aveiro, Portugal 2 Department of Environmental Science and Technology, Imperial College London, Silwood Park, Ascot, Berkshire SL5 7PY, UK
Transcript
Page 1: Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1 Departamento de Ambiente e Ordenamento, Universidade.

Evaluation of MCM v3, using environmental chamber data

P. G. Pinho1, C.A. Pio1 and M.E. Jenkin2

1 Departamento de Ambiente e Ordenamento, Universidade de Aveiro, 3800-193 Aveiro, Portugal

2 Department of Environmental Science and Technology, Imperial College London, Silwood Park, Ascot, Berkshire SL5 7PY, UK

Page 2: Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1 Departamento de Ambiente e Ordenamento, Universidade.

The main objective of the present study is the evaluation and refinement of degradation mechanisms included in MCMv3, using the large environmental chamber dataset of the Statewide Air Pollution Research Center (SAPRC) at the University of California Riverside.

Page 3: Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1 Departamento de Ambiente e Ordenamento, Universidade.

Dataset of the Statewide Air Pollution Research Center (SAPRC) at the University of California Riverside.

• 76 chamber characterization runs:

• 481 single VOC runs involving 37 types of VOCs.

• 447 incremental reactivity experiments involving 87 types of VOCs or mineral spirits or solvent samples.

• 673 mixture runs involving various types of simple or complex mixtures or ambient ROG surrogates.

Page 4: Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1 Departamento de Ambiente e Ordenamento, Universidade.

Environmental Chambers of SAPRC database

Page 5: Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1 Departamento de Ambiente e Ordenamento, Universidade.

Initial evaluation, carried out using butane-NOX photo-oxidation, develops a base for the evaluation of degradation mechanism for a number of VOC represented in MCM v3.

The auxiliary mechanism parameters were the same used by Carter in SAPRC-99 evaluation.

Butane-NOX photo-oxidation experiments were used for initial assessment of the auxiliary mechanism parameters

Page 6: Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1 Departamento de Ambiente e Ordenamento, Universidade.

Within this assessment, were considered the photooxidation experiments involving the major carbonyl products formed during butane degradation, namely:

Butane-NOX photo-oxidation mechanism testing and refinement was carried out by an iterative procedure, considering butane photo-oxidation and each of the sub-systems in turn.

46 butane-NOX-air;

6 MEK-NOX-air;

11 CH3CHO-NOX-air;

24 HCHO-NOX-air.

Page 7: Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1 Departamento de Ambiente e Ordenamento, Universidade.

The precursor decay rate and formation of carbonyl products and PAN were also used as criteria of model performance.

The quantity D(O3-NO) was used as the main criterion of model performance because:

-it is an indicator of the ability of the mechanism to simulate the chemical processes that cause O3 formation, giving a useful measure, even when O3 is suppressed by the presence of excess NO;

D(O3-NO)t = [O3]t - [NO]t - ([O3]0 - [NO]0)

- use of this measure allows a direct comparison with the SAPRC-99 published results.

Page 8: Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1 Departamento de Ambiente e Ordenamento, Universidade.

HCHO-NOX experiments

MCM v3 mechanism was found to under-predict D(O3-NO) in many (but not all) of the runs, principally for the CTC and DTC chambers.

Inserted change:Photolysis parameters were updated in line the latest IUPAC recommendations.

- cross sections based on the data of Meller and Moortgat (2000);

- quantum yields based on data from Smith et al., (2002).

The new cross sections are 5-10% higher than the values previously recommended by IUPAC (and adopted for the MCM by Jenkin et al., 1997).

Page 9: Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1 Departamento de Ambiente e Ordenamento, Universidade.

MEK-NOX experiments

MEK - MCM v3 mechanism over-predict D(O3-NO) in many of the chamber runs, particularly in the early stages of the experiment.

Inserted change:Optimization of quantum yield. This led to a best fit value of 0.17. In MCM v3, a wavelength-independent value of 0.34 is applied, based on Raber and Moortgat, (1996).

0.17 is close to the extremity of the uncertainty limit of the determination of Raber and Moortgat, (1996).

0.17 is also consistent with the value of 0.15 obtained by Carter, during evaluation and optimization of the SAPRC-99.

Page 10: Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1 Departamento de Ambiente e Ordenamento, Universidade.

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0 60 120 180 240 300 360

SAPRC 99 MCM v3 Experimental MCM v3a

D(O3-NO) (ppm) vs. time (min) MEK (ppm) vs. time (min)

DTC337A

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 60 120 180 240 300 360

CTC178A

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0 60 120 180 240 300 360

DTC361A

0,0

0,1

0,2

0,3

0,4

0,5

0 60 120 180 240 300 360

DTC337A

6,6

6,8

7,0

7,2

7,4

7,6

7,8

8,0

0 60 120 180 240 300 360

CTC178A

8,6

8,7

8,8

8,9

9,0

9,1

9,2

0 60 120 180 240 300 360

DTC361A

8,6

8,7

8,8

8,9

9,0

9,1

9,2

9,3

0 60 120 180 240 300 360

Page 11: Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1 Departamento de Ambiente e Ordenamento, Universidade.

- MCM v3a give generally good fits to D(O3-NO) data in butane–NOX photo-oxidation.

With most of the data being fit by the mechanism within +/- 30%, with no consistent biases. The scatter in the results was indicative of run-to-run variability.

Butane-NOX -system

- MCM v3a gives good fits to HCHO-NOX, CH3CHO-NOX and MEK-NOX experiments

Initial evaluation, carried out using butane-NOX photo-oxidation, develops a base for the evaluation of degradation mechanism for a number of VOC represented in MCM v3.

Page 12: Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1 Departamento de Ambiente e Ordenamento, Universidade.

Isoprene assessmentphotooxidation experiments involving the major carbonyl products formed during isoprene degradation were considered, namely:

The available NOX photo-oxidation runs for these major carbonyl products were used to test and refine the corresponding subsets of the mechanism, prior to a re-evaluation of the full isoprene scheme.

9 isoprene-NOX-air,

8 MACR-NOX-air;

5 MVK-NOX-air.

Page 13: Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1 Departamento de Ambiente e Ordenamento, Universidade.

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0 60 120 180 240 300 360

SAPRC 99 MCM v3 Experimental MCM v3a

D(O3-NO) (ppm) vs. time (min) Isoprene (ppm) vs. time (min)

DTC053B

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 60 120 180 240 300 360

DTC053B

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0 60 120 180 240 300 360

DTC056B

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0 60 120 180 240 300 360

DTC056B

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0 60 120 180 240 300 360

DTC053A

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0 60 120 180 240 300 360

DTC053A

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0 60 120 180 240 300 360

Page 14: Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1 Departamento de Ambiente e Ordenamento, Universidade.

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0 60 120 180 240 300 360

SAPRC 99 MCM v3 Experimental MCM v3a

MACR (ppm) vs. time (min) MVK (ppm) vs. time (min)

DTC053B

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0 60 120 180 240 300 360

DTC053B

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0 60 120 180 240 300 360

DTC056B

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0 60 120 180 240 300 360

DTC056B

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0 60 120 180 240 300 360

DTC053A

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0 60 120 180 240 300 360

DTC053A

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0 60 120 180 240 300 360

Page 15: Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1 Departamento de Ambiente e Ordenamento, Universidade.

MACR-NOX experiments

MCM v3 was found to over-predict significantly the observed D(O3-NO) in the initial stages of the experiments, but with the final values being slightly lower than those observed.

Page 16: Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1 Departamento de Ambiente e Ordenamento, Universidade.

Inserted changes:

Change in OH yield from the ozonolysis of MACRMCM v3 - 0.82 (based on closest hydrocarbon

analogues (Jenkin et al., 1997))MCM v3a - 0.20 (based in Aschmann et al., 1996)

Reaction of O(3P) with MACR was incorporated into the mechanism.

Change in photolysis quantum yield MCM v3 - 0.03 (based in Raber and Moortgat 1996) MCM v3a - 0.0036 (obtained by best fit)

Page 17: Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1 Departamento de Ambiente e Ordenamento, Universidade.

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0 60 120 180 240 300 360

SAPRC 99 MCM v3 Experimental MCM v3a

D(O3-NO) (ppm) vs. time (min) MACR (ppm) vs. time (min)

ITC819

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0 60 120 180 240 300 360

XTC102

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 60 120 180 240 300 360

DTC075B

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 60 120 180 240 300 360

ITC819

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

0 60 120 180 240 300 360

XTC102

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

0 60 120 180 240 300 360

DTC075B

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0 60 120 180 240 300 360

Page 18: Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1 Departamento de Ambiente e Ordenamento, Universidade.

MVK-NOX experiments

MCM v3 was found to over-predict significantly the observed D(O3-NO) in the initial stages of the MVK-NOX experiments, but with the final values being slightly lower than those observed

Page 19: Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1 Departamento de Ambiente e Ordenamento, Universidade.

Inserted changes:

Change in OH yield from the ozonolysis of MVKMCM v3 - 0.36 (based on closest hydrocarbon

analogues (Jenkin et al., 1997))MCM v3a - 0.16 (based in Aschmann et al., (1996)

and Paulson et al., (1998))

Reaction of O(3P) with MVK was incorporated into the mechanism.

Change in photolysis quantum yield MCM v3 - 0.05 (based in Raber and Moortgat 1996) MCM v3a - quantum yield expression of Gierczak et al.

(1997), recommended by IUPAC.

Page 20: Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1 Departamento de Ambiente e Ordenamento, Universidade.

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0 60 120 180 240 300 360

SAPRC 99 MCM v3 Experimental MCM v3a

D(O3-NO) (ppm) vs. time (min) MVK (ppm) vs. time (min)

ITC816

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0 60 120 180 240 300 360 420

ITC815

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0 60 120 180 240 300

XTC120

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 60 120 180 240 300 360

ITC816

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 60 120 180 240 300 360

ITC815

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

0 60 120 180 240 300

XTC120

0,0

0,5

1,0

1,5

2,0

2,5

0 60 120 180 240 300 360

Page 21: Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1 Departamento de Ambiente e Ordenamento, Universidade.

Isoprene-NOX experiments

Inserted change:Reaction of O(3P) with isoprene was incorporated into the mechanism. Branching ratio values were obtained by optimization.

O(3P) + CH2=C(CH3)CH=CH2 CH2-O-C(CH3)CH=CH2 0.78

O(3P) + CH2=C(CH3)CH=CH2 (+3O2) CH3C(O)CH2O2 + HCHO + CO + HO2 0.22

It was also clear that the value assigned to the branching ratio for radical production from the O(3P) reaction is influenced by assumptions concerning the formation of hydroxyalkenyl nitrates, since this also has an impact on the radical balance in the system.

Page 22: Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1 Departamento de Ambiente e Ordenamento, Universidade.

Results:The influence of the reactions involving MACR and MVK was found to be very minor.

The inclusion of the reaction of O(3P) with isoprene was the major factor responsible for the differences in the simulations of the parent isoprene system performed with MCM v3 and with the modified mechanism (MCM v3a).

Page 23: Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1 Departamento de Ambiente e Ordenamento, Universidade.

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0 60 120 180 240 300 360

SAPRC 99 MCM v3 Experimental MCM v3a

D(O3-NO) (ppm) vs. time (min) Isoprene (ppm) vs. time (min)

DTC056B

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0 60 120 180 240 300 360

DTC053B

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 60 120 180 240 300 360

DTC053A

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0 60 120 180 240 300 360

DTC056B

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0 60 120 180 240 300 360

DTC053B

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0 60 120 180 240 300 360

DTC053A

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0 60 120 180 240 300 360

Page 24: Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1 Departamento de Ambiente e Ordenamento, Universidade.

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0 60 120 180 240 300 360

SAPRC 99 MCM v3 Experimental MCM v3a

MACR (ppm) vs. time (min) MVK (ppm) vs. time (min)

DTC056B

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0 60 120 180 240 300 360

DTC053B

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0 60 120 180 240 300 360

DTC053A

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0 60 120 180 240 300 360

DTC056B

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0 60 120 180 240 300 360

DTC053B

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0 60 120 180 240 300 360

DTC053A

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0 60 120 180 240 300 360

Page 25: Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1 Departamento de Ambiente e Ordenamento, Universidade.

Current Evaluations

AlkenesEthenePropene1-butene1-hexene

Monoterpenes-pinene-pinene

Page 26: Evaluation of MCM v3, using environmental chamber data P. G. Pinho 1, C.A. Pio 1 and M.E. Jenkin 2 1 Departamento de Ambiente e Ordenamento, Universidade.

ETHENE

Trend to under prediction.

PROPENE

Reasonable fit.

1BUTENE

Over prediction.

1HEXENE

Over prediction.

-PINENE

Trend to over prediction.

-PINENE

Reasonable fit in 4 of 6 runs.


Recommended