+ All Categories
Home > Documents > Evaluation of redox-active organic electrode materials … · Evaluation of redox-active organic...

Evaluation of redox-active organic electrode materials … · Evaluation of redox-active organic...

Date post: 19-Aug-2018
Category:
Upload: vonhi
View: 219 times
Download: 1 times
Share this document with a friend
44
UMR 6007 and 6218 Evaluation of redox-active organic electrode materials for “Greener” Li-ion Batteries P. POIZOT Laboratoire de Réactivité et Chimie des Solides, Amiens (France) UMR 6007 In collaboration with F. DOLHEM UMR 6218 Laboratoire des Glucides, Amiens (France) GCEP Research Symposium 2010 Wednesday, September 29, 2010
Transcript

UMR 6007 and 6218

Evaluation of redox-active organic electrode materials

for “Greener” Li-ion Batteries

P. POIZOT Laboratoire de Réactivité et Chimie des Solides, Amiens (France)

UMR 6007

In collaboration with F. DOLHEM

UMR 6218Laboratoire des Glucides, Amiens (France)

GCEP Research Symposium 2010 Wednesday, September 29, 2010

Energy challenges in short

Current Li-ion technology: pros and cons

OUTLINE

Towards a « sustainable » Li-ion battery, first materials

C=O functionalities

the lifeblood of modern society……embodied in any type of goods and foods, and needed to offer any kind of services.

ENERGY, a peculiar entity…

Life expectancy when consumed energy is < 1600 kWh/pers/year

QUALITY

of LIFEENERGY

Better Life and energy consumption

Energy consumption per inhabitant : increasing by 385% in 44 years

Energy consumption (kg of oil per inhabitant)Ex: case of JAPAN

Year

ENERGY and human needsWorld energy consumption is constantly increasing

World population is constantly increasing

Source : INED (Institut National d’Etudes Démographiques+ www. Populationmondiale.com

6.84 billions of Human beings in Jan 2010

(+ 32%)

ENERGY and human needs

Photo: Reuters

Pierre Saint-ArnaudCanadian PressQuébec

2nd issue:CO2 releases (greenhouse effect)

6.2%

25.0%

21.0%10.4% 35.2% Oil

Coal

Natural gas

Biomass/WasteRenewable sources

2.2%

Nuclear

Hydro

Reserve: 218 years

Reserve: 40 years

Reserve: 61 years

~ 85% Non-renewable

1st issue:Limited reserves

ENERGY and environment

ENERGY and environment

Motorized transportation systems consume about19% of the world’s total energy supplies (95% ofthis amount being petroleum = 60% of total worldpetroleum production)Source: International Energy Outlook 2007.

1 billion - 2010(+ 50% in 10 years)

2040/20502.9 billions

2nd issue:CO2 releases (greenhouse effect)

193030

millions

1997500 millions

HeatingCooking

LightingCooling

Motion

Transport

Smart systems…

ELECTRICAL ENERGY: a particular attention

Simple conversion (and a simple switch)

BUT direct source of electricity does not exist in practice

TWO IMPORTANT CHALLENGES1/ Favoring electricity production from renewable energies

Decreasing the CO2 footprint linked to the transportation

Renewable energies (solar, hydro, wind):

BUT diffuse & intermittent

Electrochemical power unit

(secondary battery)

Future “Smart-grid” system

Conventional car (internal combustion engine vehicle)-ICE

Renewable energies (solar, hydro, wind):

BUT diffuse & intermittent

HEV/EV

TWO IMPORTANT CHALLENGES1/ Favoring electricity production from renewable energies

2/ Decreasing the CO2 footprint linked to the transportation

Interest in batteries R&D⇒ Li-ion technology, in particular

Energy challenges: context

Current Li-ion technology: pros and cons

OUTLINE

Towards a « sustainable » Li-ion battery, first materials

Li-ion battery technology

Electrode materials based on insertion compounds:(+) LiCoO2, LiMn2O4, LiNi1/3Mn1/3Co1/3O2, LiFePO4(-) Graphite, Li-based alloys

Electrode materials (+) and (-):Based on inorganic compounds synthesized from high temperature reactions and non-renewable resources

(ores)

Common batteries

Electrode materials (+) and (-):Based on inorganic compounds synthesized from high temperature reactions and non-renewable resources

(ores)

Common batteries

The present technology still falls short of both the sustainability and CO2 footprint criteria, which can lessen the benefit of the present Li-ion technology

Ores extraction

Metal refining(pyrometallurgy)

Electrode material synthesis (ceramic route)

and other processes

Transportation-Marketing/

use

Simplified LCA of a typical Li-ion battery: HT thermal processes and CO2 releases

Recycling processes(mainly incineration)

Metals recovery: Ni, Co, Cu

When collected

Li, Mn ???

not systematically depending of the recycling process

: energy consumption: CO2 emission

A Li-Ion Battery cell (Lithium manganese oxide type)

Al, Cu, LiMn2O4 (and others), LiPF6 (via F):derived from extraction/processing of ores (mining production)

Firs

t d

ata

A Li-Ion Battery cell (Lithium manganese oxide type)

Al, Cu, LiMn2O4 (and others), LiPF6 (via F):derived from extraction/processing of ores (mining production)

Firs

t d

ata

Mining activities = energy consumption, CO2releases, destruction of the landscape for a finite

resource

1. LCA analyses: first data [1,2]~1600 MJ are necessary to store 1 kWh in a Li-ion cell

(i.e., ~444 kWh/kWh of electrochemical energy)

~80 kg of CO2 per kWh of electrochemical energy

[1] K. Ishihara et coll., The 5th International Conference on Ecobalance, Tsukuba, Japan (2002)[2] Empa - Swiss Federal Laboratories for Materials Testing and Research (current research)

1. LCA analyses: first data~1600 MJ are necessary to store 1 kWh in a Li-ion cell

(i.e., ~444 kWh/kWh of electrochemical energy)

~80 kg of CO2 per kWh of electrochemical energy

2. The Lithium element is not systematically recovered for the Li-ion batteries manufacturing

resulting speculation on metals quotation in general

(350 USD/ton of Li in 2003 ⇒ 3000 USD/ton of Li in 2008)

Extraction du minerai

Uyuni salar

1. LCA analyses: first data~1600 MJ are necessary to store 1 kWh in a Li-ion cell

(i.e., ~444 kWh/kWh of electrochemical energy)

~80 kg of CO2 per kWh of electrochemical energy

2. The Lithium element is not systematically recovered for the Li-ion batteries manufacturing

resulting speculation on metals quotation in general

(350 USD/ton of Li in 2003 ⇒ 3000 USD/ton of Li in 2008)

3. EC regulations (#2006/66/EC), at least 50% by averageweight of battery waste should be recycled by 2011 intomaterials for their original purpose or for other purposes,excluding energy recovery

Energy challenges: context

Current Li-ion technology: pros and cons

OUTLINE

Towards a « sustainable » Li-ion battery, first materials

Concept of a “greener” Li-ion battery Interest in photoautotroph organisms

Energy from sunlight to convert carbon dioxide and water into organic materials

Photosynthesis: Low yield (~1%) but large scale

Biochemistry – photosynthesisInorganic chemistry(ores: non-renewable)

organic chemistry <-> renewable resources

Easy to recycle

Concept of a “greener” Li-ion battery

Lithiated organic material(high redox potential)

Organic material(low redox potential)

BIOMASS

Drawbacks: higher solubility and lower energy density values

Biomass (crop)

Biorefinery

Battery processing

Battery utilization

Battery marketing using advanced packaging

technologies

Thermal destruction of spent batteries

Elaboration of organic raw

materials

Elaboration of active materials using Green Chemistry concepts

CO2assimilation

CO2release

Lithium recovery (ash)

Battery recycling

Concept of a “greener” Li-ion battery

H. Chen, M. Armand, G. Demailly, F. Dolhem, P. Poizot, J.-M. Tarascon, ChemSusChem, 1, 348 (2008).

Nothing new: A. Heeger (1977; conducting conjugated polymers)

Organic Molecules as electrodes materials???

OO

1st Li-ion batteries (Polyaniline/LiXAl)

Nothing new: A. Heeger (1977; conducting conjugated polymers)

Organic Molecules as electrodes materials???

OO

Such Organic molecules do not derive from natural product (biomass)

1st Li-ion batteries (Polyaniline/LiXAl)

Concept of a “greener” Li-ion battery

What chemistry? What redox-active structure?

R−C−R’||O

R−C−R’|O−

e−

Biological activity

OO

OO

LiO

LiO

OLiO

LiO

O

O

LiO

LiO

O

O

O

LiO

LiOOxocarbones2

Croconate

Squarate

Deltate

Rhodizonate

[1] R. West, Oxocarbon, Academic Press, 1980.[2] N. Ravet, C. Michot, M. Armand, Mater. Res. Soc. Symp. Proc 1998, 496, 263-173.

1st series: Special attention given to oxocarbons [1,2]

OO

OO

LiO

LiO

OLiO

LiO

O

O

LiO

LiO

O

O

O

LiO

LiOOxocarbones2

Croconate

Squarate

Deltate

Rhodizonate

[1] R. West, Oxocarbon, Academic Press, 1980.[2] N. Ravet, C. Michot, M. Armand, Mater. Res. Soc. Symp. Proc 1998, 496, 263-173.

OPO3H2

OPO3H2H2O3PO

OPO3H2

OPO3H2H2O3PO

Phytic acid

1st series: Special attention given to oxocarbons [1,2]

O

O

O

O

HO

HO

. 1 eq. Li2CO3

H2O, rt.

O

O

O

O

LiO

LiO

.

(1) (2)

Dehydration

O

O

O

O

LiO

LiO

(3)

2H2O 2H2O

Synthesis: A two-step process

Chemistry and electrochemistry of Li2C6O6

0

0,5

1

1,5

2

2,5

3

3,5

4

2 2,5 3 3,5 4 4,5 5 5,5 6

Pote

ntia

l (V

vs. L

i+ /Li0 )

x in LixC

6O

6

Good cyclability for potentials ranging from 1.5 to 2.4 V (i.e., Li4C6O6 <> Li6C6O6 )

Chemistry and electrochemistry of Li2C6O6

⇒ Evaluation of several potential windows

H. Chen, M. Armand, G. Demailly, F. Dolhem, P. Poizot, J.-M. Tarascon, ChemSusChem, 1, 348 (2008).

0

100

200

300

400

500

600

0 5 10 15 20 25

Cha

rge

capa

city

/mA

h g-1

Cycle number

2.5-3.5 V

2.2-3.5 V

1.45-2.5 V

1.45-2.9 V

1 Li+/10 h

Li4C6O6 : an amphoteric lithiated redox compound (never reported)

OPO3H2

OPO3H2H2O3PO

OPO3H2

OPO3H2H2O3PO

O

OH

OH

O

HO

HO

THQ

Interest in its synthesis

Highly charged anion = INSOLUBILITY

Windows: 1.45 ≤ E ≤ 2.5 V vs. Li+/Li0 (reduction)2.3 ≤ E ≤ 3.5 V vs. Li+/Li0 (oxidation)

Electrochemistry of Li4C6O6

1

1,5

2

2,5

3

3,5

4

2 2,5 3 3,5 4 4,5 5 5,5 6

Pote

ntie

l (V

vs L

i+ /Li0 )

x dans LixC

6O

6

Li6C

6O

6

Li2C

6O

6

Li4C

6O

6

Oxydation de Li4C

6O

6

Réduction de Li4C

6O

6

0

50

100

150

200

250

300

0 10 20 30 40 50

Cap

acité

de

char

ge (m

Ah/

g)

Nombre de cycles

Oxydation de Li4C

6O

6

Réduction de Li4C

6O

6

x in LixC6O6 Cycle number

Pote

ntia

l (V

vs. L

i+ /Li

0 )

OxidationReduction

Oxidation

Reduction

Cap

acity

(mAh

/g)

H. Chen, M. Armand, M. Courty, M. Jiang, C.P. Grey, F. Dolhem, J.-M. Tarascon, P. Poizot, J. Am. Chem. Soc., 131, 8984 (2009).

1 Li+/10 h

Windows: 1.45 ≤ E ≤ 2.5 V vs. Li+/Li0 (reduction)2.3 ≤ E ≤ 3.5 V vs. Li+/Li0 (oxidation)

First all-organic Li-ion cell based on renewable matter(∆V = 1 V, only but a single material for the two electrodes)

Electrochemistry of Li4C6O6

1

1,5

2

2,5

3

3,5

4

2 2,5 3 3,5 4 4,5 5 5,5 6

Pote

ntie

l (V

vs L

i+ /Li0 )

x dans LixC

6O

6

Li6C

6O

6

Li2C

6O

6

Li4C

6O

6

Oxydation de Li4C

6O

6

Réduction de Li4C

6O

6

0

50

100

150

200

250

300

0 10 20 30 40 50

Cap

acité

de

char

ge (m

Ah/

g)

Nombre de cycles

Oxydation de Li4C

6O

6

Réduction de Li4C

6O

6

x in LixC6O6 Cycle number

Pote

ntia

l (V

vs. L

i+ /Li

0 )

OxidationReduction

Oxidation

Reduction

Cap

acity

(mAh

/g)

1 Li+/10 h

OPO3H2

OPO3H2H2O3PO

OPO3H2

OPO3H2H2O3PO

OHOH

HO

OHOHHO

Dephosphorylation

Phytic Acid Myo-Inositol

Biomass

8% of the dry weight of corn-steeping liquor [1]

HNO3/O2/Li2CO3

[1] S. R. Hull, R. J. Montgomery, J. Agric. Food Chem., 43, 1516–1523 (1995)

From biomass to an active lithiated electrode material…

… easily recycled by calcination with production of pure Li2CO3

Pure Li2CO3(ash)

Clear evaluation of the LCA of such an electrode material is in progress

COMBUSTION under air (300°C)

2nd series: What next? Which functionality? Substituent?Tune Redox potential/solubility

2-Create a reliable experimentaldatabase of model chemicalstructures in relation with theirsolid state electrochemicalbehaviour

1-DFT calculations

“Molecular Design” & Experimental test

General molecular structure of 2,3,5,6-tetraketopiperazine

Derived from oxalic acid

0

50

100

150

200

0 5 10 15 20 25Sp

ecifi

c ca

paci

ty (m

Ah/

g)Cycle number

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150

E / V

(vs.

Li+ /L

i)

Q (mA.h/g)

1.5

2

2.5

3

3.5

0 0.5 1 1.5

E / V

(vs.

Li+ /L

i)

x in PhP

Capacity fade due to solubility of active material in electrolyte

N N

O O

OO

NH HN

O O

Cl Cl

O O+

sealed tube, 120°C

52%

Synthesis and characterisation of tetraketopiperazines

PHP

Use of a polymeric approachT. Umemoto, US Patent 6737193 B2, 2004H. Aoyama, M. Ohnota, M. Sakamoto, Y. J. Omote, J. Org. Chem., 1986, 51, 247

N N

O O

O O

2 to 5% mol.of catalyst

Ph-Me or 1,2-DCE60 to 110°C; 24h

N N

O O

O On

n+ n

Catalysts: Grubbs 1st generation; Grubbs 2nd generation; Hoveyda Grubbs 2nd generation. Solvents: Toluene, 1,2-dichloroethane, trichlorobenzene.Swagelok type cell : Li metal disc as negative electrode, a Whatmann GF/D as separator, saturated in EC:DMC LiPF6 1 M as electrolyte . Powder hand-milled: active material + 50%(w/w) carbon SP. 10-12 of powder is used. Electron exchange rate 1e- /10h.

o - APAP

0

50

100

150

200

0 5 10 15 20

Q (m

Ah/

g)

cycle number

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200

E / V

(vs.

Li+ /L

i)

Q (mA.h/g)

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200

E / V

(vs.

Li+ /L

i)

Q (mA.h/g)

1.5

2

2.5

3

3.5

0 0.5 1 1.5

E / V

(vs.

Li+

/Li)

x in o-AP

Capacity retention can be improved by increasing the

polimerization degree

Polymeric approach via Acyclic Diene Metathesis

n = 2 - 3

1 Li+/10 h 1 Li+/2 h

Electrochemicalactive centres

N N

O

O O

Li Li

O

NN

O O

OO

O

OLiO

LiO OLi

OLi

Electrochemicalactive centres

Radicalsstabilization

Insolubility,cyclability

Electrochemicalactive centres

Radicalsstabilization

Insolubility,cyclability

PHPC6O6Li4

Pyromellitic Diimide Dilithium Salt

H. Chen, M. Armand, M. Courty, M. Jiang, C.P. Grey, F. Dolhem, P. Poizot, J. Am. Chem. Soc., 2009, 131 (25), 8984–8988.J. Geng, J.P. Bonnet, S. Renault, F. Dolhem, P. Poizot, submitted to Energy & Environmental Science. S. Renault, J. Geng, F. Dolhem, P. Poizot, submitted to Chemical Communications.

“Molecular Design” & Experimental test

HN NH

O

O

O

O

N N

O

O

O

O

Li LiLiH (2 éq.), DMF,

r.t., 18 hrs

Thermal treatment,

320°C, 2 hrsN N

O

O

O

O

Li Li2 DMF

yield = 91%

Straightforward synthesis

Electrochemistry of Pyromellithique diimide dilithium salt

0

0,5

1

1,5

2

2,5

3

3,5

4

2 2,5 3 3,5 4

x in LixC

10H

4N

2O

4

0

50

100

150

200

250

0 5 10 15 20Cycle number

Pote

ntia

l(V

vs. L

i+ /Li

0 )

Cap

acity

(mAh

/g)

Capacity retention: 91% after 20 cycles

1 Li+/10 h

CONCLUSIONS

Organic molecules can show attractive electrochemical characteristics (redox potential tuning)

Make greener and sustainable battery using organic electrode prepared from a renewable natural precursor: a new research avenue may be opened

⇒ Richness of Organic structures but complexity

A lot to do: organic active matter is still at an embryonic stage

⇒ However, organics are often soluble vs. electrolyte / lower density values vs. inorganic materials


Recommended