+ All Categories
Home > Documents > event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview...

event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview...

Date post: 17-Jul-2019
Category:
Upload: lamnhan
View: 215 times
Download: 0 times
Share this document with a friend
263
Transcript
Page 1: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine
Page 2: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine
Page 3: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine
Page 4: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine
Page 5: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine
Page 6: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Takaniki Communications, LLC

Oviedo, Florida, USA

ASME Life Fellow

Physics-Based Modeling of Gas Turbine

Secondary Air Systems

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA

Phoenix, Arizona, USA Sunday, June 16, 2019

Module 1: An Overview of Secondary Air Systems

Page 7: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Module 1

An Overview of Secondary Air Systems

2

Page 8: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Module 1

An Overview of Secondary Air Systems

Role of Secondary Air Systems (SAS) in gas turbine design

engineering

The concept of physic-based modeling

Key components of SAS

Flow network modeling and robust solution techniques

Role of 3-D CFD in SAS modeling

Physics-based post-processing of CFD results

Entropy map generation and application

3

Page 9: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Education is not the learning of facts, but the training

of the mind to think.

~ Albert Einstein

Understanding is that penetrating quality of knowledge

that grows from theory, practice, conviction, assertion,

error, and humiliation.

~ E.B. White

Some Memorable Quotes (1)

4

Page 10: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Some Memorable Quotes (2)

5

Page 11: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Some Memorable Quotes (3)

6

Page 12: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

An Aircraft Engine

7

Page 13: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

A Gas Turbine Engine for Power Generation

8

Page 14: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Secondary Flows

Secondary Flow of the First Kind (driven by pressure gradient)

Secondary Flow of the Second Kind (driven by turbulence anisotropy)

9

Page 15: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

3-D Turbomachinery Aerodynamics (Primary Gas Path)

10

Page 16: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Gas Turbine Cooling and Sealing Systems

11

Page 17: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Airfoil Internal and Film Cooling (1)

12

Page 18: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Shih, T. I-P. and Sultanian, B. K., “Chapter 5: Computations of

Internal and Film Cooling,” in Heat Transfer in Gas Turbines,

(Editors: B. Sunden and M. Faghri), WIT Press, Southampton,

Boston, 2001, pp. 175-225

Airfoil Internal and Film Cooling (2)

13

Page 19: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Role of Secondary Air Systems (SAS) in

Gas Turbine Design Engineering (1)

Provides cooling flows to various critical components

Controls bearing axial loads

Provides sealing flows for bearing chambers and turbine rim

seals (to prevent hot gas ingestion)

Involves up to 20% of the engine core flow

Parasitic to the main engine cycle and the energy conversion

process associated with the main (primary) flow path

Costs up to 6% of specific fuel consumption

14

Page 20: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

An aircraft engine upgrade through SAS redesign

Blocker flow in labyrinth seals

High- and low-pressure inlet bleed heat systems

Examples:

Competing secondary flow requirements of hot gas ingestion

and windage rise in rotor cavities

Steam-cooled gas turbines

Steam turbine secondary flow systems

Role of Secondary Air Systems (SAS) in

Gas Turbine Design Engineering (2)

15

Page 21: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

The Concept of Physics-Based Modeling

A physics-based prediction method is formulated using the

applicable conservation equations of mass, linear momentum,

angular momentum, energy, and entropy over a control volume.

The required auxiliary empirical equations in a physics-based

prediction method are in terms of key dimensionless quantities

with a broad range of applicability.

The methods entirely based on empirical correlations from

model scale experiments tend to be postdictive, and are not

considered physics-based.

16

Page 22: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Design Prediction Models

A model that is not understood is a model that will

be used in the wrong way!

In engineering, we use many different models for

accurate design predictions

(e.g., fluid models, flow models, turbulence models,

combustion models, etc.)

17

Page 23: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Physics-Based Themofluids Modeling

Conservations Laws:

Mass – Continuity Equation

Linear Momentum

Angular Momentum

Energy – First Law of Thermodynamics

Entropy – Second Law of Thermodynamics

Mathematics is the Language of Physics!

Physics is the Foundation of Engineering!

18

Page 24: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

3-D DNS & CHT

Continuity Equation: 0x

)u(

t i

i

Momentum Equations: i

j

ij

i

s

j

iji Sxx

P

x

)uu(

t

)u(

Equation of State: s

s

RT

P

Energy Equation: S

j

iji

j

j

j

j

j

jQ

x

)u(

x

)Pu(

x

q

x

)eu(

t

)e(

ij

iS

jqSQMomentum source vector

Stress tensor Diffusive energy flux vector

Energy source term

RANS LES DNS 19

Page 25: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Unified Industrial CFD 1-D CFD:

2-D CFD:

3-D CFD:

Integral CV’s

Each CV has a piece of wall

Differential or “small” CV’s

Most CV’s without a wall

Predicts 1-D variation in properties

Predicts 2-D variations in properties

Differential or “small” CV’s

Most CV’s without a wall

Predicts 3-D variations in properties

Turbulence models!

Turbulence models!

Empirical correlations!

20

Page 26: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Key Components of SAS

Orifices (stationary and rotating)

Channels (stationary and rotating)

Free and forced vortices

Seals

Rotor-rotor and rotor-stator cavities

(swirl and windage)

Nodes (junctions or chambers)

Interfaces (change of reference frames)

21

Page 27: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

A flow network consists of elements (links or branches) and junctions (nodes).

Each element is characterized by a unique mass flow rate, heat transfer, and

work transfer (rotation).

Each junction is characterized by state variables like pressure, temperature,

swirl, etc., and has zero net mass flow rate associated with it (steady state).

A Flow Network

23 25 12m m m

23 25 210m m m

12 21m m

22

Page 28: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Junction Modeling (1)

Continuity Equation

ij i

1

0ij k

ij

j

m

where

23

Page 29: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Junction Modeling (2)

Energy Equation

i

j i

1

1

i

ij

i i

j k

ij ij t

j

t j k

ij ij

j

m T

T

m

where

To ensure energy conservation at each internal junction, we can compute

the mixed mean total temperature of all incoming flows. All outflows

occur at this mixed mean total temperature.

1ij

0ij

for inflows ( ), 0ij

m

for inflows ( ), 0ij

m 24

Page 30: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Handling Internal Choking and Normal Shocks

Compressible flow in a variable-area duct may feature internal

choking at a section where M = 1.

If the flow area increases beyond the choked-flow section, the flow

becomes supersonic with the possibility of a normal shock if the duct

exit conditions are subsonic.

A good way to simulate the choke-flow section is to make it coincide

with a interface between adjacent control volumes.

For simulating a normal shock, it is better to imbed a thin control

volume within which the normal shock occurs.

Note: The flow properties vary continuously across a choked-flow section;

however, they vary abruptly across a normal shock.

25

Page 31: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Determining Element Flow Direction (1)

To yield accurate solution of a compressible flow network, the flow

direction in each element must be determined on physical grounds.

For an adiabatic flow in an element when one or more effects of

area change, friction, and rotation are present, the entropy must

always increase in the flow direction.

2 2

1 1

2 1 0s sP

s s

T Ps s cln ln

R R T P

Thus, for the flow from section 1 to section 2 of an element, we can write

2 2

1 1

2 1 0t tP

t t

T Ps s cln ln

R R T P

26

Page 32: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Determining Element Flow Direction (2) Heating of the element flow increases its entropy downstream, and

cooling decreases it. For applying the entropy-based criterion, it is

important to remove the contribution of heat transfer to the total

entropy change over the element.

2 1w w t p t t HThA (T T ) mc (T T )

2 1

2 1

t t HTP

t w t t HT w

w

(T T )mcT T (T T ) T

hA

where is the average total temperature for convective heat

transfer over the element.

tT

27

Page 33: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Determining Element Flow Direction (3)

Thus, the entropy-based criterion to be used with heat transfer is as

follows:

2 1t t HTHT P

t

(T T )( s) c

R R T

2 2 1 2

1 1

2 1 0t t t HT tHT P

t t t

T (T T ) Ps s ( s) cln ln

R R R T T P

28

Page 34: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Hagen-Poiseuille Flow (Fully developed laminar flow in a pipe)

L1 2

V

The relation between static pressure drop and mass flow rate is linear!

Generating Initial (Starting) Solution

D

1 2

21

2s s s

LP P -P f V

D

64 64

D

fRe VD

1 2

2

2

64 1 32

2s s

L LP -P V V

VD D D

1 2 2 4

32 128s s

L LP -P V m

D D

i jij ij s s

m a P P 4

128ij

Da

L

29

Page 35: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Robust Iterative Solution Methods (1)

In a flow network, for an assumed initial junction properties, all the

mass flow rates generated in the connected elements will most likely

not satisfy the continuity equation at each junction. At an internal

junction in the flow network, we can thus write

1

ij k

ij ij i

j j

m m m

where

im mass flow residual at junction i

In a converged solution, we want to reduce at each junction

below a specified tolerance. i

m

i

30

Page 36: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Robust Iterative Solution Methods (2)

For the junction solution, let us assume that the mass flow rate

through each element depends only on and . At each

iteration, our goal is to change the junction static pressures so as to

annihilate . Accordingly, we can write

0ij i i

j

d(m ) d( m ) m

i j

i j

ij ij

s s i

j s s

m mP P m

P P

ijm

ije

isP

jsP

im

31

Page 37: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Robust Iterative Solution Methods (3)

From , we obtain and ,

giving i jij ij s s

m a (P P ) iij s ij

m / P a jij s ij

m / P a

i jij s ij s i

j

(a P a P ) m

1

1 1

1

1 n

j nsj

nsn nj oldnewj

old

a . . aP m

... . . .

... . . .

mPa . . a

32

Page 38: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Robust Iterative Solution Methods (4)

where the coefficient matrix is called the Jacobian matrix:

111 1 1

1 n

sn

n nn nsold oldnew

PJ . . J m

. . . . ..

. . . . ..

J . . J mP

1 1

11 1

1 1

j n

jn

n nn n nj

j

a . . aJ . . J

. . . . . . . .

. . . . . . . .

J . . J a . . a

In a typical flow network, Jacobian matrix is generally very sparse with

only a handful of non-zero entries. 33

Page 39: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

1. Generate an initial distribution of static pressure at each internal

junction of the flow network.

2. Compute mass flow rate through each element.

3. Compute Jacobian matrix from element solutions.

4. Compute mass flow rate error at each internal junction.

5. Use a direct solution method to obtain the vector of changes in

static pressure at all internal junctions.

6. Obtain the new static pressure at each internal junction:

Newton-Raphson Method

Robust Iterative Solution Methods (5)

34

Page 40: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

7. Repeat steps from 2 to 6 until where is the

acceptable maximum error in the mass flow at any internal

junction.

8. Solve the energy equation at each internal junction.

9. Repeat steps from 2 to 8 until where is the

maximum acceptable difference between the total temperatures at

any internal junction in successive iterations.

Newton-Raphson Method

Robust Iterative Solution Methods (6)

i i is s i s

new old newP P P

where is an under-relaxation parameter specified for each junction

to help the solution convergence. i

i tolmaxm

tol

i it old t new tolmax

ˆ(T ) (T ) tol

35

Page 41: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Modified Newton-Raphson Method

Robust Iterative Solution Methods (7)

111 1 1

1 n

sn

n nn nsold oldnew

PJ . . J m

. . . . ..

. . . . ..

J . . J mP

where the damping parameter , which is auto-adjusted during the

iterative solution process, ensures that the Jacobian matrix remains

diagonally dominant, preventing it from becoming singular.

36

Page 42: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Modified Newton-Raphson Method

Robust Iterative Solution Methods (8)

1. Generate an initial distribution of static pressure at each internal

junction of the flow network.

2. Set and .

3. Compute mass flow rate through each element.

4. Compute residual error of the continuity equation at each internal

junction and the corresponding error norm

0 5old

. new old

2

1

1 n

old i

i

E ( m )n

37

Page 43: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Modified Newton-Raphson Method

Robust Iterative Solution Methods (9)

5. Compute Jacobian matrix from solution for each element in the

flow network.

6. Modify the Jacobian matrix by adding to all its diagonal

components.

7. Use a direct solution method to obtain the vector of changes in

static pressure at all internal junctions.

8. Obtain the new static pressure at each internal junction:

9. Compute mass flow rate through each element.

i i is s s

new old newP P P

38

Page 44: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Modified Newton-Raphson Method

Robust Iterative Solution Methods (10)

10. Compute error of the continuity equation at each internal

junction and the error norm

11. If , set and repeat steps from 6 to 11.

12. Set

13. Repeat steps from 5 to 12 until , where is the

maximum acceptable value of .

2

1

1 n

new i

i

E ( m )n

new oldE E 2

new old

2new old

/

new tolE

tol

newE

39

Page 45: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Modified Newton-Raphson Method

Robust Iterative Solution Methods (11)

14. Solve the energy equation at each internal junction.

15. Repeat steps from 5 to 14 until , where

is the maximum acceptable difference between the total

temperatures at any internal junction in successive iterations.

i it old t new tolmax

ˆ(T ) (T ) tol

Note:

Modified Newton-Raphson method provides a robust alternative to

the standard Newton-Raphson method, which is sensitive to initial

solution, often requiring adjustments of under-relaxation parameters

to obtain a converged solution of the flow network.

40

Page 46: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Role of 3-D CFD in SAS Modeling (1)

Definition of CFD

CFD is the numerical prediction of the distributions

of velocity, pressure, temperature, concentration, and

other relevant variables throughout the calculation

domain

CFD Offers A Physics-Based 3-D Prediction Method.

41

Page 47: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

The Conservation Equations in a Common Form

Role of 3-D CFD in SAS Modeling (2)

42

Page 48: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

CFD Modeling Methodology

Role of 3-D CFD in SAS Modeling (3)

43

Page 49: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

CFD Using a Commercial Code

Role of 3-D CFD in SAS Modeling (4)

44

Page 50: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

3-D CFD yields detailed micro-analysis results

SAS Modeling yields macro-analysis results

3-D CFD analysis is an excellent means of quick and cheap

flow visualization

3-D CFD results can guide simplified SAS modeling of a new

component / flow field

Role of 3-D CFD in SAS Modeling (5)

45

Page 51: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Intuitive flow field schematic in a compressor rotor cavity with radial inflow

Role of 3-D CFD in SAS Modeling (6) An Example

Free Vortex

B

46

Page 52: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

An Example

Counter-intuitive flow field schematic in a compressor rotor cavity with

radial inflow

Role of 3-D CFD in SAS Modeling (7)

47

Page 53: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Physics-Based Post-Processing of CFD Results (1)

CFD computes for each cell face or node the following primitive variables

of the flow field:

Two key requirements for a section-averaged quantity:

),Tor(h,P,V,V,V ssszyx

1. Averaging must preserve the total flow of mass, momentum, angular

momentum, energy, and entropy through the section and total surface

force or torque at the section given by the CFD solution.

2. Assuming the section to be a control surface, the computed section-

averaged quantity must be usable in an integral control volume

analysis.

48

Page 54: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Step 1: Compute mass flow rate through the section

dAVmA

x

Without any loss of generality, the section is assumed to be normal to x-

axis (main flow direction).

Step 2: Compute flow of static enthalpy through the section

dAVhhA

xss

Note: can be either positive or negative. xV

Physics-Based Post-Processing of CFD Results (2)

Note: can be either positive or negative. xV

49

Page 55: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Step 4: Using property tables or functions, compute section-average static

temperature and specific heat at constant pressure

Step 5: Compute flow of kinetic energy through the section

dAV2

VE

Ax

2

KE

Pss c~andT~

h~

Step 3: Compute section-average static enthalpy

m

hh~ s

s

Note: can be either positive or

negative. xV

Physics-Based Post-Processing of CFD Results (3)

50

Page 56: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Step 7: Compute section-average total temperature

Step 8: Compute section-average ratio of specific heats

Rc~c~~

P

P

Step 6: Compute section-average specific kinetic energy

m

E

2

V~

KE

2

P

2

stc~2

V~

T~

T~

R Gas constant

Physics-Based Post-Processing of CFD Results (4)

51

Page 57: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Step 10: Compute section-average total pressure

Step 9: Compute section-average static pressure

A

As

sdA

dAPP~

1~

~

s

tst

T~T~

P~

P~

Note: is an area-average quantity. sP~

Physics-Based Post-Processing of CFD Results (5)

52

Page 58: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

IIIPath

2

1s

irrev

IIPath

2

1s

rev

IPath

2

1s

rev2

1T

dq

T

dq

T

dqds

s

T

1

2I

III

II

I

III

II

Reversible process

Reversible process

Irreversible process

What Is Entropy?

53

Page 59: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

The First Law of Thermodynamics

In terms of specific enthalpy ( )

Computing Change in Entropy (1)

s

fs

dPuqdh

For a reversible process , giving 0du f

s

revs

dPqdh

sh

54

Page 60: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

The Second Law of Thermodynamics

Computing Change in Entropy (2)

s

rev

T

qds

Combining the first law (in terms of enthalpy) and the second law

of thermodynamics yields

s

ss

dPdsTdh

s

s

s

s

T

dP

T

dhds

or

For a calorically perfect gas, we obtain

s

s

s

sP

P

dPR

T

dTcds

55

Page 61: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Now

2

1s

s2

1s

sP

2

1 P

dPR

T

dTcds

or

1

2

1

2

s

s

s

s

P12P

PlnR

T

Tlncss

Computing Change in Entropy (3)

R

)ss(1

s

sR

)ss(R

c

s

s

s

s12

1

2

12

P

1

2

1

2 eT

Te

T

T

P

P

or

56

Page 62: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

or

Computing Change in Entropy (4)

1

s

s

s

s

1

2

1

2

T

T

P

P

Using the equation of state, we obtain

For an isentropic process

0ss 12

1

1

s

s

1

s

s

s

s

1

2

1

2

1

2

T

T

P

P

1

2

1

2

s

s

s

s

PP

PlnR

T

Tlnc

Constant κρ

P and

57

Page 63: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Entropy Change in Terms of Total Properties (1)

T

s

1tP1sP 2tP

2sP

1 2

21 tt TT

1

1

2

2

12 ss PP 12 ss TT

1

2

1

2

s

s

s

s

P12P

PlnR

T

Tlncss

1

2

1

2

t

t

t

t

P12P

PlnR

T

Tlncss

P

2

1

c2

V

P

2

2

c2

V

58

Page 64: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Entropy Change in Terms of Total Properties (2)

T

s

1tP1sP 2tP

2sP

1 2

21 tt TT

1

1

2

2Note:

1212 ssss

2t1t TT For

Thus, for an adiabatic process and

1

2

t

t

12P

PlnRss

P

2

1

c2

V

P

2

2

c2

V

we obtain

12 ss 12

tt PP

59

Page 65: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Dimensionless Local Specific Entropy ( )

s

ref

ref

ref

p

ref

s

s

1

s

s

s

s

R

c

s

s

ref*

P

P

T

T

ln

P

P

T

T

lnR

sss

Dimensionless Entropy

2 2

1 1

2 1

s s

P

s s

T Ps s c ln R ln

T P

60

Page 66: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Entropy Map Generation and Interpretation

Step 1: Obtain 3-D CFD results in the domain of design interest.

Step 2: Compute , which is the average value of at the

domain inlet.

inlets

s

Step 3: Post-process 3-D CFD results to compute

whose contour plot becomes the domain entropy map.

)ss( inlet

Step 4: The regions of high entropy production are the regions

to be reduced or eliminated in the next design iteration.

61

Page 67: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

62

Page 68: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 1: An Overview of Secondary Air Systems

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

63

Page 69: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Takaniki Communications, LLC

Oviedo, Florida, USA

ASME Life Fellow

Physics-Based Modeling of Gas Turbine

Secondary Air Systems

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA

Phoenix, Arizona, USA Sunday, June 16, 2019

Module 2: Special Concepts of Secondary Air Systems – Part I

Page 70: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Module 2

Special Concepts of Secondary Air Systems – Part I

2

Page 71: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Module 2

Special Concepts of Secondary Air Systems – Part I

Free vortex

Forced vortex

Rankine vortex

Windage

Compressible mass flow functions

Loss coefficient and discharge coefficient for an

incompressible flow

Loss coefficient and discharge coefficient for a compressible

flow

3

Page 72: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Vortex

Among the vortices is one which is slower at the center

than at the sides, another faster at the center than at

the sides.

Leonardo da Vinci

4

Page 73: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

A Tornado Funnel

Free Vortex in Nature

An Infrared Satellite Photo of Hurricane Gilbert

( 14 September 1988; NASA Plate)

5

Page 74: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Initial State without Rotation

Forced Vortex

Solid Body Rotation

Ro

Fluid

r

Ro

Fluid

r

g2

Rh

22

o

6

Page 75: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Free Vortex (Potential Vortex)

r

CVθ

x

θV

0r

0

0

θ rr

CV 2

0rC

θer

CV

jyx

Cxi

yx

CyV

2222

Cartesian coordinates: Cylindrical coordinates:

Vortex (1)

7

Page 76: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Free Vortex (Potential Vortex)

Cartesian coordinates

0yx

Cx

yyx

Cy

xVVdiv

2222

ky

V

x

VVVcurl xy

0kyx

Cy-

yyx

Cx

x2222

jyx

Cxi

yx

CyV

2222

Vortex (2)

8

Page 77: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Cylindrical coordinates

0r

0)

r

C(

θr

1VVdiv

V

r

1

r

)(rV

r

1VVcurl rθ

r

V

θ

V

r

1e rθθθ

θ

V

r

1

r

)(rV

r

1

2

1ωωω rθ

rθθrz

0kθ

)0(

r

1

r

r

Cr

r

1

θer

CV

Free Vortex (Potential Vortex)

Vortex (3)

9

Page 78: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Forced Vortex (Solid-Body Rotation)

x

y

r

θV rVθ

x

θV

θ

Cartesian coordinates: jxiy-V

θerV

Cylindrical coordinates:

Vortex (4)

10

Page 79: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Forced Vortex (Solid-Body Rotation)

Cartesian coordinates

jxiy-V

Note: For a forced vortex (solid-body rotation), the curl of

velocity at a point is twice the rotation vector.

0x)(y

)y(-x

VVdiv

ky

V

x

VVVcurl xy

k2ky

y)(

x

x)(

Vortex (5)

11

Page 80: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Forced Vortex (Solid-Body Rotation)

θerV

Cylindrical coordinates

0r

0)(r

θr

1VVdiv

V

r

1

r

)(rV

r

1VVcurl rθ

r

V

θ

V

r

1e rθθθ

θ

V

r

1

r

)(rV

r

1

2

1ωωω rθ

rθθrz

k2kθ

)0(

r

1

r

)(r

r

12

Vortex (6)

12

Page 81: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Angular velocity and vorticity are constant in a forced vortex

(solid-body rotation).

The free vortex (potential vortex) has zero vorticity outside

the core, and its angular momentum remains constant.

Movement of a tiny rod floating in water:

Forced Vortex Free Vortex

Vortex (7)

13

Page 82: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Rankine Vortex (Combination of Free and Forced Vortices)

θV

0r

)rr(,

r

r

)rr(,r

)r(V

o

2

o

o

θ

Forced Vortex

Free Vortex

Vortex (8)

14

Page 83: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

A generalized vortex is characterized by an arbitrary radial distribution

of the swirl factor

1fS f (r)

where the swirl factor is given by the equation: f

VS

r

A nonisentropic generalized vortex additionally features an arbitrary

radial variation of its total temperature given by

2tT f (r)

A Generalized Vortex

Vortex (9)

15

Page 84: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Vortex Flow

Streamlines and isobars are

concentric circles.

Streamline

Isobar

Parallel Flow

Streamline

Isobar

Streamlines and isobars are

normal to each other.

Vortex versus Parallel Flows

Vortex (10)

16

Page 85: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

A vortex is characterized by swirl or tangential velocity at any point in a flow field, and it is generally specified by a swirl factor (Sf)

Free Vortex

rV2

1f

r

CS Constant or

Forced Vortex (Solid-Body Rotation)

2f CS

Generalized Vortex

f(r)Sf

RPMRotor

RPMFluidSf fSXK

Vortex (11)

17

Page 86: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

)Cr(V 2

V

r

Forced Vortex:

Free Vortex:

)r

C(V 1

)C(S 2f fS

r

Forced Vortex:

Free Vortex:

)r

C(S

2

1f

Free Vortex Versus Forced Vortex

Vortex (12)

18

Page 87: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

For an isentropic process:

C κsρsP

sρlnClnsPln )

sRT

sP

ln(lnC

RlnsTln-sPlnCln

s

s

s

s

T

dT

κ

P

dP

Taking log of the above equation yields

Differentiating the above equation and rearranging terms yield

(1)

Static Pressure and Static Temperature Changes in an

Isentropic Free Vortex (1)

19

Page 88: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Radial pressure gradient in a vortex is given by

r

dr

dP2

ss

(2)

(3)

r

V

RT

P 2

s

s

r

dr

RT

V

P

dP 2

s

s

Substituting for from Eq. (2) in Eq. (1) yields

s

s

P

dP

r

dr

c

V

r

drV

R

1dT

p

22

s

Static Pressure and Static Temperature Changes in an

Isentropic Free Vortex (2)

20

Page 89: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

For a free vortex

r

CV 3

(4)

Substituting for from Eq. (4) into Eq. (3) yields V

2

1 3

p

2

32

1s

r

dr

C

CdT

or

where

2

1f

r

CS

3

1

CC

Static Pressure and Static Temperature Changes in an

Isentropic Free Vortex (3)

21

Page 90: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

2

2

2

1P

2

3ss

r

1

r

1

2c

C)T(T

12

Using , we obtain

pc

1

R

1

2

2

2

1

2

3ss

r

1

r

1

κR

C

2

1κ)T(T

12

Static Pressure and Static Temperature Changes in an

Isentropic Free Vortex (4)

22

Page 91: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

(5)

where

2

2

2

12

s

s

r

r1M

2

11

T

T

1

1

2

1s

3

s rRT

C

RT

VM

11

1

1

2

2

2

1

2

1

2

22

s

s

r

r1

r

rM

2

11

T

T

1

1

2

Static Pressure and Static Temperature Changes in an

Isentropic Free Vortex (5)

23

Page 92: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

κ

1

1

2

1

2

2

2

2

121κ

κ

s

s

s

s

r

r1M

2

1κ1

T

T

P

P

Pressure ratio between any two points in a free vortex is then computed

using the isentropic relation

κ

2

2

2

1

2

1

2

221κ

κ

s1

s2

s

s

r

r1

r

rM

2

1κ1

T

T

P

P

1

1

2

(6)

Static Pressure and Static Temperature Changes in an

Isentropic Free Vortex (6)

24

Page 93: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

For a forced vortex

fSrV

Substituting for from Eq. (7) into Eq. (3) and integrating from 1 to 2

yields V

2

1p

22

f2

1s rdr

c

SdT

)r(r2c

S)T(T

2

1

2

2

p

22

fss 12

(7)

Static Pressure and Static Temperature Changes in an

Isentropic Forced Vortex (1)

25

Page 94: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

)r(rR

S

2

1)T(T

2

1

2

2

22

fss 12

1)r

r(M

2

11

T

T2

1

2

22

s

s

1

1

2

Again using , we obtain

pc

1

R

1

(8)

Static Pressure and Static Temperature Changes in an

Isentropic Forced Vortex (2)

26

Page 95: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

where

1

1

s

f1

TR

SrM

1

1

1

2

1

2 1)r

r()M

2

1(1

T

T

P

P2

1

2

221

s

s

s

s

(9)

Pressure ratio between any two points in a forced vortex is then computed

using following the isentropic relation

Static Pressure and Static Temperature Changes in an

Isentropic Forced Vortex (3)

27

Page 96: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

In a free vortex, angular momentum, not angular velocity, remains constant.

In a forced vortex, angular velocity, not angular momentum, remains constant.

Note that from Equations (5) and (8), we obtain

2

1

2

2

VortexFrees

ss

VortexForceds

ss

r

r

T

TT

T

TT

1

12

1

12

2

in

2

out

VortexFrees

ss

VortexForceds

ss

r

r

T

TT

T

TT

in

inout

in

inout

Free Vortex versus Forced Vortex (1)

In Eq. (10), subscripts “in” and “out” refer to inlet and outlet, respectively

(10)

28

Page 97: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

From Eq. (10), note that for both radially outward and inward flows with identical inlet conditions, outlet static temperature for a forced vortex is always higher than that for a free vortex.

Similarly, for both radially outward and inward flows with identical inlet conditions, outlet static pressure for a forced vortex is always higher than that for a free vortex.

It’s a simple exercise to show that the total temperature and total pressure of a free vortex in an inertial reference frame remain constant. ( and )

For an isentropic forced vortex:

and

Free Vortex versus Forced Vortex (2)

2

1 1

2 2 2

2 11t

t P t

T (r r )

T c T

2 2

1 1 1

11 2 2 2

2 11t t

t t P t

P T (r r )

P T c T

2 1t tT T

2 1t tP P

29

Page 98: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

A joint equation for both free vortex and force vortex is written as

where for a free vortex, and for a forced vortex. 1n 1n

Static Temperature Change:

Static Pressure Change:

Free Vortex versus Forced Vortex (3)

4

n

CV

r

2

1

2

12

1

1

n

s 2

s

T r11 M

T 2n r

2 1

1

2

12

1

1

n

s 2

s

P r11 M

P 2n r

30

Page 99: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Pressure and Temperature Changes in an Isentropic Free

Vortex

2

2

2

1

2

1

2

22

s

s

r

r1

r

rM

2

11

T

T

1

1

2

1s

3

s rRT

C

RT

VM

11

1

1

κ

2

2

2

1

2

1

2

221κ

κ

s

s

s

s

r

r1

r

rM

2

1κ1

T

T

P

P

1

1

2

1

2

2 1t tT T

Free Vortex versus Forced Vortex (4)

2 1t tP P

31

Page 100: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Pressure and Temperature Changes in an Isentropic Forced

Vortex

1)r

r(M

2

11

T

T2

1

2

22

s

s

1

1

2

1

1

s

f1

TR

SrM

1

1

1

2

1

2 1)r

r()M

2

1(1

T

T

P

P2

1

2

221

s

s

s

s

2 1

2 1 1

2 2 2 2 2 2

2 1f

t t t

P P

V V S (r r )T T T

c c

Free Vortex versus Forced Vortex (5)

32

Page 101: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

fS

r1r 2r

Forced Vortex Modeling of a Free Vortex

2

3

1

45

0

Free Vortex: 2

1f

r

CS

Free Vortex versus Forced Vortex (6)

33

Page 102: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

r1r 2r

Forced Vortex Modeling of a Free Vortex

0

Free Vortex: 2

1f

r

CS

fS

At : 1r 111 ss, TPV

At : 222 ss, TPV

2r

For the free vortex:

For the equivalent forced vortex:

2

1

r

rVV 1

2

221 r

V

rr

VV121

Free Vortex versus Forced Vortex (7)

34

Page 103: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

r1r 2r

Forced Vortex Modeling of a Free Vortex

0

2

1f

r

CS

fS

For the free vortex, we can write

Free Vortex:

2

2

2

1

2

1

2

22

vortexfrees

s

r

r1

r

rM

2

11

T

T

1

1

2

1

1

1

sRT

VM

2

2

2

1

2

1

2

2

s

1

2

vortexfrees

s

r

r1

r

r

RT

V

2

11

T

T

11

2

Free Vortex versus Forced Vortex (8)

35

Page 104: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Forced Vortex Modeling of a Free Vortex

For the equivalent forced vortex, we can write

1

1

s

1

RT

rM

1)

r

r(M

2

11

T

T2

1

2

22

vortexforceds

s

1

1

2

1)r

r(

RT

r

2

11

T

T2

1

2

2

s

22

1

vortexforceds

s

11

2

vortexfrees

s

2

1

2

2

2

2

2

1

s

2

vortexforceds

s

1

2

1

1

1

2

T

T1)

r

r(

r

r

RT

V

2

11

T

T

Free Vortex versus Forced Vortex (9)

36

Page 105: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Forced Vortex Modeling of a Free Vortex

Since for forced vortex core with the mean angular velocity, we have

shown that

We can also write

vortexfrees

s

vortexforceds

s

1

2

1

2

T

T

T

T

1

vortexfrees

s

vortexfrees

s1

vortexforceds

s

vortexforceds

s

1

2

1

2

1

2

1

2

T

T

P

P

T

T

P

P

Free Vortex versus Forced Vortex (10)

37

Page 106: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Isothermal Forced Vortex (1)

r

V

dr

dP2

s Radial Momentum Equation:

For a forced vortex: frSV

For an isothermal vortex ( constant): sTs

s

RT

P

Substituting in the radial equilibrium equation yields

drrRT

S

r

dr

RT

Sr

P

dP

s

22

f

s

22

f

2

s

s

38

Page 107: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

2

1

2s

1s

r

rs

22

fP

Ps

s drrRT

S

P

dP

1

r

r

RT2

Sr

P

Pln

2

1

2

2

s

22

f

2

1

s

s

1

2

where

1r

r

2

M

P

Pln

2

1

2

2

2

s

s 1

1

2

1

1

s

f1

TR

SrM

sss TTT21

Isothermal Forced Vortex (2)

39

Page 108: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Comparison of Isentropic and Isothermal Pressure Rises in a

Forced Vortex

Isothermal Forced Vortex (3)

40

Page 109: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Pressure and Temperature Changes in a

Nonisentropic Generalized Vortex (1)

Radial pressure gradient in a vortex is given by

2

s

s s

dP V dr

P RT r

which can be expressed in terms of rotational Mach number as

2

s

s

dP Mdr

P r

where

s

VM

RT

2

sdP V

dr r

41

Page 110: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Pressure and Temperature Changes in a

Nonisentropic Generalized Vortex (2)

Thus, integration between and yields

2 2

1 1

2r r

s

r rs

dP Mdr

P r

and 1f

V S r f r

2 2 2 2

12

2 2s t

P P

V f rT T f

c c

2r

1r

2

1

s

s

Pln G

P

2 1

G

s sP P e

where is computed numerically using, for example, the Simpson’s

one-third rule. G

42

Page 111: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

1

Stator

Rotor

rpm3000Rotation axis

m0.1r1

m0.2r2

s/kg0.20m

s/kg0.20m

2

A rotor-stator cavity of a 50-Hertz (3000 rpm) gas turbine engine is shown below.

Coolant air at 400 OC (absolute total), swirling at 60% of the rotor rpm, enters the

cavity at the inner radius. It exits the cavity at the outer radius with a swirl of 40% of

the rotor rpm. The mass flow rate of the coolant air is 20 kg/s. If the total frictional

torque from the stator surface acting on the cavity air is 10 Nm, find the exit total

temperature of this air. The rotor-stator surfaces are adiabatic (zero heat transfer). All

quantities are given in the inertial (stator) reference frame. Assume air with

A Typical Windage Problem (1)

Pc = 1067 J/(kg.K).

43

Page 112: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Angular velocity of the rotor:

rad/s314.1660

2π3000

Air tangential velocity at inlet (Section 1):

s/m50.1880.116.3146.0V1

Air tangential velocity at outlet (Section 2):

s/m33.2510.216.3144.0V2

Solution

A Typical Windage Problem (2)

44

Page 113: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Torque and angular momentum balance over the control volume between

Sections 1 and 2 yields

)VrV(rm12 θ1θ2statorrotor

Nm18.6293

)50.1880.133.2510.2(2010

)VrVr(m12 12statorrotor

Air temperature increase in the rotor cavity is due to work transfer from

the rotor

K92.6106720

314.166293.18

cmTΔ

P

rotort

Hence exit total temperature of air = 400 + 92.6 = 492.6 OC

A Typical Windage Problem (3)

45

Page 114: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Windage power is the net rotor power input into the surrounding

fluid.

Windage

What is Windage?

Viscous Dissipation

No Windage in a Stationary Channel

Adiabatic Walls with Friction (Fanno Flow) inlet,sT

inlet,tT

outlet,sT

outlet,tT

outlet,sTinlet,sT inlet,tToutlet,tT

Windage (1)

46

Page 115: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

A B

C D

r1

r2

Rotor Stator

(radians/s)

1

2

Pumping Power into a Forced Vortex

)r(r)(SmW 2

1

2

2

2

fpumping

Assume a Forced Vortex of Constant Swirl

Factor (Sf) Spanning from to 1r 2r

fS

Constant Flow Energy Equation for the Control

Volume ABCD yields

QW)h(hm pumpingtt 12

m

mWith 0Q

Windage (2)

47

Page 116: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Consider Control Volume ABCD

)rVmrVm( - 1θ2θstatorAD,rotorBC, 12

)rSr(Sm 2

1f

2

2f 12

Torque/Angular Momentum Balance

Windage

rotorBC,windage W

22

1f

2

2fstatorAD,windage )rSr(Sm W12

Don’t Use This

Equation!

Windage (3)

48

Page 117: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

49

Windage (4)

All-stator cavity Rotor-stator cavity Rotating pipe

Page 118: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Compressible Mass Flow Functions (1)

Total Pressure Flow Function Static Pressure Flow Function

t

tf

t

tf

idealRT

PAF

T

PAFm tt

2

f

M2

1κ1R

κMF

t

2

f

M2

1κ1

κMF

t

t

sf

t

sf

idealRT

PAF

T

PAFm ss

R

M2

1κ1κ

MF

2

fs

2

f M2

1κ1κMF

s

50

Page 119: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

51

Compressible Mass Flow Functions (2)

Page 120: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

422

f M1)κ(κ5.0MκFs

0FMκ1)Mκ(κ5.02

f

24

s

Finding Mach Number For a Given Static-Pressure Mass Flow

Function

2

1

2

f

2

1)-κ(κ

F1)-κ(κ2κκM

s

Compressible Mass Flow Functions (3)

52

Page 121: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Dynamic Pressure Variation in a Compressible Flow

a

1

1.1

1.2

1.3

1.4

1.5

0 0.25 0.5 0.75 1 1.25

M

bD

yn

am

ic P

res

su

re R

ati

o 2

t sP P

ρV

2

Dynamic Pressure Ratio

2

κ

2

2

st

κM

21M

2

1κ1

2

ρV

PP

Dynamic Pressure

53

Page 122: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Inlet Minor Loss ( ) inletK

Loss Coefficient Versus Discharge Coefficient (1)

1 2

Pipe Inlet

Loss

22

21

st

tt

inletPP

PPK

54

Page 123: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

22

21

st

tt

inletPP

PPK

Incompressible Flow

)K1(

PKPP

inlet

sinlett

t21

2

For an incompressible flow

Inlet Minor Loss ( ) inletK

55

2

VKPP

2

2inlettt 21

inlet

tt

222KK

)PP(2AVAm 21

inlet

Loss Coefficient Versus Discharge Coefficient (2)

Page 124: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

)K1(

PKPP

K

2AVAm

inlet

sinlett

t

inlet

222K21

1inlet

)K1(

PPK

K

2A

inlet

stinlet

inlet

221

56

)K1(

PP2Am

inlet

st

2K21

inlet

Loss Coefficient Versus Discharge Coefficient (3)

Page 125: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Discharge Coefficient ( )

Bernoulli’s Equation between Sections 1 and 2 yields

which gives

Incompressible Flow

1 2 1

2 2

1 2

2 2s s t

V VP P P

)PP(2V 21 st

2

dC

ideal

actuald

m

mC

Loss Coefficient Versus Discharge Coefficient (4)

57

Page 126: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

where

Incompressible Flow

)PPρ(2CAρ

)P2(PCρAVCρAm

21

21

d std2

st

d22d2C

dC Discharge Coefficient

Discharge Coefficient ( ) dC

58

)PPρ(2CAm21d std2C

Loss Coefficient Versus Discharge Coefficient (5)

Page 127: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Relation Between Loss Coefficient ( ) and Discharge

Coefficient ( ) for an Incompressible Flow dC

Thus, we obtain the following relation between and

inletK

inletKdC

)K1(

PP2Am

inlet

st

2K21

inlet

)PPρ(2CAm

21d std2C

inlet

dK1

1C

Loss Coefficient Versus Discharge Coefficient (6)

59

Page 128: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Relation Between Loss Coefficient ( ) and Discharge

Coefficient ( ) for a Compressible Flow dC

inletK

22

21

st

tt

inletPP

PPK

)K1(

PKPP

inlet

sinlett

t21

2

2

22t

inlet

t

t2f

KT

PAFm

Mass Flow Rate Calculation Using inletK

where

1

t

s

2

1

1

2

2

2f

2

2

2t P

P

RM

2

M)1(1R

MF

1P

P

2M

κ

s

t

2

2

2

and

)K1(

KP

P

P

P

inlet

inlet

s

t

s

t 2

1

2

2

Loss Coefficient Versus Discharge Coefficient (7)

60

Page 129: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

1

12t

d

t

t2df

CT

PACF~

m

Mass Flow Rate Calculation Using dC

where

1P

P

2M~

κ

s

t

2

2

1

and

1

t

s

2

1

1

2

2

2f

1

2

2t P

P

RM~

2

M~

)1(1R

M~

F~

Loss Coefficient Versus Discharge Coefficient (8)

61

Relation Between Loss Coefficient ( ) and Discharge

Coefficient ( ) for a Compressible Flow dC

inletK

Page 130: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Let’s assume 21 tt TT

dinlet CK mm Then for , we obtain

or 22t12t tftdf PFPCF~

or

1

12t

2

22t

t

t2df

t

t2f

T

PACF~

T

PAF

12t

22t

tf

tf

dPF

~PF

C

)K1(P

PKP

F~F

Cinlett

sinlett

f

f

d

1

21

2t

2t

Loss Coefficient Versus Discharge Coefficient (9)

62

Relation Between Loss Coefficient ( ) and Discharge

Coefficient ( ) for a Compressible Flow dC

inletK

Page 131: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

)K1(P

PKP

F~F

Cinlett

sinlett

f

f

d

1

21

2t

2t

)K1(P

P

KP

P

F~F

C

inlet

s

t

inlet

s

t

f

f

d

2

1

2

1

2t

2t

Loss Coefficient Versus Discharge Coefficient (10)

63

Relation Between Loss Coefficient ( ) and Discharge

Coefficient ( ) for a Compressible Flow dC

inletK

Page 132: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

0.650

0.700

0.750

0.800

0.850

0.900

0.950

1.000

0 0.2 0.4 0.6 0.8 1

K

Cd

0.650

0.700

0.750

0.800

0.850

0.900

0.950

1.000

0 0.2 0.4 0.6 0.8 1

K

Cd

0.650

0.700

0.750

0.800

0.850

0.900

0.950

1.000

0 0.2 0.4 0.6 0.8 1

K

Cd

0.650

0.700

0.750

0.800

0.850

0.900

0.950

1.000

0 0.2 0.4 0.6 0.8 1

K

Cd

Incompressible

Compressible

Incompressible

Compressible

Incompressible

Compressible

Incompressible

Compressible

dC

inletK

dC

inletK

dC

inletK

dC

inletK

inlet

dK1

1C

inlet

dK1

1C

inlet

dK1

1C

inlet

dK1

1C

2.1P

P

2

1

s

t 4.1P

P

2

1

s

t

6.1P

P

2

1

s

t 8.1

P

P

2

1

s

t

Loss Coefficient Versus Discharge Coefficient (11)

64

Page 133: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Loss Coefficient Versus Discharge Coefficient (12)

65

Page 134: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

66

Page 135: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 2: Special Concepts of Secondary Air Systems – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

67

Page 136: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 3: Special Concepts of Secondary Air Systems – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Takaniki Communications, LLC

Oviedo, Florida, USA

ASME Life Fellow

Physics-Based Modeling of Gas Turbine

Secondary Air Systems

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA

Phoenix, Arizona, USA Sunday, June 16, 2019

Module 3: Special Concepts of Secondary Air Systems – Part II

Page 137: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 3: Special Concepts of Secondary Air Systems – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

2

Module 3

Special Concepts of Secondary Air Systems – Part II

Page 138: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 3: Special Concepts of Secondary Air Systems – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Module 3

Special Concepts of Secondary Air Systems – Part II

Stator/Rotor reference frames

Euler’s turbomachinery equation

Rothalpy

Preswirl system

Rotor disk pumping

3

Page 139: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 3: Special Concepts of Secondary Air Systems – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Stator/Rotor Reference Frames

xx WV

rr WV

mm WV

rWV

4

Page 140: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 3: Special Concepts of Secondary Air Systems – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

(Rotational Speed: )

From Torque and Angular

Momentum Balance:

)VrV(rm12 θ1θ2A

2V

1V

1r2r

Control Volume for a General Turbomachine

Power = (Torque) x (Angular Speed)

)VrV(rmW12 θ1θ2P

)VUV(UmW12 θ1θ2P

Euler’s Turbomachinery Equation (1)

11 rU 22 rU

1U

2U

5

Page 141: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 3: Special Concepts of Secondary Air Systems – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Combining with SFEE, we obtain the Euler’s Turbomachinery

Equation (for unit mass flow rate of the working fluid)

1212 θ1θ2tt VUVUhh

For Turbines:

1212 θ1θ2tt VUVUorhh

For Compressors and Pumps:

1212 θ1θ2tt VUVUorhh

Euler’s Turbomachinery Equation (2)

6

Page 142: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 3: Special Concepts of Secondary Air Systems – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Rothalpy (1)

Rearranging Euler’s Turbomachinery Equation Yields

IVUhVUh1122 θ1tθ2t RothalpyI

Rothalpy in Stator Reference Frame (SRF)

θ

2

s UV2

VhI

Euler’s Turbomachinery Equation

1212 θ1θ2tt VUVUhh

7

Page 143: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 3: Special Concepts of Secondary Air Systems – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Rothalpy (2)

Rothalpy in Rotor Reference Frame (RRF)

UVW θθ

V

θV

mm WV W

U θW

UWV θθ

2

θ

2

θ

2

m

2

θ

2

m

2UU2WWWVVV

xx WV

rr WV

8

Page 144: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 3: Special Concepts of Secondary Air Systems – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Rothalpy in Rotor Reference Frame (RRF)

2

Uh

2

Uh

2

2

2t

2

1

1t RR

U)(WU2

UU2WWWh θ

2

θ

2

θ

2

xs

2

θ

2

θ

2

θ

2

xs UWU-

2

UUW

2

WWh

2

UTc

2

Uh

2

U

2

WhI

2

tp

2

t

22

s RR

Thus

For a rotor with no heat transfer:

21 II or 2

UTc

2

UTc

2

2tP

2

1tP 2R1R

or

UV2

VhI

2

s

Rothalpy (3)

9

Page 145: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 3: Special Concepts of Secondary Air Systems – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Equating Rothalpy Expressions in SRF and RRF

2

UhVUh

2

tt RS

2

UTcVUTc

2

tPtP RS

2

rhVrh

22

tt RS

2

rTcVrTc

22

tPtP RS

Conversion of Total Temperature between SRF and RRF

Rothalpy (4)

2

2R St t

P

U(U V )T T

c

2

2S Rt t

P

U(U W )T T

c

10

Page 146: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 3: Special Concepts of Secondary Air Systems – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Conversion of Total Pressure between SRF and RRF

Rothalpy (5)

1R Rt t

s s

P T

P T

1S St t

s s

P T

P T

12

2

S

R

t

t s

s P s

T U(U V )P P

T c T

12

2

R

S

t

t s

s P s

T U(U W )P P

T c T

11

Page 147: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 3: Special Concepts of Secondary Air Systems – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Conversion of Total Pressure between SRF and RRF

Using the fact that both static pressure and static temperature are

independent of the reference frame, we can write

Rothalpy (6)

1

R R

S S

t t

t t

P T

P T

12

2R S

S

t t

P t

U(U V )P P 1

c T

121

2S R

R

t t

P t

U(U W )P P

c T

12

Page 148: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 3: Special Concepts of Secondary Air Systems – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Preswirl System (1)

A Preswirl System Schematic

Point 1: Preswirl nozzle exit

Point 2: Inlet to rotor cavity between

the cover plate and the

rotor disk

Point 3: Top of rotor cavity between the

cover plate and the rotor

disk

Point 4: Blade root (inlet to blade internal

cooling)

Role: To reduce blade cooling air temperature by

preswirling it to match rotor angular velocity

13

Page 149: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 3: Special Concepts of Secondary Air Systems – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Preswirl System (2) Flow and Heat Transfer Modeling

Assuming adiabatic conditions with constant and invoking the concept of

rothalpy to relate total temperatures in SRF and RRF , we obtain at a point p

c

2

2S Rt t

p p

UV UT T

c c

2 2

1 22 2R S St t t f

p p p

UV U UT T T ( S )

c c c

2 2

1 22R St t f

p

rT T ( S )

c

f

p

VS

r

0 5f

S . :R St t

T T0f

S :2 2

2R St t

p

rT T

c

1

fS :

2 2

2R St t

p

rT T

c

14

Page 150: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 3: Special Concepts of Secondary Air Systems – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Preswirl System (3) Flow and Heat Transfer Modeling

Change in coolant air total temperature from point 1 (SRF)

to point 4 (RRF)

11 1

2 2

1 22R S

p

t t f

p

rT T ( S )

c

4 1

2 22 2

2 2R R

pb

t t

p p

rrT T

c c

1 4

1

2

2 22 1

2

S Rt t p

f

bb

p

T T rS

rr

c

Blade cooling air reduction coefficient 2 2

2

b

p

r

c

Dynamic temperature of solid-body rotation at

br

15

Page 151: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 3: Special Concepts of Secondary Air Systems – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Preswirl System (4) Flow and Heat Transfer Modeling

Change in coolant air total temperature from point 1 (SRF)

to point 4 (RRF)

varies linearly with and

quadratically with 1f

S

p br /r

Negative values of implies

4 1R St tT T

For , positive values of

occur only for

1

1f

S 0 707

p br /r .

Over-spinning ( ) the

coolant air must be balanced

against excess reduction in

static pressure

11

fS

16

Page 152: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 3: Special Concepts of Secondary Air Systems – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Preswirl System (5) Flow and Heat Transfer Modeling

Turbine work loss coefficient

1

1 4

2 2 2 2

S S

p f b

t t

p p

r S rT T

c c

4 1

1

2

2 21 1 2 1

2

S St t p

f

bb

p

T T rS

rr

c

Turbine work loss coefficient

17

Page 153: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 3: Special Concepts of Secondary Air Systems – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Preswirl System (6) Flow and Heat Transfer Modeling

Concluding Remarks:

The design goal of higher value of and lower value of is achieved

simultaneously.

For or , the transfer system behaves like a compressor, and

for or , it behaves like a turbine.

1 1

1 1

Must ensure adequate backflow margin to prevent any ingestion of

hot gases through the blade film cooling holes.

For the same value of , will be higher, the higher the preswirl nozzle

radius, requiring higher reduction in static pressure. 1f

S1

V

Preswirl radial location determines rotor disk pressure distribution and

impacts axial rotor thrust.

18

Page 154: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 3: Special Concepts of Secondary Air Systems – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Rotor Disk Pumping (1)

Free Disk Pumping Disk Pumping beneath a Forced

Vortex

19

Page 155: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 3: Special Concepts of Secondary Air Systems – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Free Disk Pumping

Using von Karman’s integral momentum equations

for tangential and radial velocities with one-seventh

power-law velocity profiles in the boundary layer

and logarithmic law of the wall, we obtain

2R

Re

2.03

diskfree ReR219.0)R(m

8.0

diskfree ReR219.0)R(m

6.2

8.0

diskfreeR

rReR219.0)r(m

Rotor Disk Pumping (2)

20

Page 156: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 3: Special Concepts of Secondary Air Systems – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Free Disk Pumping

R

r

Note:

)rR(

2R

Re

8.02

diskfree1

rr219.0)r(mm

0 8 2 62

20 219

. .

free disk

R rm m (r) . R

R

21 mm

Rotor Disk Pumping (3)

21

Page 157: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 3: Special Concepts of Secondary Air Systems – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Disk Pumping beneath a Forced Vortex

fS Swirl Factor

6.2

8.0

pumpdiskR

rReR219.0)r(m

6.1

ff )S1)(S51.01(

Rotor Disk Pumping (4)

22

Page 158: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 3: Special Concepts of Secondary Air Systems – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Rotor Disk in a Enclosed Cavity

Rotor Disk Pumping (5)

23

Page 159: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 3: Special Concepts of Secondary Air Systems – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

24

Page 160: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 3: Special Concepts of Secondary Air Systems – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

25

Page 161: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Takaniki Communications, LLC

Oviedo, Florida, USA

ASME Life Fellow

Physics-Based Modeling of Gas Turbine

Secondary Air Systems

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA

Phoenix, Arizona, USA Sunday, June 16, 2019

Module 4: Physics-Based Modeling – Part I

Page 162: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

2

Module 4

Physics-Based Modeling – Part I

Page 163: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Module 4

Physics-Based Modeling – Part I

Stationary and rotating orifices

Stationary and rotating ducts

Rotor-stator and rotor-rotor cavities

Windage and swirl modeling in a general cavity

Centrifugally-driven buoyant convection in compressor rotor

cavity with and without bore flow

3

Page 164: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Orifice 1 2

m11 st P,P

11 st T,T

22 st P,P

22 st T,T

dC,A

1

1

tf d t

t

F AC Pm

RT

12 11

12

tfF M

( )M

where total-pressure flow function is given by

Note: Mach number M is a function of pressure ratio 1 1t s

P / P

Element Modeling (1)

Orifice

4

Page 165: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Stationary and Rotating Orifices (1)

d

L

r r

d

L

Inlet corner radius

Orifice diameter

Orifice length

1 2

vv

xv

Re Reynolds number

VdRe

5

Page 166: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

d

L

r

1 2 idealdactual mCm

Discharge Coefficient ( ) dC

Expansion factor for a sharp-edged orifice

Expansion factor for a nozzle

Y)PP(2)A/A(1

1Am

2/1

2s1s1

2/1

2

12

2ideal

1s

2s1s

4

P

PP

D

d35.041.00.1Y

2/1

/22

21

2

21

/)1(/2

r)A/A(1

)A/A(1

r1

r1

1rY

Stationary and Rotating Orifices (2)

6

Page 167: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

d

L

r

1 2

Reynolds number

V Inlet corner radius-to-diameter ratio

Orifice length-to-diameter ratio

Relative tangential velocity

(inlet flow angle of attack)

vv

xv

Discharge Coefficient ( ) dC

VdRe

d/r

d/L

V/V

Stationary and Rotating Orifices (3)

7

Page 168: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Stationary and Rotating Ducts (1)

Q

2r

1r

1

2

Duct with Area Change, Friction, Heat Transfer, and Rotation

8

Page 169: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Duct with Area Change, Friction, Heat Transfer, and Rotation

Stationary and Rotating Ducts (2)

9

Page 170: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

2 1t t

frictionP P

Total-Pressure-Based Modeling Equations (Not Physics-Based!)

This approach ignores the nonlinear coupling between the momentum and

energy equations inherent in a compressible flow.

We cannot compute constant-area channel flow with both

Friction and heat transfer by simply adding values from Fanno and Rayleigh

flow tables!

2 1 2 1 2 1t t t t t t

total area change rotationP P P P P P

2 1t t

heat transferP P

Note: 2 1

0t t

area changeP P

Stationary and Rotating Ducts (3)

10

Page 171: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Static-Pressure-Based Modeling Equations

Continuity equation

1 1 1 2 2 2m V A V A

Total change in static pressure

2 1

2 2 2 22 2 2 1 2 1

1 20 5

2 2s s

h

(r r ) f V (x x )P P . * (V V )

D

Stationary and Rotating Ducts (4)

11

Page 172: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Outlet total temperature

2 1

2 2 2

2 1 2 12 12

1R Rt t W

P P

(r r ) (r r )T T e T ( e ) (r r e )

c c

W

P

hA

mc 0h

Static-Pressure-Based Modeling Equations

Stationary and Rotating Ducts (5)

2 1R R R R Rt t t t t

HT rot CCTT T T T T

12

Page 173: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Outlet total temperature

Static-Pressure-Based Modeling Equations

Stationary and Rotating Ducts (6)

2 1 1

1R R R Rt t t HT w t

HTT (T T ) (T T )( e )

2 1

2 2 2

2 1

2R R Rt t t rotrot

P

(r r )T (T T )

c

2

2 1 1

2RtCCT

P

(r r )rT

c

13

where

Page 174: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

1

1

1

s

s

P

RT

Density at inlet and outlet

2

2

2

s

s

P

RT and

Static-Pressure-Based Modeling Equations

Stationary and Rotating Ducts (7)

2 2

2

2

2Rs t

P

VT T

c

Outlet static temperature Outlet total pressure

2

2 2

2

1

R

R

/( )

t

t s

s

TP P

T

14

Page 175: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Rotor-Rotor and Rotor-Stator Cavities (1)

Small outflow rate Large outflow rate

Rotor-Stator Cavity with Radial Outflow

15

Page 176: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Rotor-Rotor and Rotor-Stator Cavities (2)

Small inflow rate Large inflow rate

Rotor-Stator Cavity with Radial Inflow

16

Page 177: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Rotor-Rotor and Rotor-Stator Cavities (3)

Rotating Cavity

Radial outflow Radial inflow

17

Page 178: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Windage and Swirl Modeling in a General Cavity (1)

Schematic of a General Gas Turbine Cavity and Its Key Features

Multiple surfaces, which are

rotating, stationary or counter-

rotating.

Multiple inflows and outflows

with different swirl,

temperature and pressure

conditions

Three-dimensional drag

components, e.g., bolts

Each surface may be locally

vertical, horizontal, and

inclined.

18

Page 179: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Daily and Nece (1960)

Ro

S

Fluid

r

r

drr

oR

0disk )drr2(r

Tangential shear stress

“Chamber dimension effects on induced flow and

friction resistance of enclosed rotating disks,” J.

Basic Engineering, Vol. 82, PP. 217-232.

Windage and Swirl Modeling in a General Cavity (2)

19

Page 180: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

5

o

2

fdisk RC5

1

2

f )r(C2

1

5

o

2

m RC2

1

Thus,

I. Laminar, merged boundary

layers

II. Laminar, separate boundary

layers

III. Turbulent, merged boundary

layers

IV. Turbulent, separate boundary

layers

Flow Regimes

5

o

2

diskfm

R

2C

5

2C

Windage and Swirl Modeling in a General Cavity (3)

Daily and Nece (1960)

20

Page 181: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Windage and Swirl Modeling in a General Cavity (4)

Merged boundary layers

(Regimes I and III)

Separate boundary layers

(Regimes II and IV)

Daily and Nece (1960)

21

Page 182: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

11

m ReGC

I. Laminar, merged boundary layers

The four flow regimes are characterized by rotational Reynolds number Re and

dimensionless gap parameter G.

II. Laminar, separate boundary layers

/RRe2

o oR/SG

10/9

11/5

Re188G

Re62.1G

III. Turbulent, merged boundary layers

2/110/1

m ReG85.1C

5

16/156

11/5

1058.1Re

Re1057.0G

Re62.1G

IV. Turbulent, separate boundary layers

4/16/1

m ReG040.0C

10/9

16/3

16/156

Re188G

Re402.0G

Re1057.0G

5/110/1

m ReG051.0C

5

16/3

1058.1Re

Re402.0G

Windage and Swirl Modeling in a General Cavity (5)

Daily and Nece (1960)

22

Page 183: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Windage and Swirl Modeling in a General Cavity (6)

Daily and Nece (1960)

23

Page 184: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

1987 Reference for Windage Calculation

Windage and Swirl Modeling in a General Cavity (7)

24

Page 185: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Note: The methodology presented in this paper remains the industry

bench-mark for windage computation.

Correct form of Equation (4)

)WW)((778)(C

)MM(T

CIGIp

RBRW

Windage and Swirl Modeling in a General Cavity (8)

1987 Reference for Windage Calculation

25

Page 186: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Windage and Swirl Modeling in a General Cavity (9)

1987 Reference for Windage Calculation

26

Page 187: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Note: Equations (7) and (15) suggest

the assumption of a uniform shear

stress on the disk surface!

Windage and Swirl Modeling in a General Cavity (10)

1987 Reference for Windage Calculation

27

Page 188: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Note: Equations (7) and (15) suggest the assumption of a uniform shear

stress on the disk surface!

0 Assume uniform tangential shear stress ( )

oR

0disk )drr2(r

2

0f0 )R(C2

13

00

R

00disk R)

3

2()drr2(r

o

5

o

2

mdisk RC2

1 fm C

3

2C

Windage and Swirl Modeling in a General Cavity (11)

1987 Reference for Windage Calculation

28

Page 189: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Some Remarks

The assumption of a constant for a vertical disk is generally not

true. In fact, the integral boundary layer analysis reveals that 0

6.1r

The relation between and without any dependence on disk

geometry is possible only for a full disk, i.e., disk with . MC

fC0R1

Both and are functions of radius which appears in . 2.0

Re

MC fC

fm C5

2C

Windage and Swirl Modeling in a General Cavity (12)

1987 Reference for Windage Calculation

29

Page 190: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Windage and Swirl Modeling in a General Cavity (13)

Variation of disk torque ratio with radius ratio

30

Page 191: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Windage and Swirl Modeling in a General Cavity (14)

Single Rotor Cavity: Suggested Empirical Equations

31

Rotor Surface

Stator Surface

0 65 0 20 070 1R

. .

f fC . ( S ) Re

0 13 0 20 105S

. .

f fC . S Re

Dynamic pressure: 2 2 20 5 1f

. ( S ) r

Dynamic pressure: 2 2 20 5f

. S r

Page 192: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Windage and Swirl Modeling in a General Cavity (15)

32

Page 193: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Windage and Swirl Modeling in a General Cavity (16)

33

Angular Momentum Balance – The Transcendental Equation

For the control volume k whose inlet surface is designated by j and the

outlet surface by j+1, we write the following angular momentum equation:

1 1

2 2

1 1k k j j j jR S j j j f j f refm(r V r V ) m(r S r S )

Assuming a forced vortex core with swirl factor such that

and substituting kf

S1j kf f

S S

12 2 4

1 35 2 5 5 0 2

1

11 2

2

0 044 1

j

k R kj

k

r

R f f refr

. .

f ref j j

C ( S ) r dr

. ( S ) (r r )Re

Page 194: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Windage and Swirl Modeling in a General Cavity (17)

34

Angular Momentum Balance – The Transcendental Equation

Solve the above transcendental equation using the regula falsi method.

12 2 4 1 87 2 5 5 0 2

1

12 0 066

2

j

k S k kj

r. .

S f f ref f ref j jr

C S r dr . S (r r )Re

and

yields:

0 2

2

1 35 1 87 2 5 5

1

2 2

1

0 044 1 0 066k k

k j

.

. . o ref

f f ref j j

j f j f ref

R. ( S ) . S (r r )

m(r S r S )

Page 195: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Windage and Swirl Modeling in a General Cavity (18)

35

Changes is Static Pressure and Total Temperature Over the

Control Volume

Static Pressure Change

1

2 22

1

2j j k

j j

s s f ref

r rP P S

Static Pressure Change

1

k

j j

R ref

t t

p

T Tmc

Page 196: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Windage and Swirl Modeling in a General Cavity (19)

Multi-Rotor Cavity: Suggested Empirical Equations

36

Rotor Surface

Stator Surface

where

0 65 0 65 0 20 070R

. . .

f f fC . sign( S ) S Re

ref

f

sign( S ) f( S ) Sign of the term

2

refR

Re

Dynamic pressure: 2 2 20 5f ref

. ( S ) r

0 13 0 20 105S

. .

f fC . S Re

Page 197: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Windage and Swirl Modeling in a General Cavity (20)

Arbitrary Cavity Surface Orientation: Conical and Cylindrical

Surfaces

37

Page 198: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Windage and Swirl Modeling in a General Cavity (21)

38

Conical Rotor Surface Segment

Arbitrary Cavity Surface Orientation: Conical and Cylindrical

Surfaces

3

2

42 21 2

2cone R

r

R f f refr

rC ( S ) dr

sin

0 65 0 65 2 2 5 5 0 2

3 20 044

cone

. . .

f f f ref

R

. sign( S ) S ( S ) (r r )Re

sin

where

1sin sin(tan ( r / x))

2

o refR

Re

Page 199: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Windage and Swirl Modeling in a General Cavity (22)

39

Conical Stator Surface Segment

Arbitrary Cavity Surface Orientation: Conical and Cylindrical

Surfaces

where

0 13 2 2 5 5 0 2

3 20 066

cone

. .

f f ref

S

. S S (r r )Re

sin

2

o refR

Re

Page 200: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Windage and Swirl Modeling in a General Cavity (23)

40

Cylindrical Rotor Surface Segment

Arbitrary Cavity Surface Orientation: Conical and Cylindrical

Surfaces

Torque:

0 65 0 65 0 20 042R

. . .

f f fC . sign( S ) S Re

2

h refR

Re

3

2

2 2 2 212

2cylinder R

x

R f f ref h hx

C ( S ) R R dx

0 65 0 65 2 2 4 0 20 132cylinder

. . .

R f f f ref h h. sign( S ) S ( S ) R L Re

Page 201: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Windage and Swirl Modeling in a General Cavity (24)

41

Cylindrical Stator Surface Segment

Arbitrary Cavity Surface Orientation: Conical and Cylindrical

Surfaces

where

1 87 0 20 063S

. .

f fC . S Re

0 13 2 2 4 0 20 198cylinder

. .

S f f ref h h. S S R L Re

2

h refR

Re

Page 202: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Windage and Swirl Modeling in a General Cavity (25)

Bolts on Stator and Rotor Surfaces

Small interference Large interference

42

Page 203: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Windage and Swirl Modeling in a General Cavity (26)

43

Bolts on Rotor Surface:

where

Bolts on Stator and Rotor Surfaces

Bolts on Stator Surface:

3 2 20 5b bR b D b b ref f

. N hbC I R ( S )

3 2 20 5b bS b D b b ref f

. N hbC I R S

bN

h

b

bDC

bR

bI

Number of bolts

Bolt height from the disk surface

Bolt width along the radial direction

Baseline drag coefficient of each

bolt (~ 0.6)

Bolts pitch circle diameter

Bolts interference factor

Page 204: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Windage and Swirl Modeling in a General Cavity (27)

Approximate correlations to compute interference bolts interference

factor

Bolts on Stator and Rotor Surfaces

For 1 2s

d

For 1 2s

d

2 3 4

20 908 61 855 66 616 30 481 5 051b

s s s sI . . . . .

d d d d

2 3

4 5

5 7185 6 5982 3 1375 0 6878

0 0717 0 0029

b

s s sI . . . .

d d d

s s. .

d d

Page 205: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Don’t use free vortex assumption in SAS modeling, instead,

model rotor-rotor and rotor-stator cavity as a generalized vortex

computed from stack-cavity analysis, with a forced vortex core in

each sub-cavity.

Concluding Remarks

The primary role of the generalized vortex in SAS modeling is to

accurately compute pressure changes in the rotor cavity.

Don’t use isentropic forced vortex temperature rise to compute

adiabatic temperature changes in the rotor cavity, instead, use

temperature changes due to windage.

Make sure that the rotor cavity code is solution-robust before it’s

integrated into the SAS flow network analysis!

Windage and Swirl Modeling in a General Cavity (28)

45

Page 206: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Compressor Rotor Cavity (1)

46

Page 207: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Flow and Heat Transfer Physics

Compressor Rotor Cavity (2)

Spin-up from rest Spin-down to rest

2

s fdP dr r

47

Page 208: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Centrifugally-driven buoyant

convection (CDBC):

Heat Transfer Modeling with Bore Flow

Compressor Rotor Cavity (3)

Gravitationally-driven buoyant

convection (GDBC):

2

cg r

At and : 0 5r . m

29 81g . m/s

3000 rpm 5000cg

g

CDBC:

Colder fluid flows radially outward.

Hotter fluid flows radially inward.

48

Page 209: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Bore Control Volume

Compressor Rotor Cavity (4)

R Rout in

c

t tbore p

QT T

m c

Cavity Control Volume

c w awq h(T T )

2 22 2

2 2Rin

bore

aw t

p p

rrT T

c c

22 2

2Rinaw t bore

p

T T (r r )c

Heat Transfer Modeling with Bore Flow

49

Page 210: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Compressor Rotor Cavity (5)

Heat Transfer Modeling with Bore Flow

mNu C(Ra)

50

Page 211: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Compressor Rotor Cavity (6)

Heat Transfer Modeling of Closed Cavity

R R

c

t t

p

QT (t t) T (t)

mc

m Constant mass of air in the closed cavity

mm

t

0bore

m

51

Page 212: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

52

Page 213: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 4: Physics-Based Modeling – Part I

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

53

Page 214: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 5: Physics-Based Modeling – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Takaniki Communications, LLC

Oviedo, Florida, USA

ASME Life Fellow

Physics-Based Modeling of Gas Turbine

Secondary Air Systems

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA

Phoenix, Arizona, USA Sunday, June 16, 2019

Module 5: Physics-Based Modeling – Part II

Page 215: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 5: Physics-Based Modeling – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

2

Module 5

Physics-Based Modeling – Part II

Page 216: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 5: Physics-Based Modeling – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Module 5

Physics-Based Modeling – Part II

Hot gas ingestion: ingress and egress

Single-orifice model

Multiple-orifice spoke model

3

Page 217: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 5: Physics-Based Modeling – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Hot Gas Ingestion: Ingress and Egress (1)

Physics of Hot Gas Ingestion

Asymmetry in the Turbine Gas Path

Mach number distribution Static pressure distribution 4

Page 218: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 5: Physics-Based Modeling – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Hot Gas Ingestion: Ingress and Egress (2)

Physics of Hot Gas Ingestion

Rotor Disk Pumping beneath a Forced

Vortex

fS Swirl factor

6.1

ff )S1)(S51.01(

6.2

8.0

pumpdiskR

rReR219.0)r(m

5

Page 219: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 5: Physics-Based Modeling – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Hot Gas Ingestion: Ingress and Egress (3)

Physics of Hot Gas Ingestion

6

Page 220: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 5: Physics-Based Modeling – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Hot Gas Ingestion: Ingress and Egress (4)

Physics of Hot Gas Ingestion

Primary Factors

Periodic vane/blade pressure

field (non-axisymmetric

pressure distribution in the

main flowpath of hot gases)

Disk pumping in the rotor-

stator cavity

Rim seal geometry (radial and

axial clearances and overlaps)

Purge sealing and cooling air

flow rate

Secondary Factors

Unsteadiness in 3-D flow field

Pressure fluctuations in the

wheel space

Turbulent transport in the

platform and outer cavity

region

7

Page 221: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 5: Physics-Based Modeling – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Hot Gas Ingestion: Ingress and Egress (5)

Establish the minimum cavity purge flow needed for acceptable

windage temperature rise and heat transfer in the rotor-stator cavity.

Design a seal that will limit the ingress (hot gas ingestion) to trench (the

first design target) and buffer cavities (the second design target if we

can’t meet the first).

Establish the gas path asymmetric pressure boundary conditions

from an appropriate CFD solution.

Design Strategy

8

Page 222: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 5: Physics-Based Modeling – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Rim Seal Geometry Scanlon et al. (2004)

Gas path

(annulus) Axial gap

Disk

cavity

Single-Orifice Model (1)

9

Page 223: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 5: Physics-Based Modeling – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Rim Seal Control Volume

cavingegr mmm

Single-Orifice Model (2)

Scanlon et al. (2004)

Mass Conservation (Continuity Equation)

Energy Balance (Constant ) pc

ing cav

egr

ing t cav t

t

egr

m T m TT

m

10

Page 224: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 5: Physics-Based Modeling – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Assumptions

Single-Orifice Model (3)

Scanlon et al. (2004)

For calculating and across the rim seal gap of total area ,

we make the following assumptions: ing

megr

mgap

A

Incompressible flow with constant density .

Plenum conditions prevail on either side of the rim seal gap.

Axisymmetric distribution of static pressure in the wheel-space at the

rim seal gap; for the egress flow, this pressure acts as the total pressure. cavs

P

Parabolic distribution of static pressure in the gaspath annulus at the rim

seal gap; for the ingress flow, this pressure acts as the total pressure.

11

Page 225: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 5: Physics-Based Modeling – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Single-Orifice Model (4)

Scanlon et al. (2004) Gaspath Pressure Variation

12

Page 226: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 5: Physics-Based Modeling – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Gaspath Pressure Variation

Single-Orifice Model (5)

Scanlon et al. (2004)

Define a dimensionless static

pressure:

min max mins s s s sP (P P ) / (P P )

Annulus static pressure:

ann ann min max mins s s s sP (P P ) / (P P )

Cavity static pressure:

cav cav min max mins s s s sP (P P ) / (P P ) maxs

P

minsP

Maximum static pressure in the profile

Minimum static pressure in the profile

13

Page 227: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 5: Physics-Based Modeling – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Single-Orifice Model (6)

Scanlon et al. (2004)

N Number of vanes in the flowpath

2N / Annular sector per vane

gap gapA A / N Seal area per vane

21 0

Nx ,

N

Note: When varies from 0 to ,

varies from -1 to +1.

2N / x Ingress: ann cavs s

ˆ ˆP P Egress: cav anns s

ˆ ˆP P

gapA Total flow area of rim seal

gap

Mass Conservation at Rim Seal

14

Page 228: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 5: Physics-Based Modeling – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Mass Conservation at Rim Seal

2

dANAd

gap

gap N

20

where

Since 1N

x

Ndˆdx

ˆdxd

N

or

Thus

2

gap

gap

ˆNA ˆdxˆdAN

or

,

2

gap

gap

ˆ ˆA dxˆdA

Single-Orifice Model (7)

Scanlon et al. (2004)

The points of intersection between and correspond to and

where . cavs

Panns

P x k

x k cavsˆk P

15

Page 229: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 5: Physics-Based Modeling – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Assuming one-dimensional incompressible flows at the rim seal, we

can write

or

Single-Orifice Model (8)

Scanlon et al. (2004) Mass Conservation at Rim Seal

2 2ann cav ann caving d s s gap d s s gap

ˆdm C (P P ) dA NC (P P ) dA

1

1

2

2 22

2

ann cav

ann cav

ann cav

ing d s s gap

gap

d s sk

d gap s sk

ˆm NC (P P ) dA

AˆN C (P P ) dx

ˆC A (P P ) dx

Ingress mass flow rate ing

m

16

Page 230: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 5: Physics-Based Modeling – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Substituting

Single-Orifice Model (9)

Scanlon et al. (2004) Mass Conservation at Rim Seal

Ingress mass flow rate

2

ann cav max mins s s sˆP P (x k)(P P )

yields

1

22max mining d gap s s

kˆ ˆm C A (P P ) (x k) dx

11 12 1

2max mining d gap s sm C A (P P ) k k cosh

k

ingm

17

Page 231: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 5: Physics-Based Modeling – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

egrm

Single-Orifice Model (10)

Scanlon et al. (2004) Mass Conservation at Rim Seal

Egress mass flow rate

2 2cav ann cav annegr d s s gap d s s gap

ˆdm C (P P ) dA NC (P P ) dA

2

02

max min

k

egr d gap s sˆ ˆm C A (P P ) (k x ) dx

24max minegr d gap s s

km C A (P P )

18

Page 232: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 5: Physics-Based Modeling – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Multiple-Orifice Spoke Model (1)

Schematic of Multiple-Orifice Spoke Model

Each spoke represents a serially-connected rim seal system of orifices.

19

Page 233: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 5: Physics-Based Modeling – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Multiple-Orifice Spoke Model (2)

Any spoke-to-spoke interaction is neglected in this model.

Mass Flow Rate through Each Orifice along a Spoke

ideal xm AV

For a subsonic air flow, assumed here, the static pressure at the orifice

exit equals the static pressure of the downstream node.

real d idealm C m

Method 1

Step 1. Calculate the static temperature: , where is the total

velocity at the orifice exit.

2 2s t p

T T V / c V

Step 2. Calculate the speed of sound: sC RT

20

Page 234: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 5: Physics-Based Modeling – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Multiple-Orifice Spoke Model (3)

Mass Flow Rate through Each Orifice along a Spoke

Method 1 (continued)

Step 3. Calculate the total-velocity Mach number:

Step 4. Calculate the static-pressure mass flow function:

M V / C

211

2sfF M M

Step 5. Calculate the orifice ideal mass flow rate: sV f s

ideal

t

ˆAC F Pm

RT

where the velocity coefficient V x

C V / V

21

Page 235: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 5: Physics-Based Modeling – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Multiple-Orifice Spoke Model (4)

Method 2

Step 1. Calculate the static temperature: , where is the total

velocity at the orifice exit.

2 2s t p

T T V / c V

Step 2. Calculate the speed of sound: sC RT

Step 3. Calculate the axial-velocity Mach number: x xM V / C

Step 4. Calculate the static-pressure mass flow function: 21

12s ,xf x x

F M M

Step 5. Calculate the orifice ideal mass flow rate: s ,x

x

f s

ideal

t

ˆAF Pm

RT

where 2 2

xt s x pT T V / c

Mass Flow Rate through Each Orifice along a Spoke

22

Page 236: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 5: Physics-Based Modeling – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Establish the minimum cavity purge flow needed for an

acceptable windage temperature rise and heat transfer in the

rotor-stator cavity.

Establish gas path asymmetric pressure boundary conditions

from appropriate CFD solution.

Design a seal that will limit ingress (hot gas ingestion) to

trench (first design target!) and buffer cavities (second design

target if we can’t meet the first!!).

Recommended Design Philosophy to Handle Hot Gas

Ingestion with Minimum Performance Penalty

23

Page 237: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 5: Physics-Based Modeling – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

24

Page 238: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 5: Physics-Based Modeling – Part II

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

25

Page 239: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 6: Physics-Based Modeling – Part III

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Takaniki Communications, LLC

Oviedo, Florida, USA

ASME Life Fellow

Physics-Based Modeling of Gas Turbine

Secondary Air Systems

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA

Phoenix, Arizona, USA Sunday, June 16, 2019

Module 6: Physics-Based Modeling – Part III

Page 240: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 6: Physics-Based Modeling – Part III

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

2

Module 6

Physics-Based Modeling – Part III

Page 241: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 6: Physics-Based Modeling – Part III

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Module 6

Physics-Based Modeling – Part III

Whole engine modeling (WEM)

Network of convection links

Multisurface forced vortex convection link with windage

Junction treatment in the network of convection links

Validation with Engine Test Data

Key recommendations on SAS modeling

3

Page 242: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 6: Physics-Based Modeling – Part III

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Whole Engine Modeling (1)

Key Goals

Durability considerations of critical gas turbine components, which are

life-limited because of creep, oxidation, low cycle fatigue (LCF), and high

cycle fatigue (HCF)

Life management of critical components through scheduled maintenance,

refurbishment, and replacement

Multiphysics (aero-thermal-mechanical)-based whole engine modeling

(WEM) is foundational to Internet of Things (IoT) revolution and for

developing the engine digital twin, leveraging actual service data in the

predictive models.

The transient multiphysics WEM is needed for controlling clearances at

the blade tips in the gas path and also for seals in the secondary air

systems.

4

Page 243: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 6: Physics-Based Modeling – Part III

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Whole Engine Modeling (2)

Multiphysics Modeling of Engine Transients Layered flow network modeling methodology

The thermal analysis problem in gas

turbines uniquely involves convective

boundary conditions that themselves

depend on the thermal solution elsewhere

and cannot be specified a priori.

The gas turbine internal flow systems

respond orders of magnitude faster

(convection time constant) than the

thermal response (diffusion time constant)

of the structural members in contact.

5

Page 244: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 6: Physics-Based Modeling – Part III

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Network of Convection Links (1)

Linear Convection Link

2 2

in out

in out

t t w

c w w w t w t

T T hAQ hA T (T T ) (T T )

2out in in out

w

p t t c w t w t

hAmc (T T ) Q (T T ) (T T )

6

Page 245: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 6: Physics-Based Modeling – Part III

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Network of Convection Links (2)

Linear Convection Link

2in out in outw t w t w t w t

(T T ) (T T ) (T T ) (T T )

1 12

out out( )

2

2out

w

p

hA

mc out

in

w t

out

w t

T T

T T

2

2

N

out

N

N

7

Page 246: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 6: Physics-Based Modeling – Part III

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Network of Convection Links (3)

Linear Convection Link

8

Page 247: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 6: Physics-Based Modeling – Part III

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Network of Convection Links (4)

Nonlinear Convection Link

t w

p t p t w t

dT Amc T x mc T h (T T ) x

dx L

9

Page 248: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 6: Physics-Based Modeling – Part III

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Network of Convection Links (5)

Nonlinear Convection Link

t

w t

dT(T T )

d

x

L

in

w t

w t

T T

T T

0d

d

With the boundary condition: at , we obtain the solution 1 0

e

At outlet ( ): for 1 out

e 0

10

Page 249: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 6: Physics-Based Modeling – Part III

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Network of Convection Links (6)

Nonlinear Convection link in a Multisided Duct

1

i

i

i Nwt

p t p t i w t

i

AdTmc T x mc T h (T T ) x

dx L

1 1i i i

i N i Nt

p i w w i w t

i i

dTmc h A T h A T

d

Without Internal Heat Generation

11

Page 250: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 6: Physics-Based Modeling – Part III

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Network of Convection Links (7)

Nonlinear Convection link in a Multisided Duct Without Internal Heat Generation

d

d

1i

i N

i w

i

p

h A

mc

1

1

i i

i

i N

i w w

i

w i N

i w

i

h A T

T

h A

in

w t

w t

T T

T T

e

With the boundary condition: at , we obtain the solution 1 0

At outlet ( ): for 1 out

e 0

12

Page 251: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 6: Physics-Based Modeling – Part III

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Network of Convection Links (8)

Nonlinear Convection link in a Multisided Duct With Uniform Internal Heat Generation

1

i

i

i Nwt

p t p t i w t

i

AdT xmc T x mc T h (T T ) x G

dx L L

1 1i i i

i N i Nt

p i w w i w t

i i

dTmc h A T h A T G

d

d

d

inp w t

G

mc (T T )

13

Page 252: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 6: Physics-Based Modeling – Part III

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Network of Convection Links (9)

Nonlinear Convection link in a Multisided Duct With Uniform Internal Heat Generation

h PC

With the boundary condition: at 1 0

At outlet ( ): for 1 0

Solution:

he P

/

1 e

1out

e

14

Page 253: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 6: Physics-Based Modeling – Part III

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Network of Convection Links (10)

Multisurface Forced Vortex Convection Link with Windage

15

Page 254: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 6: Physics-Based Modeling – Part III

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Network of Convection Links (11)

Multisurface Forced Vortex Convection Link with Windage

1

i

i

i Nwt

p t p t i w t

i

AdT xmc T x mc T h (T T ) x W

dx L L

1

i i

i Ni w awt

w

i p p

h A TdT WT

d mc mc

where

2 2 2 2 1 3

2

2 2i i

/

m f ref m

aw t f ref w

p p

r S r PrT T S

c c

2 2 2 2 1 3

2 2 222 2i i i

/

m f ref m

aw t f ref f ref w w

p p

r S r PrT T S S

c c

2 1 3 2 1 3 22 1 3 2 21

2 2

i i

i

/ //m f ref w m wm f ref

aw t

p p p

r Pr S r Prr ( Pr )ST T

c c c

16

Page 255: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 6: Physics-Based Modeling – Part III

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Network of Convection Links (12)

Multisurface Forced Vortex Convection Link with Windage

Substituting in the ODE yields

iawT

d

where

2 1 3 2 2 2 1 3 2 1 3 21

2 2in in in in

/ / /

m f ref m f ref w m w

p w t p w t p w t p w t

r ( Pr )S r Pr S r Pr Wˆ

c (T T ) c (T T ) c (T T ) mc (T T )

1

1

i i

i

i N

i w w

i

w i N

i w

i

h A

h A

2

2 1

1

i i

i

i N

i w w

i

w i N

i w

i

h A

h A

17

Page 256: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 6: Physics-Based Modeling – Part III

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Network of Convection Links (13)

Multisurface Forced Vortex Convection Link with Windage

Thus, with the boundary condition: at

1ˆ ˆ

e

1out

ˆ ˆe

1 0

1out int w w t

T T (T T )e ( e )E

where

21 3 2 2 1 3 1 3 2

1

1 22

i

/ / /m

f ref f ref w w i N

pi w

i

r WE ( Pr )S Pr S Pr

ch A

At outlet ( ): 1

18

Page 257: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 6: Physics-Based Modeling – Part III

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Network of Convection Links (14) Junction Treatment

1

1

out i

J

i k

i t

i

t i k

i

m T

T

m

1

1

i

J

i k

i f

i

f i k

i

m S

S

m

Mixed mean total temperature of all convection links flowing into

junction J:

Mixed mean fractional swirl velocity of all convection links flowing into junction J:

19

Page 258: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 6: Physics-Based Modeling – Part III

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Network of Convection Links (15) Junction Treatment

2 2

j J j

j Jin

j ref f f f

t t

p

r (S S )ST T

c

For a downstream forced vortex with the specified swirl factor jf

S

20

Page 259: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 6: Physics-Based Modeling – Part III

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Validation with Engine Test Data

21

Page 260: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 6: Physics-Based Modeling – Part III

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Key Recommendations for Improved SAS Modeling (1)

For accurate computation of pressure and temperature

distributions in a rotor-stator cavity, model them as a “parabolic

generalized vortex,” satisfying conservation equations in each sub-

cavity.

Use a static-pressure-based formulation to model a duct component

with area change, friction, and heat transfer coupled with rotational

pumping. This will establish synergy/commonality with the flow

network modeling of internal cooling of airfoils.

Use multiple-orifice network model as a super-component to handle

the gas path sealing design to prevent hot gas ingestion.

22

Page 261: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 6: Physics-Based Modeling – Part III

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

Use 3D CFD modeling to better understand the flow physics and to

reinforce modeling assumptions of SAS components, where needed.

Include accurate modeling of heat transfer in SAS flow network

using a network of convection links interfacing the metal temperature

prediction method.

In view of uncertainties associated with various input and boundary

condition data, it behooves us to perform a probabilistic SAS model

analysis to ensure robustness of critical response quantities, e.g.,

turbine airfoil cooling flow rate!

Key Recommendations for Improved SAS Modeling (2)

23

Page 262: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 6: Physics-Based Modeling – Part III

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

24

Page 263: event.asme.org · Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow Module 1: An Overview of Secondary Air Systems Physics-Based Modeling of Gas Turbine

Dr. Bijay (BJ) K. Sultanian, PhD, PE, MBA, ASME Life Fellow

Module 6: Physics-Based Modeling – Part III

Physics-Based Modeling of Gas Turbine

TAKANIKI

WE TEACH THOUGHT TM

Copyright ® Takaniki Communications LLC, 2019.

Secondary Air Systems

25


Recommended