+ All Categories
Home > Documents > Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí ....

Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí ....

Date post: 25-Aug-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
140
1
Transcript
Page 1: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

1

Page 2: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina
Page 3: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

1

X INTERNATIONAL SCHOOL

ON ORGANOMETALLIC CHEMISTRY

MARCIAL MORENO MAÑAS

Book of Abstracts

Ciudad Real July 5-7, 2017

Page 4: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina
Page 5: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

3

Organizing & Scientific Committee

Otero Montero, Antonio L.

Antiñolo García, Antonio F.

Carrillo Hermosilla, Fernando

Fernández Baeza, Juan

Fernández Galán, Rafael

García Yuste, Santiago

Lara Sánchez, Agustín

López Solera, Mª Isabel

Rodríguez Fernández-Pacheco, Ana Mª

Villaseñor Camacho, Elena

Ramos Alonso, Alberto

Castro Osma, José A.

Page 6: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

4

Advisory Committee

Esteruelas Rodrigo, Miguel Ángel

Cadierno Menéndez, Victorio

Cabeza de Marco, Javier A.

Ujaque Pérez, Gregori

Lledós Falcó, Agustí

Saá Rodríguez, Carlos

Mascareñas Cid, José Luis

Vallribera Massó, Adelina

Otero Montero, Antonio L.

Antiñolo García, Antonio F.

Pizzano Mancera, Antonio

Lassaletta Simón, José M.

Paneque Sosa, Margarita

Sierra Rodríguez, Miguel Ángel

Foubelo García, Francisco

Nájera Domingo, Carmen

Yus Astiz, Miguel

Duckett, Simon B.

Peris Fajarnés, Eduardo

Page 7: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

5

Sponsors

Page 8: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

6

General Information

SCHOOL VENUE (1)

Salón de Actos, Biblioteca General

Edificio Bernardo Balbuela

Avenida de Camilo José Cela, s/n, 13071 Ciudad Real

SCHOOL VENUE (2)

Facultad de Ciencias y Tecnologías Químicas

Edificio San Alberto Magno

Avenida de Camilo José Cela, 10, 13071 Ciudad Real

Tel: +34 926 295 370

ACCOMODATION/SCHOOL LUNCH

Hotel Doña Carlota

Ronda de Toledo, 21, 13003 Ciudad Real

Tel: +34 926231610

2

1

Page 9: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

7

Short Program

Wenesday 5th Thursday 6th Friday 7th 9:00-10:00

Chairperson PL 2: Paul Chirik M.A Sierra

PL 6: Fahmi Himo G. Ujaque

10:00-10:30 Chairperson

OC 5-6 A.Pizzano

OC 9-10 A. Lopez

10:30-11:00

FP 6-9 FP 18-21

11:00-12:00 Coffee + PS 1 Coffee + PS 2 12:00-13:00

Chairperson PL3: Eva Hevia V.Cadierno

PL7: Véronique Michelet C. Saa

13:00-16:00 Registration

Chairperson 13:00-13:30

Javier Cabeza OC 7-8

A. Vallribera OC 11-12

13:30-14:00

FP 10-13 FP 22-25

Lunch Lunch 16:00-16:30 Opening 16:00-17:00

Chairperson PL 4: Michael North M. Yus

PL 8: Nazario Martín F. Cossio

16:30-17:30 Chairperson

PL 1: Pablo Espinet M.A Esteruelas

Chairperson 17:00-17:30

R. Rojas FP 14-17

M.L. Valenzuela FP 26-29

Chairperson 17:30-18:30

J.M.Sansano OC 1-4

17:30-18:30 Cofee +PS1 Cofee +PS2

18:30-19:00

FP 1-5 18:30-19:30 Chairperson

PL 5: Mª Angeles Martinez M. Gómez

P Crochet OC 13 FP 30-34

Closing ceremony

21:00 Welcome Cocktail Dinner

Page 10: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

8

Page 11: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

9

Scientific and Social Program

Wednesday July 5th, 2017

Place: Facultad de Ciencias Químicas

13:00-16:00 Registration

Place: Salón de Actos

16:00-16:30 Opening and Welcome

Chairperson: Miguel Ángel Esteruelas

16:30-17:30 L1 Prof. Pablo Espinet (Instituto Universitario CINQUIMA)

“Organometallic chemistry and I. Things that I have learnt… with time”

Chairperson: José Miguel Sansano

17:30-18:30 Oral Communications (OC1 - OC4)

18:30-19:00 Flash Presentations (FP1 - FP5)

Place: Museo Manuel López Villaseñor

21:00-23:00 Welcome Cocktail

Page 12: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

10

Thursday July 8th, 2017

Place: Salón de Actos

Chairperson: Miguel Ángel Sierra

09:00-10:00 L2 Prof. Paul J. Chirik (Princeton University)

“Understanding Electron Flow for the Design of Catalysts with Earth Abundant Elements”

Chairperson: Antonio Pizzano

10:00-10:30 Oral Communications (OC5 - OC6)

10:30-11:00 Flash Presentations (FP6 - FP9)

11:00-12:00 Coffee Break and Poster Session I

Chairperson: Victorio Cadierno

12:00-13:00 L3 Prof. Eva Hevia (University of Strathclyde)

“Towards a Paradigm Shift in Main Group Polar Organometallic Chemistry”

Chairperson: Javier A. Cabeza

13:00-13:30 Oral Communications (OC7 - OC8)

13:30-14:00 Flash Presentations (FP10 - FP13)

Place: Hotel Doña Carlota

14:00-16:00 Lunch

Place: Salón de Actos

Chairperson: Miguel Yus

16:00-17:00 L4 Prof. Michael North (University of York)

“Sustainable Organometallic Catalysis”

Chairperson: René Rojas

17:00-17:30 Flash Presentations (FP14-FP17)

17:30-18:30 Coffee Break and Poster Session I

Chairperson: Mar Gómez

18:15-19:00 L5 Dr. Mª Ángeles Martínez Grau (Eli Lilly and Company)

"Drug Discovery Evolution in the Last Decade"

Page 13: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

11

Friday July 9th, 2017

Place: Salón de Actos

Chairperson: Gregori Ujaque

09:00-10:00 L6 Prof. Fahmi Himo (Stockholm University) “Quantum Chemical Modeling Of Mechanisms And Selectivities In Homogenous Catalysis”

Chairperson: Ana López 10:00-10:30 Oral Communications (OC9 - OC10) 10:30-11:00 Flash Presentations (FP18 - FP21) 11:00-12:00 Coffee Break and Poster Session II

Chairperson: Carlos Saá

12:00-12:45 L7 Prof. Véronique Michelet (Institute de Recherche de Chimie Paris) “Gold- and Silver-Catalyzed Cycloisomerization and Domino Reactions – A Journey in Molecular Diversity”

Chairperson: Adelina Vallrivera 13:00-13:30 Oral Communications (OC11 - OC12) 13:30-14:00 Flash Presentations (FP22 - FP25)

Place: Hotel Doña Carlota

14:00-16:00 Lunch

Place: Salón de Actos Chairperson: Fernando Cossío

16:00-17:00 L8 Dr. Nazario Martín (Universidad Complutense de Madrid) “Chiral Fullerenes from Asymmetric Catalysis”

Chairperson: Mª Luisa Valenzuela 17:00-17:30 Flash Presentations (FP26 - FP29) 17:30-18:30 Coffee Break and Poster Session II

Chairperson: Pascale Crochet 18:30-18:45 Oral Communications (OC13) 18:45-19:15 Flash Presentations (FP22 - FP25) 19:15-19:45 Closing Ceremony

Place: La Casona Restaurant

21:00 School Dinner

Page 14: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

12

Oral Communications

OC1 Lur Alonso-Cotchico (University of Groningen)

“Computer aided rational design of a novel enantioselective artificial metallohydratase”.

OC2 Sonia Bajo (University of Strathclyde)

“Oxidative Addition of Aryl Electrophiles to a Prototypical Nickel(0) Complex: Mechanism

and Structure/Reactivity Relationships”.

OC3 Marina Pérez (Universidad de Sevilla-CSIC)

“Synthesis and Reactivity of Polyhydride Dimolybdenum Complexes”.

OC4 Sara Martínez de Salinas (Institute of Chemical Research of Catalonia-ICIQ)

“Investigation of the Synergistic Cooperation between Palladium and Silver Bimetallic Systems”.

OC5 Javier Francos (Universidad de Oviedo)

“From propargylic alcohols to novel push-pull 1,3-butadiene dyes: Synthesis, characterization and solvatochromic behaviour”.

OC6 María Frutos (Universidad Complutense de Madrid)

“Synthesis, reactivity and catalytic applications of mesoionic carbenes complexes bearing

enantiopure chiral sulfoxides”.

OC7 Cristina García-Morales (Institute of Chemical Research of Catalonia-ICIQ)

“Access to Gold(I) Carbenes from Gold(I) Carbenoids”.

OC8 Susana Ibáñez (Universitat Jaume I)

“Cation-Driven Self-Assembly Of A Gold(I)-Based Metallo-Tweezer”.

OC9 Salvatore Filippone (Universidad Complutense de Madrid)

“Metallo-fullerenes as n-type materials with catalytic activity in photoelectrochemical cells”.

OC10 Juan José Moreno (Universidad de Sevilla-CSIC)

“C-H and C-C Bond Breaking and Formation at Cationic (C5Me5)Ir(III) Complexes”.

OC11 Alba Collado (Universidad Complutense de Madrid)

“Synthesis of Au(I)- and Au(III)-Bis(NHC) Complexes: Ligand Effect on Oxidative Addition”.

Page 15: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

13

OC12 Pablo Ríos (Universidad de Sevilla-CSIC)

“Cationic Pt(II) σ-SiH complexes: Detection, isolation and reactivity studies”.

OC13 Jesús Sanjosé-Orduna (Institute of Chemical Research of Catalonia-ICIQ)

“Direct Observation And Characterization Of Elusive Cobaltacycle Intermediates In Cp*CoIII-Catalyzed Oxidative Annulation With Alkynes”.

Flash Presentations

FP1 Juan C. Babón (Universidad de Zaragoza-CSIC)

“Osmium Polyhydrides containing Boron Ligands”.

FP2 Chiara Biz (Universitat Jaume I)

“Molecular Recognition: NHC-Based Alkynyl-Au(I) Molecular Tweezers”.

FP3 Javier Brugos (Universidad de Oviedo)

“Synthesis and reactivity of some PGeP pincer-type chlorogermyl complexes”.

FP4 José A. Carmona (Universidad de Sevilla-CSIC)

“Highly diastereo- and enantioselective Heck reaction for the synthesis of heterobiaryls with both central and axial chirality”.

FP5 Alba D. Merinero (Universidad Complutense de Madrid)

“Synthesis of polymetallic species with [Fe-Fe]-hydrogenase substructures”.

FP6 Rebeca González-Fernández (Universidad de Oviedo)

“Novel hydrophilic arene-ruthenium(II) complexes with phosphinous acid ligands: Potential catalysts for C-H activation reactions in water”.

FP7 Rosa María Girón (Universidad Complutense de Madrid)

“Enantioselective synthesis of chiral at-metal fullerene hybrids”.

FP8 Daniel Gómez-Bautista (Universidad de Zaragoza-CSIC)

“Phosphorescent Ir(III) complexes with two different pincer ligands”.

FP9 Pablo Gómez-Orellana (Universitat Autònoma de Barcelona)

“Pd Catalyzed C-N Cross-Coupling Reaction Using NH3. Computational Analysis of the Reaction Mechanism”.

FP10 Marta G. Avello (Instituto de Química Orgánica General, IQOG-CSIC)

“Chiral Sulfur Functional Groups as Definers of the Chirality at the Metal in Ir- and Rh-Half Sandwich Complexes: A Combined CD-X-ray Study presentation”.

Page 16: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

14

FP11 Laura González-Álvarez (Universidad de Oviedo)

“First C(sp3)−H cyclometalations of a silylene ligand”.

FP12 Albert Granados (Universitat Autònoma de Barcelona)

“Fluorescent paper: straightforward synthesis of new (E)-2,5-dihydroxisubstitued-4’-hydroxystilbenes”.

FP13 Cristina Izquierdo (Universidad de Sevilla-CSIC)

“New π-acidic ligands based on N-Heterocyclic carbenes”.

FP14 Alejandro Lamas (CIQUS-Universidad de Santiago de Compostela)

“Cyclic-peptide encapsulated cisplatin derivatives for drug delivery”.

FP15 Félix León (Universidad de Sevilla-CSIC)

“Synthesis of Ester Precursors of Highly Enantiopure Chiral Alcohols via Asymmetric Hydrogenation of Trisubstitued Enol Esters”.

FP16 David C. Marcote (CIQUS-Universidad de Santiago de Compostela)

“Gold Catalyzed Cycloaddition with Imines”.

FP17 Antonio Martínez (Universidad de Zaragoza-CSIC)

“Acceptorless dehydrogenation reactions catalysed by a bimetallic complex”.

FP18 Javier Martínez (Universidad de Castilla La Mancha)

“An efficient and versatile catalyst for carbon dioxide fixation into cyclic carbonates”.

FP19 Víctor Martínez-Agramunt (Universitat Jaume I)

“Nickel-Cornered Supramolecular Assemblies as Polycyclic Aromatic Hydrocarbon Receptors”.

FP20 Mikel Odriozola-Gimeno (Euskal Herriko Unibertsitatea)

“Insights of the Photoredox Catalysis from a Computational Point of View ”.

FP21 Joan Miguel-Ávila (CIQUS-Universidad de Santiago de Compostela)

“Bioorthogonal chemistry promoted by discrete Cu(I) complexes”.

FP22 Antonio I. Nicasio (Universidad de Zaragoza-CSIC)

“Novel coordination modes of a BPI anion in osmium complexes”.

Page 17: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

15

FP23 Nougué Raphaël (Université de Toulouse)

“Room temperature reversible oxidative addition of phosphine-stabilized silylenes into Si-H and P-H σ-bonds”.

FP24 Daniel Nuevo (Universitat Jaume I)

“Hydration of terminal alkynes catalysed by a gold (I) complex bearing a pyrene-based bis-N-heterocyclic ligand”.

FP25 M. Carmen Pérez-Aguilar (Universidad Complutense de Madrid)

“Towards a Salen-Based Double Strained DNA”.

FP26 Eva Rivera-Chao (CIQUS-Universidad de Santiago de Compostela)

“Regio- And Stereoselective Synthesis Of Borylated 1,4-Dienes Via Catalytic Allylboration Of Alkynes”.

FP27 Jaime Rodríguez-Guerra (Universitat Autònoma de Barcelona)

“Multicriteria optimization of chemostructural drafts with a modular software platform: GaudiMM”.

FP28 Beatriz Sánchez (Universidad de Zaragoza-CSIC)

“M-Carbene Catalysts With 1,2,3-Triazole Ligands Supported On Graphene Oxides”.

FP29 Ana Sirvent (Universidad de Alicante)

“Selective palladium(II)-mediated oxidation of homoallylic N-tert-butanesulfinyl amine derivatives”.

FP30 Elisabeth Selva (Universidad de Alicante)

“Synthesis of potentially bioactive prolinates through 1,3-dipolar cycloadditions”.

FP31 Ainhoa San-Torcuato (Universidad de Zaragoza-CSIC)

“Blue-green phosphorescent heteroleptic iridium(III) complexes with N-heterocyclic carbene ligands”.

FP32 Sonia Sobrino (Universidad de Castilla-La Mancha)

“Synthesis of Cyclic Carbonates Catalyzed by N,N,O-Scorpionate Zinc Alkyl Complexes”.

FP33 Álvaro Velasco (CIQUS-Universidad de Santiago de Compostela)

“From Arylguanidines to 1,3-Benzodiazepines by Rhodium C-H Activation”.

FP34 Mauro Mato (Institute of Chemical Research of Catalonia-ICIQ)

“(3 + 2) Cycloaddition of Aryl and Styryl Gold(I) Carbenes with Allenes”.

Page 18: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

16

Posters

P35 Isabel Alvarado-Beltrán (Université de Toulouse)

“Cyclic Amino(Ylide) Silylene: A Stable Heterocyclic Silylene with Strongly Electron Donating Character”

P36 Lucía Álvarez-Rodríguez (Universidad de Oviedo)

“Ruthenium alkylidene complexes with germylene ligands”

P37 Victorio Cadierno (Universidad de Oviedo)

“(Z)-β-Iodoenol esters: Synthesis and use as starting materials for the stereoselective preparation of trisubstituted enol esters”

P38 Fernando Carrillo-Hermosilla (Universidad de Castilla-La Mancha)

“Carbodiimide hydroalkynation using simple ZnEt2 as catalyst”

P39 Melodie Casado (Universidad de Oviedo)

“Synthesis and Reactivity of the Triphosphorus Complex [Mo2Cp2(µ-P3)(µ-PtBu2)]”

P40 Pascale Crochet (Universidad de Oviedo)

“Synthesis of new tethered ruthenium(II) complexes containing η6:κ1-arene-phosphinite ligands”

P41 Sheila G. Curto (Universidad de Zaragoza-CSIC)

“Reactivity of a POP-Rhodium(I) Boryl Complex”

P42 Felipe De la Cruz-Martínez (Universidad de Castilla-La Mancha)

“Bifunctional Aluminium(heteroscorpionate) Catalysts for the Formation of Cyclic Carbonates from Epoxides and Carbon Dioxide”

P43 Guillem Fernández (Universitat Autònoma de Barcelona)

“Synthesis and Catalytic Applications of Platinum Nanoparticles Stabilized by Tris-imidazolium Tetrafluoroborate”

P44 Miguel A. Gaona (Universidad de Castilla-La Mancha)

“Synthesis of oxazolidinones from epoxides and isocyanates catalysed by aluminium heteroscorpionate complexes”

P45 Joaquín García-Álvarez (Universidad de Oviedo)

“Combination of Metal-Catalyzed Cycloisomerizations and Biocatalysis: Asymmetric Construction of Valuable Organic Compounds in Water”

Page 19: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

17

P46 Pablo García-Álvarez (Universidad de Oviedo)

“Thermal stability of mesityl(amidinato)heavier carbene complexes”

P47 Sergio E. García-Garrido (Universidad de Oviedo)

“Synthesis of Trisubstituted Enol Esters Through Gold(I)-Catalyzed Addition of Carboxylic Acids to Internal Alkynes in Aqueous Media”

P48 Daniel García-Vivó (Universidad de Oviedo)

“Reactions of the Heterometallic Complex [MoReCp(μ-PCy2)(CNMe)(CO)5] with Secondary Phosphanes and Dppm·BH3”

P49 Camino Bartolomé (Universidad de Valladolid)

“16 e– complex[Cp*RhR2] as excellent precursor of bisarylated RhIII derivatives”

P50 Jorge Leal (Universidad de Castilla-La Mancha)

“N Heterocyclic Carbenes from Pyrazolyl Containing ligands. Late Transition Complexes”

P51 Hao Li (Universitat Autònoma de Barcelona)

“Studies Towards the Preparation of Mesoporous Organosilica Nanoparticles for Biomedical Applications”

P52 Laura L. Santos (Universidad de Sevilla-CSIC)

“Hidrosilylation of Alkynes Catalyzed by Rhodium(I) Compounds Based on Hemilabile Picoline-NHC Ligands”

P53 Jaime Martín (Universidad de Zaragoza-CSIC)

“Recent Developments in the Chemistry of Osmium complexes with POP-Ligands”

P54 Juan Miranda-Pizarro (Universidad de Sevilla-CSIC)

“Design, Characterization and Catalytic Applications of Supramolecular Intercluster Compounds Based on Ru and Ir”

P55 Ana María Moreno de los Reyes (Universidad de Castilla-La Mancha)

“Synthesis of new guanidines by homogeneous and heterogeneous catalytic methods. Immobilisation of guanidines on mesoporous silica support”

P56 Enirque Niza (Universidad de Castilla-La Mancha)

“Assessment of drug delivery devices made from polycaprolactone generated by novel organoaluminium initiators”

P57 Alberto Ramos (Universidad de Castilla-La Mancha)

“Insertion Reactions of Small Unsaturated Molecules in N-B Bonds of Boron Guanidinates”

Page 20: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

18

P58 Álvaro Raya-Barón (Universidad de Almería)

“Iron Catalyzed Hydrosilylation of Carbonyl Compounds with a New Anthraquinone-based Complex”

P59 Nuria Rendón (Universidad de Sevilla-CSIC)

“Synthesis and reactivity toward H2 of iridium complexes based on a lutidine-derived CNP ligand”

P60 Andrés Suárez (Universidad de Sevilla-CSIC)

“Platinum Nanoparticles Stabilized by Bulky Terphenylphosphines as Highly Active Catalysts for Hydrogen Generation from Ammonia-Borane”

P61 Juan Tejeda (Universidad de Castilla-La Mancha)

“Highly Active Organocatalysts Based on Hydroxyphenylimidazole for CO2 Fixation into Cyclic Carbonate”

P62 Xandro Vidal (CIQUS-Universidad de Santiago de Compostela)

“Rh(III)-catalyzed [4+2] oxidative annulations of o-alkenylanilides”

P63 Jesús M. Martínez-Ilarduya (Universidad de Valladolid)

“Polymer [Pd(CH2SO2C6H4Me)2]n, a precursor to remarkably stable Pd organometallics”

Page 21: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

19

Invited Lectures

Page 22: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

20

L1 Organometallic chemistry and I. Things that I have learnt… with time

Pablo Espinet

Instituto Universitario CINQUIMA, Universidad de Valladolid [email protected]

If the main purpose of the alchemic work was to change the person, the alchemist, a life exposition to organometallic chemistry cannot leave the person untouched. For me, doing chemistry research in academy and not in industry, a subject such as chemistry, which has been trying to become science in the last three centuries, has changed with time not only my understanding of concepts but also my way to look at the subject of study. The paradox of Socrates “I only know that I know nothing” is in fact not a humble confession, but the starting point of the Socratic scientific method. Almost identical starting point (knowing nothing) defines well our knowledge of organometallic chemistry in the group of Zaragoza in 1971 (I was 21). As a member of that generation my presentation will try to sketch, in a few rough strokes, how I have managed to learn some things while growing older. Or this I believe. I am not very sure, however.

Page 23: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

21

L1 NOTES

Page 24: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

22

L2 Understanding Electron Flow for the Design of Catalysts with Earth Abundant Elements

Paul J. Chirik

Department of Chemistry, Princeton University

[email protected] Transition metal catalysis has revolutionized modern society by enabling new chemical transformations with unprecedented activity and control over selectivity. Applications range from new silicone materials to transforming hydrocarbons into fuels to building blocks for pharmaceuticals. Our laboratory has been actively engaged in developing catalysts based on earth abundant elements rather than more traditionally deployed precious metals that are some of the least available elements in the Earth’s crust. The inspirations for this chemistry extend beyond catalyst cost; ultimately we aim to discover new reactivity that exploits the unique electronic structures of first row transition metals. Earth abundant catalysts for commercial silicone production (Science 2012, 335, 567, ACS Catalysis 2016, 6, 4105), asymmetric alkene hydrogenation (Science 2013, 342, 1054, J. Am. Chem. Soc. 2016, 3562), C-H functionalization (J. Am. Chem. Soc. 2014, 136, 4133; 2016, 138, 766) and radiolabeling of pharmaceuticals (Nature 2016, 529, 195) have been developed. More recently we have been focused on the discovery of new catalytic reactions for the valorization of simple alkenes – those that are now overabundant due to the development of vast natural gas reserves. An iron-catalyzed method for the diastereo- and regioselective intermolecular [2+2] cycloaddition of commodity alkenes has been discovered (Science 2015, 349, 960). Key to these discoveries has been understanding and ultimately controlling how electrons flow at the first row transition metal. Approaches include redox active ligands, those that engage in reversible one electron transfer with the metal, and more traditional strong field ligands that confine redox events at the metal. The mechanisms of the various catalytic transformations, the importance of electronic structure controlled through ligand manipulation and strategies for imparting air stability will be a highlighted throughout.

Page 25: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

23

L2 NOTES

Page 26: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

24

L3 Towards a Paradigm Shift in Main Group Polar Organometallic Chemistry

Eva Hevia

WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow

[email protected] Multicomponent bimetallic organometallic reagents are capable of producing new chemistry irreproducible by either of their single organometallic components.1 However, recent work has revealed that such heterobimetallic reagents do not necessarily need to form mixed-metal compounds in order to exhibit this unique cooperative behaviour, as they can alternatively operate in a stepwise process.2

This talk firstly reviews our new results using cooperative bimetallics to promote deprotonative metallations, operating either in a synchronised or stepwise manner. These approaches have established novel ways to trap anionic NHC fragments in reactions of unprecedented chemoselectivity (see Figure).4 Secondly, the opening applications of mixed ammonium-magnesiate and lithiate salts in Green Chemistry will be revealed through addition reactions to ketones and imines under air and at room temperature using Deep Eutectic Solvents.4

1. F. Mongin, A. Harrison-Marchand, Chem. Rev. 2013, 113, 7563. 2. (a) D. R. Armstrong, E. Crosbie, E. Hevia, R. E. Mulvey, D. L. Ramsay, S. D. Robertson, Chem. Sci. 2014,

5, 3031. (b) M. Uzelac, A. R. Kennedy, E. Hevia, R. E. Mulvey, Angew. Chem. Int. Ed. 2016, 55, 1314. 3. (a) A. Martínez, M. A. Fuentes, A. Hernán-Gómez, E. Hevia, A. R. Kennedy, R. E. Mulvey, C. T. O'Hara,

Angew. Chem. Int. Ed. 2015, 54, 14075. (b) A. Hernan-Gomez, A. R. Kennedy, E. Hevia, Angew. Chem. Int. Ed. 2017, early view, doi 10.1002/ange.201702246.

4. (a) C. Vidal, J. Garcia-Alvarez, A. Hernan-Gomez, A. R. Kennedy, E. Hevia, Angew. Chem. Int. Ed. 2014, 53, 5969. (b) C. Vidal, J. Garcia-Alvarez, A. Hernan-Gomez, A. R. Kennedy, E. Hevia, Angew. Chem. Int. Ed. 2016, 55, 16145.

Li

Al C

N

Page 27: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

25

L3 NOTES

Page 28: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

26

L4 Sustainable Organometallic Catalysis

Michael North

Green Chemistry Centre of Excellence, Department of Chemistry, University of York, UK [email protected]

Use of catalytic reagents is one of the 12 principles of green chemistry.1 However, by itself this

is not enough to make a reaction sustainable. The sustainability of all components of the reaction (starting materials, solvent, catalyst, energy input etc) must be considered and the reaction should produce little or no waste (high atom economy2). This presentation will illustrate these principles with two examples from our research.

The reaction between epoxides and carbon dioxide can be controlled by choice of a suitable catalyst to give either the cyclic- or poly-carbonate (Scheme 1), both of which are commercially important.3 Both reactions are 100% atom economical and can utilise waste carbon dioxide as a feedstock. Our interest has focussed on the synthesis of cyclic carbonates4 and in particular in the development of aluminium based catalysts which allow the reaction to be achieve at room temperature and atmospheric pressure under solvent free conditions.

O

R+ CO2catalystOO

O

R

catalyst OO

R

On

cycliccarbonate polycarbonate

Scheme 1 Furfurol 1 and itaconic anhydride 2 can both be obtained from carbohydrates.5 Simply mixing

these two compounds resulted in a 100% atom economical tandem Diels-Alder-lactonisation, leading to oxanorbornene acid 3.6 Esterification of acid 3 with sustainably sourced alcohols gave esters 4 which underwent ring-opening metathesis polymerisation (ROMP) when treated with Grubb's second generation catalyst to give a family of sustainably derived polyalkenes. Acid 3 could also be converted into amides 6 and imides 7.

+

1 2 3 4

O

O

O

OH

O

O

O

O

OR

O

OHO

O

O

O

O

O

OOR

O

nGrubbs 2catalyst

5

Scheme 2 6

O

O

O

NR(R')

O

R'=H

7

O

RN

O

O

OH

References 1. P. T. Anastas and J. C. Warner, 'Green Chemistry: Theory and Practice', Oxford University Press, 1998, p30. 2. P. T. Anastas and M. M. Kirchhoff, Acc. Chem. Res., 2002, 35, 686–694. 3. M. North, R. Pasquale and C. Young, Green Chem., 2010, 12, 1514–1539; J. W. Comerford, I. D. V. Ingram, M. North and X. Wu, Green Chem., 2015, 17, 1966−1987; Y. Qin, X. Sheng, S. Liu, G. Ren, X. Wang and F. Wang, J. CO2 Utilization, 2015, 11, 3–9. 4. M. North, Arkovic, 2012, part (i), 610–628. 5. J.-P. Lange, E. van der Heide, J. van Buijtenen and R. Price, ChemSusChem, 2012, 5, 150–166; M. Okabe, D. Lies, S. Kanamasa and E. Y. Park, Appl. Microbiol. Biotechnol., 2009, 84, 597–606. 6. Y. Bai, M. De bruyn, J. H. Clark, J. R. Dodson, T. J. Farmer, M. Honoré, I. D. V. Ingram, M. Naguib, A. C. Whitwood and M. North, Green Chem., 2016, 18, 3945–3948.

Page 29: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

27

L4 NOTES

Page 30: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

28

L5 Drug Discovery Evolution in the Last Decade

Mª Ángeles Martínez Grau

Eli Lilly and Company [email protected]

The pharmaceutical industry is facing multiple challenges. Productivity decline and attrition in clinical trials are prevalent throughout the industry. Chemistry plays a fundamental role in the drug discovery process, but the role of the chemists has changed significantly. Drugability has been historically the main focus for medicinal chemists. Nowadays, the need to understand better the vast number of emerging mechanisms in new drug modalities has opened a big demand for innovative technologies. In the last decade chemistry and biology synergies have been increased and require more and more attention. Scientific skills in a single area are limiting the professional development in the industry and intellectual diversity will become a strategic driver to succeed through innovation. The concept of “drug hunter” is evolving and the medicinal chemistry skills still need to be expanded.

Page 31: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

29

L5 NOTES

Page 32: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

30

L6 Quantum Chemical Modeling Of Mechanisms And Selectivities In Homogenous Catalysis

Fahmi Himo

Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Sweden

fahmi.himo@ su.se Using modern density functional theory methods it is today possible to routinely and accurately treat relatively large systems. The calculated energies can be used to rule out or substantiate reaction mechanisms and have also been shown to be sufficiently accurate to satisfactorily reproduce various kinds of selectivities. These developments have made it possible to tackle increasingly difficult problems in homogeneous catalysis. This talk will give a brief account of the methods used and discuss our recent results in this field, in which we take advantage of both DFT calculations and kinetics simulations to understand reaction mechanisms and rationalize the origins of selectivities.

Page 33: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

31

L6 NOTES

Page 34: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

32

L7 Gold- and Silver-Catalyzed Cycloisomerization and Domino Reactions – A Journey in Molecular Diversity

Véronique Michelet

PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, 11 rue

P. et M. Curie, 75005 Paris, France [email protected]

Over the past few years, significant research has been directed toward the development of new methodologies for synthetic efficiency and atom economy processes in the presence of gold and silver catalysts.1 We have been engaged in a wide project dedicated to the development of catalytic methodologies for the synthesis of original and functionalized carbo- and heterocycles. Our interest has been focused on the cyclization and/or functionalization of alkynes including enynes,2 carboxylic acid-3 and aniline-4

functionalized alkynes, alkynyl silyl enolethers5 and o-alkynyl benzaldehydes.6 We also got interested in cycloisomerization reactions of allenols7 and developed sustainable catalytic systems.8 This presentation will show an overview of the latest results implying achiral and chiral gold and silver complexes. References 1. Gold Catalysis: An Homogeneous Approach (Eds.: Toste, F.D.; Michelet, V.), Imperial College Press, London, 2014. Silver in Organic Chemistry; Harmata, M. Ed.; J. Wiley & Sons, Inc. 2010. 2. Chao, C.-M.; Beltrami, D.; Toullec, P. Y.; Michelet, V. Chem. Commun. 2009, 6988. Chao, C.-M.; Vitale, M.; Toullec, P. Y.; Genêt, J.-P.; Michelet, V. Chem. Eur. J. 2009, 15, 1319. 3. Tomas-Mendivil, E.; Toullec, P.Y.; Borge, J.; Conejero, S.; Michelet, V.; Cadierno, V. ACS Catal. 2013, 3, 3086. 4. Arcadi, A.; Chiarini, M.; Del Vecchio, L.; Marinelli, F.; Michelet, V. Eur. J. Org. Chem. 2017, in press and Chem. Commun. 2016, 52, 1458. Arcadi, A.; Pietropaolo, E.; Alvino, A.; Michelet, V. Org. Lett. 2013, 15, 2766. 5. Carrër, A.; Péan, C.; Perron-Sierra, F.; Mirguet, O.; Michelet, V. Adv. Synth. Catal. 2016, 358, 1540. 6. Mariaule, G.; Newsome, G.; Toullec, P. Y.; Belmont, P.; Michelet, V. Org. Lett. 2014, 16, 4570. Tomas-Mendivil, E.; Starck, J.; Ortuno, J.-C.; Michelet, V. Org. Lett. 2015, 17, 6126. Tomas-Mendivil, E.; Heinrich, C.; Ortuno, J.-C.; Starck, J.; Michelet, V. ACS Catal. 2017, 7, 380. 7. Le Boucher d’Herouville, F.; Millet, A.; Scalone, M.; Michelet, V. Synthesis 2016, 48, 3309.

Page 35: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

33

L7 NOTES

Page 36: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

34

L8 Chiral Fullerenes from Asymmetric Catalysis

Nazario Martín

aDpto de Química Orgánica, Facultad de Química, Universidad Complutense, E-28040 Madrid, Spain

bIMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, E-28049, Madrid, Spain [email protected]

Chirality is an important and fascinating aspect which, however, has not been properly addressed in fullerenes science.[1] Recent results from our group support the basic idea that the chemistry of fullerenes is not completely developed and that a variety of fundamental reactions, mainly involving transition metals and organocatalysts are helpful in order to address issues such as the regio- and the stereo-selectivity, so far unsolved in the fullerene functionalization. We have recently reported on the synthesis of enantiomerically pure fullerenes with a total control of the stereochemical outcome. The suitable choice of the chiral metal catalyst ([Cu(II) or Ag(I)] in combination with a variety of different chiral ligands) directs the 1,3-dipolar cycloaddition of N-metalated azomethyne ylides on C60, on C70 and on endohedral metallofullerenes with high levels of site-, regio-, diastereo- and enantio-selectivity.[2] Furthermore, we have also shown that chiral fullerenes can be efficiently prepared by using organocatalysis.[3] In this communication, the most significant and recent synthetic results involving fullerenes, endohedral fullerenes as well as their cis-trans isomerization process will be discussed.[4]

Figure. Enantioselective cis-trans isomerization in H2O@C60.

[1] E. E. Maroto, M. Izquierdo, S. Reboredo, J. Marco-Martínez, S. Filippone, N. Martín "Chiral Fullerenes from Asymmetric Catalysis" Acc. Chem. Res. 2014, 47, 2660−2670. [2] (a) Filippone, S., Maroto, E.E., Martín-Domenech, A., Suarez, M. and Martín, N., Nature Chem., 2009, 1, 578; (b) Maroto, E. E.; de Cozar, A.; Filippone, S.; Martin-Domenech, A.; Suarez, M.; Cossio, F. P.; Martín, N. Angew. Chem. Int. Ed., 2011, 50, 6060; (c) Sawai, K.; Takano, Y.; Izquierdo, M.; Filippone, S.; Martín, N.; Slanina, Z.; Mizorogi, N.; Waelchli, M.; Tsuchiya, T.; Akasaka, T.; Nagase, S. J. Am. Chem. Soc., 2011, 133, 17746; (d) Maroto, E.E., Filippone, S., Martín-Domenech, A., Suarez, M. and Martín, N., J. Am. Chem. Soc. 2012, 134, 12936; (e) E. E. Maroto, S. Filippone, M. Suárez, R. Martínez-Álvarez, A. de Cózar, F. P. Cossío, N. Martín, J. Am. Chem. Soc., 2014, 136, 705. [3] (a) J. Marco-Martinez, V. Marcos, S. Reboredo, S. Filippone, N. Martín, Angew. Chem. Int. Ed., 2013, 52, 5115. (b) J. Marco-Martínez, S. Reboredo, M. Izquierdo, V. Marcos, J. L. López, S. Filippone, N. Martín, J. Am. Chem. Soc., 2014, 136, 2897. [4] (a) E. E. Maroto, J. Mateos, M. Garcia-Borras, S. Osuna, S. Filippone, M. A. Herranz, Y. Murata, M. Sola, N. Martín J. Am. Chem. Soc, 2015, 137, 1190; (b) R. M. Girón, J. Marco-Martínez, S. Bellani, A. Insuasty, H. C. Rojas, G. Tullii, M. R. Antognazza, S. Filippone, N. Martin J. Mater. Chem. A, 2016, 4, 14284; (c) J. Marco-Martínez, S. Vidal, I. Fernnádez, S. Filippone, N. Martín Angew. Chem. Int. Ed. 2017, 56, DOI: 10.1002/anie.201611475.

Page 37: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

35

L8 NOTES

Page 38: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

36

Page 39: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

37

Oral Communications

Page 40: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

38

OC1 Computer aided rational design of a novel enantioselective artificial metallohydratase

Lur Alonso-Cotchico1§, Ivana Drienovská2§, Pietro Vidossich2, Agustí Lledós2, and Gerard

Roelfes2* and Jean-Didier Maréchal1*

Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands

‡Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallés, Barcelona, Spain

[email protected] Artificial metalloenzymes have emerged as an attractive approach for de novo biocatalysts by combining homogeneous and enzymatic catalysis. Several significant results in the field have been achieved but designing systems on rational principles in order to find novel or improved activities still remains a challenge. Here, we present a novel enzyme able to produce the conjugate addition of water to alkenes whose design has been based on combining (bio)chemical knowledge and intuition on natural and artificial enzymes with state-of-the-art modelling protocols. This novel artificial metalloenzyme expands the concept of those recently identified to perform vinylogous Friedel-Crafts reaction1 and stands on using a metal-binding unnatural amino acid in the LmrR scaffold. After initial hypothesis and the insight gained through the modelling of the LmrR template, in silico analysis allowed driving the optimization of the second coordination sphere of the metal. Experimental validation confirmed that this approach is capable of providing variants displaying improved efficiency and enantioselectivity. This is the first series of computationally driven rational design of a novel family of enantioselective artificial metalloenzymes based on a non-natural amino acid able to behave as a metallic cofactor so far.

References

1. Novel artificial metalloenzyme by in vivo incorporation of metal-binding unnatural amino acids; Drienovská, I.; Rioz-Martinez, A.; Draksharapu, A.; Roelfes, G.; Chemical Science, 2015.

Page 41: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

39

OC1 NOTES

Page 42: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

40

OC2 Oxidative Addition of Aryl Electrophiles to a Prototypical Nickel(0) Complex: Mechanism and Structure/Reactivity Relationships

Sonia Bajo,†,ǂ Gillian Laidlaw,† Alan R. Kennedy,† Stephen Sproules, ‡ and David J. Nelson†

† WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, Thomas

Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, UK;ǂ Current Address: Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de

Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain and ‡ WestCHEM School of Chemistry, University of Glasgow, Glasgow, G12

8QQ, UK. [email protected]

The interest in nickel complexes which are able to achieve cross-coupling reactions is increasing in recent years due to their potential as an alternative to more expensive palladium catalysts. In spite of this, there are relatively few mechanistic studies of Ni based precatalysts, and it is often assumed that the reactivity of nickel systems is similar to that of their palladium analogues.1 This fact makes improvements in the design of new systems more challenging. In this context, we have explored the rates at which a relevant Ni0 complex ((dppf)Ni(cod) (cod = 1,5-cyclooctadiene; dppf = 1,1´-bis (diphenylphosphino)ferrocene) undergoes oxidative addition with different electrophiles, and the selectivity of these oxidative addition reactions (e.g. Figure 1). In addition, we have studied the interaction of this nickel fragment with several functional groups that are present in synthetic chemistry targets. Together, this is allowing us to build a quantitative picture of the processes that take place in nickel-catalysed reactions.

References 1. a) Quasdorf, K. W.; Antoft-Finch, A.; Liu, P.; Silberstein, A. L.; Komaromi, A.; Blackburn, T.; Ramgren,

S. D.; Houk, K. N.; Snieckus, V.; Garg, N. K. J. Am. Chem. Soc. 2011, 133, 6352; b) Zhang, K.; Conda-Sheridan, M.; Cooke, S. R.; Louie, J. Organometallics 2011, 30, 2546; c) Christian, A. H.; Muller, P.; Monfette, S. Organometallics 2014, 33, 2134; d) Guard, L. M.; Mohadjer Beromi, M.; Brudvig, G. W.; Hazari, N.; Vinyard, D. J. Angew. Chem. Int. Ed. 2015, 54, 13352.

PPNNii

PPFFee

PPhh PPhh

PPhh PPhh

XX

RR

RR == CCHH 33,, CCFF33

PPNNii

PPXXFFee

PPhh PPhh

PPhh PPhh

oorrPP

NNiiPP XX

FFee

PPhh PPhh

PPhh PPhh

RR

II BBrr CCll OO

RR

OO OOSS

EE

OO

OO

XX ==

EE ==

MMee,,

pp

--TTooll,,

CCFF33RR

== OORR,,

NNRR22

FF

Page 43: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

41

OC2 NOTES

Page 44: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

42

OC3 Synthesis and Reactivity of Polyhydride Dimolybdenum Complexes

Marina Pérez, Natalia Curado, Jesús Campos, Joaquín López-Serrano, Ernesto Carmona*

Instituto de Investigaciones Químicas (IIQ) Departamento de Química Inorgánica, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones

Científicas (CSIC) and Universidad de Sevilla Avda. Américo Vespucio, 49,41092 Sevilla (Spain) [email protected]

Polyhydride dimolybdenum complexes presenting a metal-metal quadruple bond are very unusual compounds. In our group, we have succeeded in synthesizing some unusual species containing a Mo2(H)n core, such as the dilithium tetra(hydride) dimolybdenum ate complex [Mo2{(μ-H)2Li(THF)}2(μ-AdDipp2)2] (1), and the bis(tetrahydroborate) dimolybdenum complex [Mo2{(μ-H)2BH2}2(μ-AdDipp2)2] (2) (Ad = HC(N-2,6-iPr2C6H3)2). These compounds feature unprecedented structural moieties showing 3-centre 2-electron interactions1,2, Mo(μ-H)Li(THF)(μ-H)Mo (1) and Mo(μ-H)BH2(μ-H)Mo (2) in which two bridging HEH units (E = Li(THF), H2B) span across a Mo-Mo quadruple bond. These unprecedented structures have been characterized by X-ray crystallography and NMR spectroscopy. Furthermore, we have studied the reactivity of the bis(hydride) dimolybdenum complex [Mo2(H)2(THF)2(μ-AdDipp2)2] (3) towards alkenes, alkynes, CO2, CS2, LiAlH4 and BH3∙SMe2, observing rich chemistry including small molecule activation, E-H addition (E = Li, B) and other reactions of the quadruply bonded Mo2(H)2 unit.

References

1. Curado, N; Carrasco, M; Alvarez, E.; Maya, C; Peloso, R.; Rodríguez, A.; López-Serrano, J.; Carmona, E. J. Am. Chem. Soc, 2015, 137.

2. Curado, N.; Carrasco, M.; Campos, J.; Maya, C.; Rodríguez, A.; Ruiz, E.; Alvarez, S.; Carmona, E. Chem. Eur. J. 2017, 23, 194.

MMoo MMooTTHHFF

TTHHFF

HH

HH

CC22HH44

PPhhCCCCHH

CCOO22CCSS22

LLiiAAllHH44

BBHH3333

MMoo MMoo ≡≡

ΜΜοο22((µµ

−−ΗΗCC((NN

--iiPPrrCC66HH33))22))

SSMMee22

MMoo MMoo

HH

HH

HHLLii

LLiiHH

11 22

((TTHHFF))

((TTHHFF))

MMoo MMoo

HH

HH

HHBB

BBHH

HH22

HH22

MMoo MMoo≡≡

ΜΜοο22((µµ

−−ΗΗCC((NN

--iiPPrrCC66HH33))22))

Page 45: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

43

OC3 NOTES

Page 46: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

44

OC4 Investigation of the Synergistic Cooperation between Palladium and Silver Bimetallic Systems

Sara Martínez de Salinas, Ángel L. Mudarra, Mónica H. Pérez-Temprano*

Institute of Chemical Research of Catalonia (ICIQ) Av. Països Catalanes 16- 43007 Tarragona

(Spain) [email protected]

Over the last decade, bimetallic catalysis has emerged as a very attractive approach to promote C–C bond forming reactions.1 The mechanism proposed for these bimetallic systems involves two different catalytic cycles (each with one transition-metal (TM) catalyst) connected by a transmetalation step. Recently, Palladium and Silver bimetallic systems have been shown particularly effective in the formation of C-C bonds,2 however no detailed experimental mechanistic study on this step has been carried out. In this context, detailed understanding of catalytic transformations is key of designing better catalysts. Thus, our goal is to investigate the transmetalation between well-defined organopalladium(II) and organosilver(I) compounds in order to provide key information about the feasibility of these transformations. A combination of experimental tools were applied to study the reaction mechanisms, nature of intermediate species and ligand effects.

References 1. Pérez-Temprano, M. H.; Casares, J. A.; Espinet, P. Chem. Eur. J. 2012, 18, 1864-1884. 2. (a) Goossen, L. J.; Lange, P. P.; Rodríguez, N.; Linder, C. Chem. Eur. J. 2010, 16, 3906-3909.

(b) Gu, Y.; Leng, X.-B.; Shen, Q. Nat. Commun. 2014, 5, 1-7. (c) Whitaker, D.; Burés, J.; Larrosa, I. J. Am. Chem. Soc. 2016, 138, 8384–8387. (d) Lotz, M. D.; Camasso, N. M.; Canty, A. J.; Sanford, M. S. Organometallics 2017, 36, 165-171. (e) Lee, S. Y.; Hartwig, J. F. J. Am. Chem. Soc. 2016, 138, 15278–15284.

Page 47: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

45

OC4 NOTES

Page 48: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

46

OC5 From propargylic alcohols to novel push-pull 1,3-butadiene dyes: Synthesis, characterization and solvatochromic behaviour

Javier Francos1, Sergio E. García-Garrido1, Javier Borge2, Victorio Cadierno1*

1Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Centro de

Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Orgánica e Inorgánica, IUQOEM, Universidad de Oviedo, Julián Clavería 8, E-33006 Oviedo, Spain.

2Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Julián Clavería 8, E-33006 Oviedo, Spain.

[email protected] The design, synthesis and photophysical evaluation of organic π-conjugated systems has been deeply studied during the last decades due to the enormous potential of these materials for electronic, optoelectronic and photonic applications.1 Push-pull molecules, i.e. organic molecules end-capped with electron-donor (D) and electron-acceptor (A) units at the ends of a π-conjugated spacer, are representative examples of this class of compounds, whose properties lie in the intramolecular charge-transfer (ITC) between the donor and acceptor groups.2 ITC provides the D–π–A systems with additional properties such as dipolar character, intense colour, crystallinity, and chemical and thermal robustness. Some polyenic push–pull compounds containing the indanedione fragment as the acceptor group have attracted considerable interest in recent years since they exhibit relevant optical and electronic properties.3 In this context, the high-yield preparation and optical properties of new donor-acceptor butadiene dyes, generated by coupling of different 1,1-diaryl-2-propyn-1-ols with indane derivatives, are herein presented.4 Preliminary results employing 1,3-diethyl-2-thiobarbituric acid as the electron-acceptor group are also discussed.

X

X

R

R

X = O, -CH2(CN)2R = OMe, NMe2

R

R

N

N

O

O

S

Et

Et

R = OMe, NMe2

References 1. Handbook of Organic Materials for Optical and (Opto)electronic Devices; Ostroverkhova, O. Eds.;

Publishing Limited, Cambridge, 2013. 2. Bureš, F. RSC. Adv. 2014, 58826-58851. 3. a) Kumar, N. S. S.; Varguese, S.; Narayan, G.; Das, S. Angew. Chem. Int. Ed. 2006, 45, 6317-6321; b)

Hauck, M.; Stolte, M.; Schönhaber, J.; Kuball, H.-G.; Müller, T. J. J. Chem. Eur. J. 2011, 17, 9984-9998. 4. (a) Francos, J.; Borge, J.; Díez, J.; García-Garrido, S. E.; Cadierno, V. Catal. Commun. 2015, 63, 10-14;

(b) Francos, J.; García-Garrido, S. E.; Borge, J.; Suárez, F. J.; Cadierno, V. RSC Adv. 2016, 6, 6858-6867.

Page 49: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

47

OC5 NOTES

Page 50: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

48

OC6 Synthesis, reactivity and catalytic applications of mesoionic carbenes complexes bearing enantiopure chiral sulfoxides

M. Frutos,a,b M. C. de la Torre,b,c M. A. Sierra*a,b

1 Departamento de Química Orgánica I, Facultad de Química, Universidad Complutense,

28040-Madrid, Spain. 2 Centro de Innovación en Química Avanzada (ORFEO-CINQA).

3 Instituto de Química Orgánica General, CSIC, Juan de la Cierva 3, 28006-Madrid, Spain. [email protected]

1,2,3-Triazolylidene complexes have emerged as new structural type of mesoionic carbenes (MIC). Among others, their use as catalysts has steadily grown in the recent years due to their exceptional donor properties and the ease of wingtip tunability. Following our work with metallic triazolylidene complexes supported on steroid derivatives,1 here we describe the synthesis of different transition metal complexes bearing mesoionic carbenes with an enantiopure sulfoxide group attached to the C4 position of the 1,2,3-triazole ring. Studies on these Ag(I) mesoionic carbene complexes revealed an unprecedented SN-2 like desulfinylation process upon treatment with alcohols. Transmetallation with a gold(I) source gives separable mixtures of regioisomeric C-unsubstituted Au 1,2,3-triazolylidene complexes, which are known as synthetically challenging compounds.2 Analogous gold(I) triazolylidene complexes show an excellent activity and regioselectivity towards the cycloisomerization of 1,6-enynes. The sulfoxide group has been proved to play a key role in the activity of the catalysts.3 Moreover, this type of Au(I)-MIC shows a great catalytic activity towards a unique stereoselective domino reaction of 1,6-enynes presenting an aryl ring at C3-C4.

References

1. Frutos, M.; de la Torre, M. C.; Sierra, M. A. Inorg. Chem. 2015, 54, 11174–11185. 2. Frutos, M.; Ortuño, M. A.; Lledos, A.; Viso, A.; Fernández de la Pradilla, R.; de la Torre, M. C.; Sierra,

M. A.; Gornitzka H.; Hemmert, C. Org. Lett. 2017, 19, 822–825. 3. Frutos, M.; Avello, M. G.; Viso, A.; Fernández de la Pradilla, R.; de la Torre, M. C.; Sierra, M. A.;

Gornitzka, H.; Hemmert, C. Org. Lett. 2016, 18, 3570–3573.

Page 51: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

49

OC6 NOTES

Page 52: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

50

OC7 Access to Gold(I) Carbenes from Gold(I) Carbenoids

García-Morales, C.;1 Sarria Toro, J. M.;1 and Echavarren, A. M.1,2

1 Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and

Technology (BIST), Tarragona, Spain. 2 Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, Tarragona,

Spain. [email protected]

Only a few stable gold(I) carbenes lacking heteroatom stabilization have been structurally characterized,1 despite the crucial role of these species in gold catalysis.2 Recently we have developed a method to easily prepare gold(I) carbenoids, [LAu(CH2X)],3 which exhibit reactivity typical of gold(I) carbenes in solution after chloride abstraction. As an extension of this study, more congested chloro(aryl)methylgold(I) carbenoids have been synthesized. Aryl substituted gold(I) carbenes lacking heteroatom stabilization or shielding ancillary ligands have been generated and characterized upon abstraction of chloride from the corresponding carbenoids. The resulting carbenes correspond to genuine intermediates invoked in gold(I) catalyzed reactions.4 Results on the characterization and the reactivity of these highly reactive gold(I) carbenes will be presented.

References 1. a) Harris, R. J.; Widenhoefer, R. A. Angew. Chem. Int. Ed. 2014, 53, 9369-9371. b) Hussong, M. W.;

Rominger, F.; Krämer, P.; Straub, B. F. Angew. Chem. Int. Ed. 2014, 53, 9372-9375. c) Joost, M.; Estévez, L.; Mallet-Ladeira, S.; Miqueu, K.; Amgoune, A.; Bourissou, D. Angew. Chem. Int. Ed. 2014, 53, 14512-14516.

2. a) Wang, Y.; Muratore, M. E.; Echavarren, A. M. Chem. Eur. J. 2015, 21, 7332-7339. b) Fructos, M.; Díaz-Requejo, M; Pérez, P.J.; Chem. Commun. 2016, 52, 7326-7335.

3. Sarria Toro, J. M.; García-Morales, C.; Raducan, M.; Smirnova, E.; Echavarren, A. M. Angew. Chem. Int. Ed. 2017, 56, 1859-1863.

4. Solorio-Alvarado, C. R.; Wang, Y.; Echavarren, A. M. J. Am. Chem. Soc. 2011, 133, 11952-11955.

Page 53: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

51

OC7 NOTES

Page 54: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

52

OC8 Cation-Driven Self-Assembly Of A Gold(I)-Based Metallo-Tweezer

Susana Ibáñez, Macarena Poyatos, Eduardo Peris Institute of Advanced Materials (INAM), Universitat Jaume I, Avda. Sos Baynat.

E-12071-Castellón. Spain [email protected]

Gold (I) complexes are known to form stable linear compounds with aryl-acetylides, and this has been extensively used for the synthesis of oligomeric and polymeric materials with attractive photophysical properties.[1] In addition, alkynyl-gold(I) fragments are able to form supramolecular architectures based on their tendency to afford linear geometries and self-assembly structures through aurophilic interactions.[2] Based on these precedents, we envisaged that the parallel syn orientation of the alkynyl fragments in 1,8-diethynyl-anthracene, in combination with a N-heterocyclic carbene ligand fused with a pyrene fragment (Scheme 1), should allow the formation of a di-gold(I) tweezer with unprecedented recognition properties. The presence of the two arms containing the pyrene moieties, together with the anthracene linker provides two sites with the potential to bind aromatic guests through π−stacking. In addition, the presence of the two gold(I) centers, provides an additional binding motif through aurophilic and metallophilic interactions, thus introducing a new dimension in the recognizing abilities of the tweezer, which may also be sensitive to the presence of metal ions.

H

H

MeOH

A

N

NnBu

nBu

Au Cl2+

80 ºC

1

7 NaOH

(in C6D6)

NaOH, MXMeOH, RT

N

NNR

RR'

R'

Au

Au NNR

RR'

R'R'

NR

R

R'

N

NR

R

R'

R'

AuAu

NNR

RR'

R'

Au

Au NNR

RR'

R'

N

NNR

RR'

R'

Au

Au NNR

RR'

R'R'

NR

R

R'

N

NR

R

R'

R'

AuAu M

+ (X-)

MX = AgBF4, TlPF6, Cu(NCMe)4BF4

MX, CH 2Cl 2

(in CDCl3)2

(2)23, M = Ag+, X = BF4-

4, M = Tl+, X = PF6-

5, M = Cu+, X = BF4-

1/21/2

Scheme 1 Reference [1] K. C. Yim, V. K. M. Au, L. L. Hung, K. M. C. Wong and V. W. W. Yam, Chem. Eur. J., 2016, 22, 16258-16270. [2] E. R. T. Tielink, Coord. Chem. Rev., 2014, 275, 130-153.

Page 55: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

53

OC8 NOTES

Page 56: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

54

OC9 Metallo-fullerenes as n-type materials with catalytic activity in photoelectrochemical cells

S. Filippone, R. M. Girón, N. Martín.

Departamento de Química Orgánica I - Universidad Complutense de Madrid, Ciudad

Universitaria s/n, 28040 Madrid, Spain. [email protected]

Fullerenes have found their main application in organic photovoltaic devices.1 Their ability to give rise a high efficient photo-induced electron transfer process and their behaviour as n-type charge carriers have made them suitable organic acceptors in organic solar cells along with donor polymers.2

In this communication, we report our recent strategies to prepare metallo-fullerene hybrids and their employ as n-type materials with catalytic activity in photoelectrochemical devices.3

In this regard, fullerenes chemical tailoring has been aimed to: a) The synthesis of higher LUMO fullerene derivatives to achieve a higher energy gap and therefore, to facilitate further reduction processes. b) The synthesis of catalytically active fullerenes derivatives bearing metallic, or metal-free, active sites where the reduction process could occur.

References 1. a) B. C. Thompson, J. M. J. Fréchet, Angew. Chem. Int. Ed. 2008, 47, 58-77; b) J. L. Delgado, P.-A. Bouit,

S. Filippone, M. A. Herranz, N. Martin, Chem.Commun. 2010, 46, 4853-4865. 2. A. J. Heeger, Adv. Mater. 2014, 26, 10-28. 3. R. Maria Giron, J. Marco-Martinez, S. Bellani, A. Insuasty, H. Comas Rojas, G. Tullii, M. R. Antognazza,

S. Filippone and N. Martin, J. Mater. Chem. A, 2016, 4, 14284-14290.

Page 57: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

55

OC9 NOTES

Page 58: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

56

OC10 C-H and C-C Bond Breaking and Formation at Cationic (C5Me5)Ir(III) Complexes

Juan José Moreno, Jesús Campos, Joaquín López, Stuart Macgregor*, and Ernesto

Carmona*

Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA). Consejo Superior de Investigaciones

Científicas (CSIC) and Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain [email protected]

Half-sandwich, cationic Ir(III) complexes stabilized by coordination of tertiary phosphines provided the basis for fundamental breakthroughs concerning C-H activation processes.1 Alkyl biaryl phosphines were successfully employed in this2 and analogous rhodium systems3, enabling the catalytic isotopic labelling of hydrosilanes (Si-H/D/T), as well as promoting the formation of C-C bonds. In this contribution, the use of dimethyl terphenyl phosphines allows the isolation of cationic, Ir(III), unsatured chloride complexes alike 1, which show unusual reactivity towards C-H activation. In the presence of NaBArF, traditional metal-mediated carbon-hydrogen bond breaking takes place, forming the pseudoallylic complex 3. However, Et3N induces the formation of a C-C bond between the C5Me5 fragment and one of the flanking aryl rings of the ligand, which becomes dearomatized. Moreover, this complex 2 isomerizes to 3 at room temperature even in the solid state, a process that implies C-C and C-H bond breaking and C-H bond formation. Mechanistic insight was gained by means of a thorough DFT study, showing that the Ir(I)-Ir(III) redox cycle is key in these transformations.

1 2 3

References 1. Arndtsen, B. A.; Bergman, R. G. Science 1995, 270, 1970. 2. Campos, J.; López-Serrano, J.; Álvarez, E.; Carmona, E. J. Am. Chem. Soc. 2012, 134, 7165. 3. Campos, J.; Esqueda, A. C.; López-Serrano, J.; Sánchez, L.; Cossío, F. P.; de Cózar, A.; Álvarez, E., Maya,

C.; Carmona, E. J. Am. Chem. Soc. 2010, 132, 16765.

Ir

PIr

P

Et3N

25 ºCsolid state

25 ºCIr

P Cl

Page 59: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

57

OC10 NOTES

Page 60: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

58

OC11 Synthesis of Au(I)- and Au(III)-Bis(NHC) Complexes: Ligand Effect on Oxidative Addition

Alba Collado,a,b,c Jan Bohnenberger, Steven P. Nolan*

aCurrent address: Departamento de Química Orgánica I, Facultad de Química, Universidad

Complutense, 28040-Madrid, Spain bCurrent address: Centro de Innovación en Química Avanzada (ORFEO-CINQA)

cEaStCHEM, School of Chemistry University of St. Andrews, Purdie Building, North Haugh St. Andrews, Fife, KY16 9ST (UK)

[email protected]

The field of homogenous gold catalysis has exponentially grown in the last decade.1 In this area of research, most catalytic examples deal with Au complexes in oxidation state I. In comparison, the chemistry of gold (III) has been much less developed.2 This is due to the intrinsic tendency of Au(III) complexes to reduce to Au(I) or Au(0) in the reaction media. In addition, the species that have proven to be stable to be isolated are usually too stable to be used in catalytic reactions.2 Recently, the development of gold redox catalysis, where both Au(I) and Au(III) species are involved, has allowed for the development of fascinating chemistry.3 In this context, much interest has arisen around the synthesis of new Au(III) species with catalytic potential, and the study of the elementary steps of the gold redox catalytic cycle. Due to the relevance of N-Heterocyclic carbene (NHC) ligands in gold catalysis, a family of Au(I)-bis(NHC) complexes has been synthesised and their oxidation chemistry towards hypervalent iodine oxidants, which are common oxidants in gold redox catalysis, has been studied. This study revealed a ligand influence on the formation of Au(III) species and has allowed for the design of new Au(III) complexes.4

N N

Au

N NR

X

R

X = BF4, PF6,

Cl

PhICl2 N N

Au

N NR

X

R

X = BF4, PF6,

Cl

ClClDCM, r.t.3.5 h - 7 d

(1.3 - 2.2 equiv)

- PhI

N N

Au

Cl

NHC HX2 K2CO3

acetone, 60 ºC

N N

Au

N N

OAcAcO

PhI(OAc)2

DCE, 60 ºC14 h

BF4

NN

Au

NN

BF4

- PhI

References 1. Hashmi A. S. K., Chem. Rev. 2007, 107, 3180 2. a) Wu, C.-Y., Horibe T.; Jacobsen C. B., Toste, F. D., Nature 2015, 517, 449-454; b) Schmidbaur H.,

Schier A., Arab J Sci Eng 2012, 37, 1187-1225 3. a) Ball, L. T., Lloyd-Jones, G. C., Russell, C. A. Science 2012, 337, 1644-1648; b) Haro T. d., Nevado,

C., J. Am. Chem. Soc. 2010, 132, 1512-1513 4. Collado, A., Bohnenberger, J., Oliva-Madrid, M.-J., Nun, P., Cordes, D. B., Slawin, A. M. Z. and Nolan,

S. P. Eur. J. Inorg. Chem. 2016, 25, 4111

Page 61: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

59

OC11 NOTES

Page 62: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

60

OC12 Cationic Pt(II) σ-SiH complexes: Detection, isolation and reactivity studies

Pablo Ríos,1 Hugo Fouilloux,1 Josefina Díez,2 Joaquín López-Serrano,1 Amor Rodríguez1 and Salvador Conejero*1

1Departamento de Química Organometálica y Catálisis Homogénea, Instituto de Investigaciones

Químicas, Avda. Américo Vespucio 49, CSIC-Universidad de Sevilla. 2Laboratorio de Compuestos Organometálicos y Catálisis. Departamento de Química Orgánica e

Inorgánica. Universidad de Oviedo. C/Julián Clavería 8, Oviedo (Spain) [email protected]

Silane σ-complexes have been proposed as intermediates in a high number of catalytic processes.1 Although coordination of the silane to the metal center can take place through η1 or η2-SiH interaction, the first one is very rare, with only one example of an isolated iridium complex.2 In spite of the relevant role of platinum complexes in hydrosilation reactions, no examples of σ-SiH platinum species are known. Even more challenging is the isolation of cationic σ-SiH of transition metals (only 2 crystallographically characterized examples to date).2,3 The formation of a silane σ-complex renders the silicon atom more electrophilic and therefore susceptible of nucleophilic attack, particularly in the η1-SiH coordination mode. In addition, this system can evolve in several ways: single or double Si-H activation can be obtained selectively depending on the silane and the ligand employed, giving rise to cationic silyl derivatives. Moreover, σ-complexes are electrophilic enough to activate CO2, whose stability and inertness make it difficult to transform. Indeed, selective hydrosilation of carbon dioxide is still difficult nowadays because mixtures of products are often obtained, or the reduction process cannot be stopped at any intermediate.4 In this work, detection and isolation of cationic platinum(II) silane σ-complexes complexes stabilized by N-heterocyclic carbenes (NHCs) will be described, as well as their reactivity and their role on the selective reduction of carbon dioxide to the formate stage.

1. a) Corey, J.Y. Chem. Rev. 2011, 111, 863−1071; b) Nikonov, G. I. Adv. Organomet. Chem. 2005, 53, 217−309; c) Alcaraz, G.; Sabo-Etienne, S. Eur. J. Inorg. Chem. 2006, 2115−2127. 2. Yang, J.; White, P.S.; Schauer, C.K.; Brookhart, M. Angew. Chem. Int. Ed. 2008, 47, 4141 3. Freeman, S.M.T.; Brammer, L.; Lemke, F.R. Organometallics, 2002, 21, 2030-2032 4. Ríos, P.; Díez, J.; López-Serrano, J.; Rodríguez, A.; Conejero, S. Chem. Eur. J. 2016, 22, 16791

Page 63: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

61

OC12 NOTES

Page 64: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

62

OC13 Direct Observation And Characterization Of Elusive Cobaltacycle Intermediates In Cp*CoIII-Catalyzed Oxidative Annulation With Alkynes

Jesús Sanjosé-Orduna, Daniel Gallego, Alèria Garcia-Roca, Eddy Martin, Jordi Benet-

Buchholz, Mónica H. Pérez-Temprano*

Institut Català d’Investigació Química (ICIQ) The Barcelona Institute of Science and Technology (BIST)

Av. Països Catalans 16 – 43007, Tarragona (Spain) [email protected]

Directed C–H functionalization has become one of the most powerful synthetic tools for the construction of organic frameworks.1 Earth-abundant first-row transition metal catalysts,2 in particular Cp*CoIII catalysts, have emerged as a very attractive alternative to expensive noble transition metals for the construction of heterocyclic scaffolds via C–H activation.3 However, the nature of the reactive species involved in the catalytic cycle remains uncertain. Herein we report the first direct observation and fully characterization of elusive cobaltacycle species which have been proposed as key intermediates in C–H functionalization reactions. The exceptional ability of MeCN to stabilize otherwise highly reactive intermediates has paved the way to uncover previously inaccessible mechanistic features of the Cp*CoIII-catalyzed oxidative alkyne annulation.

References 1. (a) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624. (b) Lyons, T. W.; Sanford,

M. S. Chem. Rev. 2010, 110, 1147. 2. Su, B.; Cao, Z.-C.; Shi, Z.-J. Acc. Chem. Res. 2015, 48, 886. 3. (a) Moselage, M.; Li, J.; Ackermann, L. ACS Catal. 2016, 6, 49. (b) Yoshino, T.; Matsunaga, S. Adv.

Synth. Catal. 2017, 359, 1245.

Page 65: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

63

OC13 NOTES

Page 66: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

64

Page 67: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

65

Flash Presentations

Page 68: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

66

FP1 P1

Osmium Polyhydrides containing Boron Ligands

Juan C. Babón,a Miguel A. Esteruelas,*a Israel Fernández,b Ana M. López,a and Enrique Oñate a

aDepartamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea

(ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain

bDepartamento de Química Orgánica I, Facultad de Ciencias Químicas, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad Complutense de Madrid, 28040 Madrid, Spain

[email protected]

The reactions of B-H bond activation by transition metal complexes is a field of great interest due to its connection with numerous catalytic processes such as hydroboration of unsaturated organic molecules,1 dehydrogenative borylation of hydrocarbons,2 and dehydrocoupling of amine-borane derivatives.3 Among transition metal complexes, polyhydrides of platinum group metals have shown to promote the activation of B-H bonds.4 Our group has recently shown that hydride osmium complexes not only exhibit a rich reactivity with boranes giving rise to a variety of species such as boryl-dihydrideborate,5 σ-borinium,6 σ-borane,5,7 and bis-σ-borane,8 but also catalyses the ammonia-borane and amine-borane adducts dehydrogenation.9 Herein, we present new polyhydrides of osmium containing boron ligands, which have been characterized in solid state and solution and their bonding situation analysed via DFT calculations. References 1. Crudden, C. M.; Glasspoole, B. W.; Lata, C. J. Chem. Commun. 2009, 6704−6716. 2. (a) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110,

890−931. (b) Ros, A.; Fernández, R.; Lassaletta, J. M. Chem. Soc. Rev. 2014, 43, 3229−3243. 3. (a) Hamilton, C. W.; Baker, R. T.; Staubitz, A.; Manners, I. Chem. Soc. Rev. 2009, 38, 279-293. (b) Rossin,

A.; Peruzzini, M. Chem. Rev. 2016, 116, 8848−8872. (c) Bhunya, S.; Malakar, T.; Ganguly, G.; Paul, A. ACS Catal. 2016, 6, 7907−7934.

4. Esteruelas, M. A.; López, A. M.; Oliván, M. Chem. Rev. 2016, 116, 8770−8847. 5. M. A.; López, A. M.; Mora, M.; Oñate, E. Organometallics 2015, 34, 941−946. 6. Esteruelas, M. A.; Fernández-Alvarez, F. J.; López, A. M.; Mora, M.; Oñate, E. J. Am. Chem. Soc. 2010,

132, 5600–5601. 7. Esteruelas, M. A.; López, A. M.; Mora, M.; Oñate, E. Chem. Commun. 2013, 49, 7543−7545. 8. Buil, M. L.; Cardo, J. J. F.; Esteruelas, M. A.; Fernández, I.; Oñate, E. Inorg. Chem. 2015, 34, 547−5070. 9. (a) Esteruelas, M. A.; Fernández, I.; López, A. M.; Mora, M.; Oñate, E. Organometallics 2014, 33,

1104−1107. (b) Esteruelas, M. A.; López, A. M.; Mora, M.; Oñate, E. ACS Catal. 2015, 5, 187−191.

Page 69: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

67

FP2 P2

Molecular Recognition: NHC-Based Alkynyl-Au(I) Molecular Tweezers

C. Biz, S. Ibáñez, M. Poyatos and E. Peris*

Institute of Advanced Materials (INAM), Universitat Jaume I, Avda. Sos Baynat, s/n 12071, Castellón. Spain

[email protected] Metallosupramolecular chemistry involves the use of transition metal centers and organic ligands to assemble different supramolecular architectures.[1] In particular, metallomolecules with symmetric structures and well-defined cavities display a unique reactivity, showing a good potential in catalysis[2] and molecular recognition.[3] In this context, we have prepared two di-gold(I) molecular tweezers bearing a rigid bis-alkynyl linker and two aromatic-containing NHC ligands (complexes 1 and 2 in Figure 1). In complex 1, the presence of the two aromatic-based arms, together with the linker, provides two sites with the potential to bind aromatic guests through π-stacking. Moreover, the presence of the two Au(I) units offers an additional binding center through aurophilic and metallophilic interactions, which may provide interesting recognition abilities to the tweezer. Indeed, the study of the recognition properties performed by 1H NMR spectroscopy has shown that complex 1 has moderate affinity for electron-rich substrates.

Figure 1

References [1] M.J. Hannon and L.J. Childs, Supramolecular Chemistry, 2004, 16,7-22 [2] A.J. Neel, M.J. Hilton, M.S. Sigman, F. D. Toste, Nature, 2017, 543, 637-646 [3] S. Dong, B. Zheng, F. Wang, F. Huang, Acc. Chem. Res. 2014, 47, 1982-1994

NH

H H

NHC Au Cl

NHC=NN

NN

R

R

R1

R1

R1

R1

R = tBu R1 = nBu

N H

Au

Au

NN

NN

R

R

R

R1

R1

R1

R1 RN H

Au

Au

NN

NN

R1

R1

R1

R1

Deprotonation

1 2

NaOH/MeOH orKHMDS/THF

Page 70: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

68

FP3 P3

Synthesis and reactivity of some PGeP pincer-type chlorogermyl complexes

Javier Brugos, Lucía Álvarez-Rodríguez, Javier A. Cabeza,* Pablo García-Álvarez,*

Enrique Pérez-Carreño

Centro de Innovación en Química Avanzada (ORFEO-CINQA), Dpto. de Química Orgánica e Inorgánica, Dpto. de Química Física y Analítica, Universidad de Oviedo, 33071 Oviedo. (Spain)

[email protected]

Many transition metal (TM) complexes of bulky and strong electron-donating pincer ligands have been prepared and studied in the last years. However, TM complexes derived from pincer ligands containing at least a heavier tetrylene, that is, a divalent heavier group 14 element (E) fragment, as a donor group have still been little investigated. In fact, the known ligands of this type are only a few ECE and ENE ligands in which the tetrylene fragments are donor-stabilized (Figure 1).1

This contribution describes the synthesis of the group 10 metal complexes [MCl{κ3P,Ge,P-GeCl(NCH2PtBu2)2C6H4}] [M = Pd (1), Pt (2)] (Scheme 1), which contain a chlorogermyl PGeP pincer ligand derived from a simple (not donor-stabilized) PGeP pincer-type germylene, Ge(NCH2PtBu2)2C6H4,2 as well as their reactions with H2O, LiOMe, LiMe and LiPh (Scheme 2).

1. (a) Brück, A.; Gallego, D.; Wang, W.; Irran, E.; Driess, M.; Hartwig, J. F. Angew. Chem. Int. Ed. 2012,

51, 11478-11482. (b) Wang, W.; Inoue, S.; Irran, E.; Driess, M. Angew. Chem. Int. Ed. 2012, 51, 3691-3694.

2. Álvarez-Rodríguez, L.; Brugos, J.; Cabeza, J. A.; García-Álvarez, P.; Pérez-Carreño, E.; Polo, D. Chem. Commun. 2017, 53, 893-896.

Page 71: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

69

FP4 P4

Highly diastereo- and enantioselective Heck reaction for the synthesis of heterobiaryls with both central and axial chirality

José A. Carmona,1 Valentín Hornillos,1 Pedro Ramírez-López,1 Abel Ros,1,2 Javier Iglesias-

Sigüenza,2 Rosario Fernández,,2 José M. Lassaletta,1 1 Instituto Investigaciones Químicas (CSIC-US), C/ Américo Vespucio, 49, 41092 Sevilla, Spain

2 Departamento de Química Orgánica, Universidad de Sevilla, C/Prof. García González, 1, 41012 Sevilla

[email protected] The Heck reaction is a fundamental palladium-catalyzed C-C bond-forming transformation with numerous applications in the synthesis of natural products and valuable synthetic intermediates.1 Although much progress has been made in the asymmetric variant of the reaction, both inter- and intramolecularly, the scope has been limited to the construction of stereogenic centers based on a central carbon atom.2,3 The construction of chiral motifs of different nature in a single fashion has never been reported employing this reaction. Herein we disclose our findings in the asymmetric Heck reaction of racemic configurationally stable sulfonates with acyclic and cyclic electron-rich olefins, which proceed with generation axial or both central and axial stereogenic elements, respectively. Under optimized conditions, nearly perfect diastereo- and enantioselectivity (up to 99% dr; up to 99% ee) were achieved. Olefin insertion is proposed to proceed from a cationic oxidative addition intermediate in which the stability of the stereogenic axis is compromised.4 The resulting heterobiaryls represent a new class of chiral heterobidentate ligands with potential application in asymmetric metal and organocatalysis.

References 1. M. Oestreich. The Mizoroki–Heck Reactions, ed., John Wiley & Sons, New York, 2009. 2. McCartney, P. J. Guiry, Chem. Soc. Rev. 2011, 40, 5122-5150. 3. M. Oestreich, Angew.Chem., Int. Ed., 2014, 53, 2282-2285. 4. (a) A. Ros, B. Estepa, P. Ramírez-López, E. Álvarez, R. Fernández, J. M. Lassaletta, J. Am. Chem. Soc.

2013, 135, 15730–15733; (b) P. Ramírez-López, A. Ros, B. Estepa, R. Fernández, B. Fiser, E. Gómez-Bengoa, J. M. Lassaletta, ACS Catal. 2016, 6, 3955–3964; (c) V. Hornillos, A. Ros, P. Ramírez-López, J. Iglesias-Sigüenza, R. Fernández and J. M. Lassaletta, Chem. Commun. 2016, 52,14121–14124.

Page 72: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

70

FP5 P5

Synthesis of polymetallic species with [Fe-Fe]-hydrogenase substructures

Alba D. Merinero[a,b], Luis Casarrubios[a,b], Mar Gómez-Gallego[a,b], Miguel A. Sierra[a,b].

aDepartamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid (Spain). bCentro de Innovación en Química Avanzada (ORFEO-CINQA).

[email protected] Herein we report the synthesis of polymetalic compounds containing the subunit [(µ-SCH2)Fe2(CO)6] structurally related to the active center of [Fe-Fe] hydrogenases by a Huisguen cycloaddion catalyzed by Cu(I). This methodology allows the incorporation of the cluster moiety in a wide range of molecules.

N

S S

(OC)3Fe Fe(CO)3

N3

N

S S

(OC)3Fe Fe(CO)3

NNN

R

R+Cu(I)

CuAAC

R: Ar, Metallocene Variations of the resulting triazolic-structures including introduction of additional metal centers pursue the control of the electrochemical activity of the hydrogenase mimics. Optical and electrochemical properties of the resulting compounds will also be discussed.

References: 1. Casarrubios, L; de la Torre, M. C.; Sierra, M. A. Chem. Eur. J. 2013, 3534-3541. 2. (a) Yulong, L; Rauchfuss, T.B. Chem. Rev. 2016, 7043-7077. (b) Lubitz, W.; Ogata, H.; Rüdiger, O.;

Reijerse, E. Chem. Rev. 2014, 4081-4148. (c) Schilter, D.; Camara, J. M.; Huynh, M. T.; Hammes-Schiffer, S.; Rauchfuss, T. B. Chem. Rev. 2016, 8693-8749.

Page 73: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

71

FP6 P6

Novel hydrophilic arene-ruthenium(II) complexes with phosphinous acid ligands: Potential catalysts for C-H activation reactions in water

Rebeca González-Fernández, Pascale Crochet and Victorio Cadierno

Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Centro de

Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, Julián Clavería 8, E-33006 Oviedo, Spain

[email protected]

Considered for long time as an important challenge in organic synthesis, the C-H activation/functionalization reactions have emerged in recent years as powerful tools for the preparation of elaborated molecules from readily available raw materials.1 In this regard, the use of ruthenium(II) catalysts in the activation of unreactive C(sp2)-H bonds for a variety of C-C coupling reactions has contributed decisively to the advancement of the field.2 The concept of carboxylate-assistance, through metal-ligand cooperation via a six-membered transition state, has been particularly exploited in these Ru-catalyzed C-H activation processes.2 In parallel, Ackermann and co-workers have also observed a considerable rate acceleration of the reactions when secondary phosphine oxides (R2P(=O)H) are employed as pre-ligands, due to the in situ generation of the corresponding ruthenium-phosphinous acid complexes, i.e. [Ru]-PR2OH, which act as bifunctional catalysts by metal-ligand cooperation.3 With all these precedents in mind, and continuing with our interest in the application of ruthenium-phosphinous acid complexes in aqueous catalysis,4 we present herein the preparation of new Ru(II) representatives able to catalyze the activation of C-H bonds in pure water.

RuCl

ClP

N

Cl

N

Ph

N

Ph

PhCs2CO3

, H2O80

ºC

+ +

OH

OH

R R

References

1. See, for example: C-H Bond Activation in Organic Synthesis, Li, J. J. (Ed.), CRC Press, Boca Ratón, 2015; C-H Activation, Yu, J.-Q.; Shi, Z. (Eds.), Springer, Berlin, 2010.

2. Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879-5918 and references cited therein.

3. Ackermann, L. Org. Lett. 2005, 7, 3123-3125; Ackermann, L.; Althammer, A.; Born, R. Angew. Chem. Int. Ed. 2006, 45, 2619-2622; Zell, D.; Warratz, S.; Gelman, D.; Garden, S. J.; Ackermann, L. Chem. Eur. J. 2016, 22, 1248-1252.

4. González-Fernández, R.; González-Liste, P. J.; Borge, J.; Crochet, P.; Cadierno, V. Catal. Sci. Technol. 2016, 6, 4398-4409 and references cited therein.

Page 74: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

72

FP7 P7

Enantioselective synthesis of chiral at-metal fullerene hybrids

R. M. Girón, S. Filippone, N. Martín

Departamento de Química Orgánica I, Facultad de Química, Universidad Complutense de Madrid, E-28040 Madrid, España

[email protected] Fullerenes properties have aroused great interest in many scientific fields since their discovery. However, over the last years, fullerenes have found their main application in organic photovoltaic devices,1,2 while the use in fields such as catalysis has been almost neglected. Nowadays, the chemical functionalization of fullerenes has been significantly improved and a wide range of synthetic tools is available to prepare fullerene derivatives with a high control on their structures and optoelectronic properties. In this regards, asymmetric metal mediated or organocatalytic methodologies for a precise stereocontrol in the fullerenes functionalizations has been reported recently.3 Herein,4 we present the enantioselective catalytic synthesis of fullerene hybrids where C60 is endowed with iridium metal. The electronic effect of the aromatic ring on the metal configuration will be discussed.

References 1. Thompson, B. C.; Fréchet, J. M. J. Angew. Chem. Int. Ed. 2008, 47, 58. 2. Delgado, J. L.; Bouit, P.-A.; Filippone, S.; Herranz, M. A.; Martín, N. Chem. Commun. 2010, 46, 4853. 3. Maroto, E. E.; Izquierdo, M.; Reboredo, S.; Marco-Martínez, J.; Filippone, S.; Martín, N. Acc. Chem. Res.

2014, 47, 2660. 4. (a) Marco-Martínez, J.; Vidal, S.; Fernández, I.; Filippone, S.; Martín, N. Angew. Chem. Int. Ed., 2017,

56, 2136; (b) Giron, R. M.; Marco-Martinez, J.; Bellani, S.; Insuasty, A.; Comas Rojas, H.; Tullii, G.; Antognazza, M. R.; Filippone, S.; Martin, N. Journal of Materials Chemistry A, 2016, 4, 14284. (c) Metal Nanoparticles: Preparation, Characterization and Applications; Feldheim, D. L.; Colby, A. F. Eds.; Marcel Dekker, New York, 2002.

Page 75: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

73

FP8 P8

Phosphorescent Ir(III) complexes with two different pincer ligands

Miguel A. Esteruelas, Daniel Gómez-Bautista, Ana M. López, Enrique Oñate

Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de

Zaragoza - CSIC, 50009 Zaragoza, Spain, [email protected]

Iridium(III) complexes play an important role as phosphorescent emitters in electroluminescent devices, among other applications.1 Most of the iridium complexes used for this purpose have three bidentate ligands.2 Tridentate ligands can give rise to different properties and excited states compared to related derivatives with bidentate ligands. They are also more rigid, which could help to hamper molecular distortion of the complex on an excited state.3 Thus, in the last years some examples of emissive Ir(III) complexes with one or two tridentate ligands have appeared in the literature.4 In this communication we describe the preparation of new heteroleptic Ir(III) complexes with two tridentate ligands and the study of their emissive properties. In the course of this study, we have discovered interesting intermediates which have been characterized in the solid state by X-ray diffraction analysis and in solution by NMR. 1. Ulbricht, C.; Beyer, B.; Friebe, C.; Winter, A.; Schubert, U. S. Adv. Mater. 2009, 21, 4418–4441. 2. (a) Chi, Y.; Chou, P.-T. Chem. Soc. Rev., 2010, 39, 638–655. (b) Zanoni, K. P. S.; Coppo, R. L.; Amaral,

R. C; Iha, N. Y. M. Dalton Trans., 2015, 44, 14559–14573. (c) Omae, I. Coord. Chem. Rev. 2016, 310, 154−169.

3. Williams, J. A. G.; Wilkinson, A. J.; Whittle, V. L. Dalton Trans., 2008, 2081–2099. 4. (a) Wilkinson, A. J.; Puschmann, H.; Howard, J. A. K.; Foster, C. E.; Williams, J. A. G. Inorg. Chem.

2006, 45, 8685–8699. (b) Obara, S.; Itabashi, M.; Okuda, F.; Tamaki, S.; Tanabe, Y.; Ishii, Y.; Nozaki, K.; Haga M.-a. Inorg. Chem. 2006, 45, 8907–8921.(c) Chi, Y.; Chang, T.-K.; Ganesan, P.; Rajakannu, P. Coord. Chem. Rev. DOI: 10.1016/j.ccr.2016.11.016.

Page 76: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

74

FP9 P9

Pd Catalyzed C-N Cross-Coupling Reaction Using NH3. Computational Analysis of the Reaction Mechanism

Pablo Gómez-Orellana , Agustí Lledós, Gregori Ujaque*

Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193,

Cerdanyola del Vallès; Centro de Innovación en Química Avanzada (ORFEO-CINQA) [email protected]

The Buchwald-Hartwig amination1,2 has been developed to generate N-containing compounds. Common reactants are primary and secondary amines, whereas the use of ammonia is rather scarce. This is usually attributed to its high basicity, strong N-H bond and small size. Despite of this, Hartwig group developed a process for the use of NH3 as reactant. The reaction mechanism for the C-N cross-coupling has been analyzed from both the experimental3 and theorical4 point of views. Following the research line in our group5,6 about the C-N bond formation, in this work, we study the reaction mechanism for the Buchwald-Hartwig amination for the particular case of NH3 as reactant. The mechanism is analyzed using a Pd bidentate (Josiphos) as catalyst and t-BuONa as base. The rolo of the phosphine and the chelate effect, along with the role of the base and the behavior of the ammonia in this particular reaction are analyzed and will be discussed.

PdP1

P2

Ph

Br

NH3 Ph-NH2+Ph-Br

Chelate Effect

Base Role

t-BuONaPd-Josiphos

??

Strong Base ??

References 1. Hartwig J.F. Nature 2008, 455, 314-322. 2. Surry D. S., Buchwald S. L. Chem. Sci 2011, 2, 27-50. 3. Klinkenberg J.L., Hartwig J.F. J. Am. Chem. Soc. 2010, 132, 11830-11833. 4. Sunesson Y., Limé E., Nillson Lill S.O., Meadows R.E., Per-Ola N. J. Org. Chem. 2014, 79, 11961-11969. 5. Couce-Ríos A., Lledós A., Ujaque G. Chem. Eur. J. 2016, 22, 9311-9320. 6. Kovacs, G., Lledós A., Ujaque G. Angew. Chem. Int. Ed. 2011, 50, 11147-11151.

Page 77: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

75

FP10 P10

Chiral Sulfur Functional Groups as Definers of the Chirality at the Metal in Ir- and Rh-Half Sandwich Complexes: A Combined

CD-X-ray Study presentation

Marta G. Avello,a,c1 María Frutos,a,c María C. de la Torre,*a,c Alma Viso,a,c Roberto Fernández de la Pradilla,a,c Miguel A. Sierra,*b,c

a Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006-Madrid, Spain.1 b Departamento de Química Orgánica I,

Facultad de Química, Universidad Complutense, 28040-Madrid, Spain. c Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química,

Universidad Complutense, 28040-Madrid, Spain. [email protected]

Chiral-at-metal half sandwich compounds have been deeply studied for the last four decades, due to their potential application for asymmetric catalysis, pharmaceutical development and medicinal chemistry. However, the use of ligands having chiral sulfur moieties in the preparation of these compounds has been almost unexplored. We have reported the synthesis and the use of 1,2,3-triazolylidenes (MIC)-Au complexes containing chiral sulfur groups as enyne cycloisomerization catalysts.2 Now, we have developed a general procedure to prepare enantiopure chiral-at-metal Ir(III) and Rh(III) half-sandwich complexes from mesoionic carbenes (MIC) derived from triazolium salts containing chiral sulfoxide or sulfoximine functional groups, through the sequence MIC complexation-C–H aromatic activation. Enantiopure five membered metallacycles are synthesized efficiently and diastereoselectively. Furthermore, the use of the enantiomers of the sulfur chiral groups allows to prepare complexes having opposite configurations at the metal. Additionally, we demonstrate that the insertion of alkynes into the Ir(III)–C bond, as well as the formation of cationic Ir(III) complexes occurs with complete retention of the configuration at the metal center, as probed by a combined Circular Dichorism -X-ray study. This behaviour points to vicinal assisted SN-like processes.

1. a) Bauer, E. K.; Chem. Soc. Rev. 2012, 41, 3153–3167; b) Ganter, C.; Chem. Soc. Rev. 2003, 32, 130-138; 2. Frutos, M.; G. Avello, M.; Viso, A.; Fernandez de la Pradilla, R.; de la Torre, M.C.; Sierra, M.A.; Gornitzka, H.; Hemmert, C.; Org. Lett. 2016, 18, 3570-3573.

N NN

SRO

BF4

1.-Ag2O, NMe4Cl4 Å MS

2.- [Cp*MCl2]2, M=Ir, Rh

CH2Cl2:CH3CN3.-NaOAc

N NN

SRO

MCl

R1

R1

N NN

SO

MeO

IrClNaOAc (2 equiv.)CH3CN, reflux, 6hN N

N

SO R

IrCl

Cl

(3:2) diastereomeric mixture

N NN

SO

IrCl

NaPF6, CH3CN, rt

N NN

SO

IrNCH3C

PF6

N NN

SO

IrCl

Br

CO2MeMeO2C

MeOH, rtN N

N

SO

IrCl

Br

MeO2C

MeO2C

Page 78: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

76

FP11 P11

First C(sp3)−H cyclometalations of a silylene ligand

Laura González-Álvarez, Javier A. Cabeza* and Pablo García-Álvarez*

Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Orgánica e Inorgánica,

Universidad de Oviedo, 33071 Oviedo (Spain) [email protected]

The cyclometalation of a coordinated ligand is a useful method to synthesise organometallic compounds that feature a metal−carbon σ bond1a and this process is known for many types of ligands (pyridines, phosphanes, N-heterocyclic carbenes, etc.). Additionally, cyclometalated complexes have found a wide range of applications in catalysis, materials and biological chemistry.1

On the other hand, recent investigations on the coordination chemistry of donor-stabilized silylenes, particulary those stabilized with amidinato fragments, have shown that some of them are also useful ligands in homogeneous catalysis.2 Regarding the cyclometalation of silylenes, only one has so far been reported, namely, the transformation of {Si(tBu2bzam)}2R (R = 4,6-bis(tertbutyl)resorcinolate) into a κ3Si,C,Si-pincer ligand on an iridium complex.3

We now report the first examples of cyclometalation of a monodentate silylene. The room temperature reactions of the mesityl(amidinato)silylene Si(tBu2bzam)Mes (A; tBu2bzam = bis(tertbutyl)benzamidinate, Mes = mesityl) with three different iridium precursors led to products featuring one (1, 2) or two (3) cyclometalated silylene ligands that arise from an intramolecular C(sp3)‒H activation of one of the mesityl methyl groups. The catalytic applicability of these complexes is currently being investigated.

1. a) Albrecht, M. Chem. Rev. 2010, 110, 576-623. b) Djukic, J.-P.; Sortais, J.-B.; Barloy, L.; Pfeffer, M. Eur. J. Inorg. Chem. 2009, 817-853. c) Palladacycles: Synthesis, Characterization and Applications; Dupont, J.; Pfeffer, M. Eds.; Wiley-VCH, Weinheim, Germany, 2008.

2. a) Raoufmoghaddam, S.; Zhou, Y.-P.; Wang, Y.; Driess M. J. Organomet. Chem. 2017, 829, 2-10. b) Álvarez-Rodríguez, L.; Cabeza, J. A.; García-Álvarez, P.; Polo, D. Coord. Chem. Rev. 2015, 300, 1-28.

3. Brück, A.; Gallego, D.; Wang, W.; Irran, E.; Driess, M.; Hartwig, J. F. Angew. Chem. Int. Ed. 2012, 51, 11478-11482.

(A)

N

NSi

CH2

IrCl

(1)

[Ir2Cl2(µ-Cl)2(η5-Cp*)2]1/2

1/2

IrCl

H

(2)

[Ir2(µ-Cl)2(η2-coe)4]

Cl

HIr

C H2

H

(3)

tBu

tBu

N

N

Ph

Si

C H2

NN

N

NSi

CH2

N

NSi Si

N

N

= tBu2bzam

1/4

[Ir2(µ-Cl)2(η4-cod)2]

Page 79: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

77

FP12 P12

Fluorescent paper: straightforward synthesis of new (E)-2,5-dihydroxisubstitued-4’-hydroxystilbenes

Albert Granadosa, Adelina Vallriberaa

aDepartament de Química y Centro de Innovación y Química Avanzada (ORFEO-CINQA),

Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain [email protected]

Authentication of paper money is a problem of great interest since the detection of fake banknotes in circulation has grown up in recent years. Our aid to solve the problem to distinguish genuine from fake documents is to covalently anchor fluorescent molecules on paper surfaces. In this framework, our work has been focused on the design of new fluorescent (E)-stilbene based molecules. Moreover, we have added on the designed (E)-stilbene a hydrophobic moiety, able to incorporate self-cleaning and anti-wet properties, thus improving resistance to use over time. And finally, a functional reactive group for the reaction with cellulose is also necessary.[1] New (E)-4-hydroxystilbene derivatives (3) have been prepared performing the coupling of dihydroxy-substituted aromatic aldehydes (1) and the corresponding triphenylphosphonium salt (2) following a Wittig-Schlosser reaction. These (E)-4-hydroxystilbene derivatives were able to react with isocyanate (4) to accomplish 5 (Scheme).

n-BuLi, LiBr

THF, 0ºC, 3h

O

O

OR

R OOR R

OHOH

PPh3Br

+

OPPh3

OOR R

OO

NH

Si(OEt)3

CN

Si(OEt)3

O

NEt3, THF, overnight

(1) (2)(3)

(5)

1a: R =

C12H251b: R

= CH2CH2CH2CF3

1c: R =

CH2CH2CH2C8F17

(4)

Scheme: Synthesis of 5a-c

All these new compounds (5a-c) have shown hydrophobicity properties and accurate fluorescent parameters, ideal for preventing counterfeiting and aging of paper money for example. The anchoring of 5a-c to simple filter paper was achieved successfully obtaining a modified unique fluorescent paper.

References 1. D. Nyström, J. Lindqvist, E. Östmark, A. Hult and E. Malmström. Chem. Com. 2006, 3594-3596.

Page 80: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

78

FP13 P13

New π-acidic ligands based on N-Heterocyclic carbenes

C. Izquierdo,1 J. Iglesias-Sigüenza,1 E. Díez,1 R. Fernández,1 J. M. Lassaletta2

1Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/ Profesor García González 1, 41012-Sevilla (Spain)

2Instituto de Investigaciones Químicas (CSIC-USe), C/ Américo Vespucio 49, 41092-Sevilla (Spain) [email protected]

During the last years our research group has developed new families of N-heterocyclic carbenes (NHCs) with axial chirality.1 Recently, we have focused our efforts on the development of new catalysts which enhanced π-acidity at the metal center. Although in organometallic chemistry, the use of cationic ligands with a positive charge on (or adjacent to) the coordinating atom is not common, some examples of cationic ligands with NHC have been recently described.2 We envisaged a new strategy based on the synthesis of dicationic salts as direct precursors of cationic N(1),N(2)-dialkylated triazolo[4,3-b]isoquinolin-3-ylidene structures (Figure 1). The corresponding silver and gold complexes have been prepared and their structures studied by X-Ray diffraction analysis. The σ-donor and π-acceptor properties of this type of N-heterocyclic carbenes have been evaluated by using IR data from their rhodium complexes and 77Se-NMR spectroscopy from their selenoureas.3

N NN

R

R

N NN

R

R

Figure 1 References 1. (a) Francos, J.; Grande-Carmona, F.; Faustino, H.; Iglesias-Sigüenza, J.; Díez, E.; Alonso, I.; Fernández,

R.; Lassaletta, J.M.; López, F.; Mascareñas, J.L. J. Am. Chem. Soc. 2012, 134, 14322. (b) Varela, I.; Faustino, H.; Díez, E.; Iglesias-Sigüenza, J.; Grande-Carmona, F.; Fernandez, R.; Lassaletta, J.M.; Mascareñas, J.; López, F. ACS Catal. 2017, 7, 2397.

2. (a) Hildebrandt, B.; Ganter, C. J. Organomet. Chem. 2012, 83. (b) Hildebrandt, B.; Frank, W.; Ganter, C. Organometallics 2011, 30, 3483. (c) Hildebrandt, B.; Raub, S.; Frank, W.; Ganter, C. Chem. Eur. J. 2012, 18, 6670. (d) Verlinden, K.; Ganter, C. J. Organomet. Chem. 2014, 23. (c) Buhl, H.; Ganter, C. Chem. Commun. 2013, 49, 5417. (d) Ruamps, M.; Lugan, N.; César, V. Organometallics 2017, 36, 1049. (e) Schwedtmann, K.; Schoemaker, R.; Hennersdorf, F.; Bauzá, A.; Frontera, A.; Weiss, R.; Weigand, J.J. Dalton Trans. 2016, 45, 11384.

3. (a) A. Liske, K. Verlinden, H. Buhl, K. Schaper, C. Ganter, Organometallics 2013, 5269. (b) Vummaleti, S.V.C.; Nelson, D.J.; Poater, A.; Gómez-Suárez, A.; Cordes, D.B.; Slawin, A.M.Z.; Nolan, S.P.; Cavallo, L. Chem. Sci. 2015, 6, 1895.

Page 81: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

79

FP14 P14

Cyclic-peptide encapsulated cisplatin derivatives for drug delivery

Lamas, A.; Rodríguez-Vázquez, N.; Amorín, M.; Granja, J. R.

Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CiQUS), Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela

[email protected]

Platinum complexes are still one of the most widely used chemotherapeutic agents on a variety of cancer diseases.1 But its applications are limited because of its toxicity caused by its interactions with the blood serum proteins and low aqueous solubility. So far, a lot of efforts have been devoted to find new analogues or to develop efficient drug delivery vectors. Peptides are versatile tools for the development of new nanobiomaterials for different biological applications due to their structural variety and modulability.2 For example, the self-assembling cyclic peptides (CPs) are good platforms for drug delivery by the modification of their internal cavity.3

Cyclic peptides’ inner cavity can be functionalized by the introduction of gamma-amino acids which present a functional group in the beta-carbon. In this work, we present a new self-assembled cyclic peptide that contains a carboxylic acid group oriented toward the lumen that enables the encapsulation of cisplatin derivatives. The CP-Pt(II) complex is active against cisplatin resistant and non-resistant ovarian cell lines.

References 1. (a) Johnstone, T. C.; Suntharalingam, K.; Lippard, S. J. Chem. Rev. 2016, 116., 3436-3486. (b) Kelland,

L., Nat. Rev. Cancer, 2007, 7, 573-584. 2. (a) Ekiz, M.S.; Cinar, G.; Khalibaly, M.A.; Guler, M. O. Nanotechnology, 2016, 27, 1-37. (b) Adler-

Abramovich, L.; Gazit, E. Chem. Soc. Rev. 2014, 43, 6881-6893. 3. (a) Brea, R. J.; Reiriz, C.; Granja, J. R. Chem. Soc. Rev. 2010, 39, 1448-1456. (b) Rodríguez-Vázquez, N.;

García-Fandiño, R.; Amorín, M.; Granja, J. R. Chem. Sci. 2016, 7, 183-187. 4. Rodríguez-Vázquez, N.; García-Fandiño, R.; Aldegunde, M. J.; Brea, J.; Loza, M. I.; Amorín, M.; Granja,

J. R. Org. Lett. 2017, 19, 2560-2563.

Page 82: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

80

FP15 P15

Synthesis of Ester Precursors of Highly Enantiopure Chiral Alcohols via Asymmetric Hydrogenation of Trisubstitued Enol Esters

Félix Leóna, Pedro J. González-Listeb, Inmaculada Arribasa, Miguel Rubioa, Sergio E. García-

Garridob, Victorio Cadiernob, Antonio Pizzanoa

a Instituto de Investigaciones Químicas, CSIC and Universidad de Sevilla, Avda Américo Vespucio 49, 41092 Sevilla (Spain).bDepartamento de Química Orgánica e Inorgánica (IUQOEM, unidad

asociada al CSIC) and Centro de Innovación en Química Avanzada (ORFEO-CINQA). Universididad de Oviedo, C/ Julían Clavería 8, E-33071, Oviedo (Spain).

[email protected] The synthesis of chiral nonfuctionalized alcohols (C) present a great interest, especially for industries like the pharmaceutical, where a great variety of compounds with biological activity include chiral alcohols on their preparation.1 A very direct route to prepare this alcohols is the asymmetric hydrogenation of ketones (D, path a). However, the effectivity of this route highly depends on the nature of the substituents R1 and R2, and no results for diarylvinyl (R1,R2 = aryl) substrates have been reported in the literature. In previous studies developed by our group we explored an alternative path to obtain chiral alcohols (C) based on the asymmetric hydrogenation of enol esters (A) followed by a simple deprotection of the chiral esters (B, path b).2 In this work we study the asymmetric hydrogenation of of α-alkyl-β-alkyl, of α-alkyl-β-aryl and of α,β-diarylvinyl esters using rhodium catalysts with bifunctional phospine-phosphite ligands (P-OP). This work includes a broad catalyst screening together with the study of the influence of relevant parameters (temperature, hydrogen pressure or solvent), as well as substrate scope.

R1

OH

C

R1

O

D

R1-R2 = alkyl, aryl

R1

OC(O)R

A

R2 R2 R2

R1

OC(O)R3

B

R2 Deprotec. H2/Cat.

Path aPath b

* *

H2/Cat.

PR2

O P OO

tBu

tBu

P-OP

R = Alkyl, Aryl.

References 1. Shi, W.; Nacev, B. A.; Bhat, S.; Liu, J. O. ACS Med. Chem. Lett. 2010, 1, 155. 2. P. Kleman, P. J. González-Liste, S. E. García-Garrido, V. Cadierno and A. Pizzano, ACS Catalysis, 2014,

4, 4398.

Page 83: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

81

FP16 P16

Gold Catalyzed Cycloaddition with Imines

David C. Marcote,a* Jaime Fernández-Casado,a Iván Varela,a Ronald Nelson,a Jose L. Mascareñas,a Fernando Lópeza

a, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidad de Santiago de Compostela, C/ Jenaro de la

Fuente s/n, 15782 Santiago de Compostela, España [email protected]

During the last decade, there have been extraordinary advances in the development of Au-catalyzed processes. In this context, we and others have reported several intramolecular gold-catalyzed cycloadditions involving allenes,1 as well as intermolecular cycloadditions to dienes (4+2), alkenes (2+2),2 tandem (2+2+2) cycloadditions between alkenes and aldehydes, and to oxoalquenes.3 Based on these results, we developed a simple and highly versatile cascade cycloaddition between allenes and imine-tethered alkenes that provides a straightforward entry to aza-bridged seven and eight-membered rings (see scheme). Herein, we present our results on the development of this reaction.

•N

R4R2

[Au] 5mol%

NR4R2

R1

R3

R1

R3

R

X

XR2 = sulphonyl- or carbonyl- amide

XR2 = phenyl-ether

CH2Cl2, rt+

X

R1=R4= H, AlkylR2=R3= Alkyl, Aryl

41-89 % Yield

n = 1,2 n = 1,2

R

Scheme 1. Scheme of the catalyzed reaction. References 1. For reviews covering gold-catalyzed cycloadditions, see: a) López, F.; Mascareñas, J. L. Beilstein J. Org.

Chem. 2011, 7, 1075–1094; b) D. Garayalde, C. Nevado, ACS Catal. 2012, 2, 1462-1479; c) Shapiro, N. D.; Toste, F. D. Synlett 2010, 2010, 675–691; d) E. Jiménez-Núñez and A. M. Echavarren, Chem. Rev. 2008, 108, 3326-3350.

2. (a) Faustino, H.; López, F.; Castedo, L.; Mascareñas, J. L. Chem. Sci. 2011, 2, 633-637. (b) Francos, J.; Grande-Carmona, F.; Faustino, H.; Iglesias-Sigüenza, J.; Díez, E. J. Am. Chem. Soc. 2012, 134, 14322−14325. (c) Faustino, H.; Bernal, P.; Castedo, L.; López, F.; Mascareñas, J. L. Adv. Synth. Catal. 2012, 354, 1658–1664.

3. (a) Faustino, H.; Alonso, I.; Mascareñas, J. L.; López, F. Angew. Chem. Int. Ed. 2013, 52, 6526-6530. (b) Faustino, H.; Varela, I.; Mascareñas, J. L.; López, Chem. Sci., 2015, 6, 2903-2908. (c) Varela, I.; Faustino, H.; Díez E.; Iglesias-Sigüenza, J.; Grande-Carmona, F.; Fernández, R.; Lassaletta, J.M.; Mascareñas, J. L.; López, ACS Catal., 2017, 7, 2397–2402.

Page 84: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

82

FP17 P17

Acceptorless dehydrogenation reactions catalysed by a bimetallic complex

Roberto G. Alabau, Miguel A. Esteruelas,* Antonio Martínez, Montserrat Oliván, Enrique Oñate

Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de

Zaragoza-CSIC, 50009 Zaragoza, Spain [email protected]

A continuous increase in the demand for clean and renewable energy has reintroduced an interest in hydrogen as a form of chemical energy, although its storage is a demanding task1

and currently one of the barriers to adopting the hydrogen technology is the lack of an adequate method for its storage.2 In this context, liquid organic hydrogen carriers like alcohols have now high interest because of their easy storage, transport, relatively high hydrogen content, and their facile reciclability.3-6 Additionally, the conversion of alcohols to carbonyl compounds is an important reaction in organic chemistry as evidenced by its extensive applications in the synthesis of fine chemicals and pharmaceutical intermediates. In this work we present the synthesis and characterization of an osmium-iridium bimetallic complex, as well as its catalytic activity in the dehydrogenation of alcohols and related processes.

References 1. Crabtree, R. H. Energy Environ. Sci. 2008, 1, 134-138. 2. Eberle, U.; Felderhoff, M.; Schüth, F. Angew. Chem. Int. Ed. 2009, 48, 6608-6630. 3. Biniwale, R. B.; Rayalu, S.; Devotta, S.; Ichikawa, M. Int. J. Hydrogen Energy. 2008, 33, 360-365. 4. Trincado, M.; Banerjee, D.; Grützmacher, H. Energy Environ. Sci. 2014, 7, 2464-2503. 5. Giustra, Z. X.; Ishibashi, J. S. A.; Liu, S.-Y. Coord. Chem. Rev. 2016, 314, 134-181. 6. Preuster, P.; Papp, C.; Wasserscheid, P. Acc. Chem. Res. 2017, 50, 74-85.

Page 85: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

83

FP18 P18

An efficient and versatile catalyst for carbon dioxide fixation into cyclic carbonates

Javier Martínez,1 Agustín Lara Sánchez,1* Antonio Otero,1* Juan Fernández-Baeza,1 Jose

Antonio Castro Osma,2*

1 Dpto. Química Inorgánica, Orgánica y Bioquímica. Facultad de Ciencias y Tecnologías

Químicas. Universidad de Castilla-La Mancha. Avda. Camilo José Cela, S/N. 13071 Ciudad Real. 2 Dpto. Química Inorgánica, Orgánica y Bioquímica. Facultad de Farmacia. Universidad de

Castilla-La Mancha. Avda. Cronista Francisco Ballesteros, 1. 02071 Albacete. [email protected]

The use of carbon dioxide (CO2) as a starting material for the production of organic molecules and/or materials has recently received a great deal of attention from the scientific community.1 This approach is of great interest not only because carbon dioxide is a cheap, abundant, non–toxic and versatile C1-building block but also because it is one of the most significant greenhouse gases.1 The main challenge involves overcoming the thermodynamic stability of CO2.1 Hence, catalysis is crucial for the use of CO2 as a viable feedstock.1b One of the most important processes that uses CO2 is the production of cyclic carbonates2 from epoxides and carbon dioxide as these processes have 100% atom–economy and are highly exothermic (Scheme 1). During the last decades, rare-earth metal complexes and their use as catalysts in organic synthesis and polymerization processes have received significant attention.3 Thus, bearing in mind both the high catalytic activity and versatility of lanthanide complexes, we focused our efforts on developing the most active rare-earth catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide. We demonstrate that the catalyst system displays broad substrate scope and functional group tolerance. The remarkable versatility of this system allowed us to synthesize a range of bio-based cyclic carbonates that can be prepared from waste biomass, including limonene carbonate and limonene bis-carbonate, in the highest yield reported to date.

Scheme 1

References 1. (a) Aresta, M.; Dibenedetto, A.; Angelini, A. Chem. Rev. 2014, 114, 1709-1742; (b) Poliakoff, M.;

Leitner, W.; Streng, E. S. Faraday Discuss. 2015, 183, 9-17; (c) Kleij, A. W.; North, M.; Urakawa, A. ChemSusChem 2017, 10, 1036-1038.

2. (a) Xu, B. H.; Wang, J. Q.; Sun, J.; Huang, Y. Zhang, J. P.; Zhang, X. P. Green Chem. 2015, 17, 108-122; (b) Comerford, J. W.; Ingram, I. D. V.; North, M.; Wu, X. Green Chem. 2015, 17, 1966-1987.

3. (a) Fadlallah, S.; Terrier M.; Jones, C.; Roussel, P.; Bonnet, F.; Visseaux, M. Organometallics 2016, 35, 456-461; (b) Edelmann, F. T. Coord. Chem. Rev. 2016, 306, 346-419.

O

R+ CO2

OO

O

RR'

R'

La

Page 86: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

84

FP19 P19

Nickel-Cornered Supramolecular Assemblies as Polycyclic Aromatic Hydrocarbon Receptors

Víctor Martínez-Agramunt and Eduardo Peris*

Institute of Advanced Materials (INAM), Universitat Jaume I,

Av. Vicente Sos Baynat s/n, 12071-Castellón, Spain. [email protected]

Supramolecular coordination complexes (SSCs)1 are recently finding a great number of applications in catalysis,2 molecular recognition, stabilization of reactive species and as a drug delivery/release vectors.3 In 2008, Hahn and co-workers described a protocol for preparing a series of Ni(II)-based molecular rectangles based on a well-known Janus-type benzo-bis-imidazolylidene ligand.4 Based on this seminal work, we recently described the preparation of two molecular rectangles bearing a pyrene-di-imidazolylidene (Figure 1, complexes [3](X)4, [4](X)4) which showed extraordinary binding affinities to polyaromatic hydrocarbons, and high selectivity for binding pyrene and triphenylene.5 The interest in developing receptors for smaller PAHs resides in the high toxicity and carcinogenic properties of this aromatic molecules. Encouraged by our preliminary results, we now describe the preparation of nickel-cornered boxes (Figure 1, complex [5](X)6), by combination of a pyrene-di-imidazolylidene with different shapes and sizes. The affinity properties of these supramolecules are studied against small PAHs.

NNN

N

R

R

R

RNi Ni

NN N

N

R

R

R

R

NiNi

4+

NNN

N

R

R

R

R

Ni Ni

I

IR'

R'

R'

R'

R'

R'

N N NN

N N

N

N N

NN RR

RR

Ni

Ni

R' R'

N N

N

NN

N NR R

R R

Ni

Ni

R'R'NN

N NR R

R R

Ni

Ni

R'R'

Previous Work This Work 6+

[3](X)4 [4](X)4 [5](X)6

Figure 1. Multi-Ni(II) supramolecular coordination complexes [3](X)4, [4](X)4 and [5](X)6 studied. 1. Ballester, P.; Fujita, M.; Rebek, J..; Chem. Soc. Rev. 2015, 392-393 2. Bruin, B.; Reek, J.N.H.; Chem. Soc. Rev. 2015, 433-448 3. Zheng, Y.R.; Suntharalingam, K.; Johnstone, T.C.; Lippard, S.J. Chem. Sci 2015, 1189--1193 4. Hahn, F. E.; Radloff, C.; Pape, T.; Hepp, A. Organometallics 2008, 6408-6410 5. Martínez-Agramunt, V.; Ruiz-Botella, S.; Peris, E. Chem. Eur. J. 2017, 6675-6681

Page 87: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

85

FP20 P20

Insights of the Photoredox Catalysis from a Computational Point of View

Mikel Odriozola-Gimeno,1 Miquel Torrent-Sucarrat,1,2,3 Ivan Rivilla,1 Fernando P.Cossío1,2

1 Department of Organic Chemistry I, Universidad del País Vasco - Euskal Herriko Unibertsitatea (UPV/EHU), Manuel Lardizabal Ibilbidea 3, 20018 Donostia, Spain.

2 Donostia International Physics Center, Manuel Lardizabal Ibilbidea 4, Donostia, Spain. 3 Ikerbasque, María Díaz de Haro, 3, 6º, 48013 Bilbao, Spain.

[email protected] Over the last decade, visible-light-mediated photoredox catalysis has emerged as a valuable tool to generate single-electron transfer (SET) processes with organic substrates. This general strategy has also opened up a wide array of new synthetic methodologies.1 For instance, MacMillan and co-workers established an elegant dual photoredox-organocatalytic platform to enable the functionalization of unactivated sp3 C-H bonds.2 With the aim of bringing more understanding about the crucial factors involved in these reactions, we have studied by means of DFT and TD-DFT calculations the arylation of the allylic sp3 C-H bond.2c Three different reaction mechanisms associated with the electron transfer process have been considered: a) outer-sphere; b) inner-sphere; c) semi-sphere. From our results we conclude that the former and the later reaction mechanisms are both feasible and complimentary models. Nevertheless, the semi sphere scheme presents the advantage that avoids the formation of the reactive anionic radical intermediates.

NC CN + CNPhotoredox

and organic catalysis

References

1. a)Prier, C.K.; Rankic, D.A; MacMillan, D.W.C. Chem. Rev. 2013, 5322-5263; b) Shaw, M.H.; Twilton, J.; MacMillan, D.W.C. J. Org. Chem. 2016, 6898-6926.

2. a)Qvortrup, K.; Rankic, D.A.; MacMillan, D.W.C. J. Am. Chem. Soc. 2014, 626-629; b) Cuthbertson, J.D.; MacMillan, D.W.C. Nature 2015, 74-77.

Page 88: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

86

FP21 P21

Bioorthogonal chemistry promoted by discrete Cu(I) complexes

Joan Miguel-Ávila, María Tomás-Gamasa, José Luis Mascareñas Cid*

Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de

Compostela (Spain) [email protected]

Bioorthogonal chemistry has revolutionized the fields of imaging, drug development and biotechnology, due to its ability to manipulate biomolecules inside living systems without disturbing the host metabolism. The Copper Azide-Alkyne Cycloaddition (CuAAC) is one of the most widely reactions used in bioorthogonal chemistry because of its features as click reaction: high yields, minimal byproducts, aqueous cytotoxicity and mild conditions. Nevetherless, “not all that glitters is Copper” as it exhibit a pronounced cytotoxicity, due to its capacity to generate reactive oxygen species (ROS) and its pronounced thiophilic character. The discovery of tris(triazolylmethyl)amine ligands, such as TBTA or BTTP, that protect copper from oxidation, has allowed the development of non-natural reactions on cell surface1 or even inside E. Coli.2 However, carrying out CuAAC reactions inside mammalian cells is still a challenge, and only recently there have been a few reports in literature.3 Besides, the employment of exogeneous substrates with discrete Copper(I) complexes in CuAAC processes has not been developed. Herein we report the synthesis of BTTP/BTTE ligand analogues coupled with two different phosphonium derivatives. These ligands rise the solubility of the copper complexes in water, increase their internalization in HeLa and A549 cells,4 and improve their activity. We also report here for the first time the use of isolated Cu(I) complexes for in vivo experiments.

References 1. Wu, P., et al; J. Am. Chem. Soc. 2010, 16893-16899. 2. Chen, P. R., Wu, P., et al; Nat. Commun. 2014, 4981-4991. 3. a) Taran, F., et al; Angew. Chem. Int. Ed. 2014, 5872-5876; b) Zimmerman, S. C., et al; J. Am. Chem. Soc.

2016, 11077-11080; c) Cai, C., et al; Chem. Sci. 2017, 2107-2114. 4. Murphy, M. P., et al; Trends Pharmacol. Sci. 2012, 341-352.

Page 89: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

87

FP22 P22

Novel coordination modes of a BPI anion in osmium complexes

Antonio I. Nicasio, María L. Buil, Miguel A. Esteruelas*, Enrique Oñate.

Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de

Zaragoza-CSIC, 50009, Zaragoza, Spain. [email protected]

1,3-Bis(2-pyridylimino)isoindolates (BPIs) are a class of polydentate nitrogen-donor monoanionic ligands1 which usually form Npy,Niso,Npy-pincer complexes with transition metals,2 although a few compounds present other coordination modes.3 BPI complexes are of interest in homogeneous catalysis in different organic reactions including upgrading ethanol to 1-butanol, hydroboration of ketones and nitriles, hydrogenation of alkynes, among others.4 Recently in our group, the Npy,Nimine-bidentate-chelate and Npy,Nimine,Nimine,Npy-tetradentate-bridge coordination modes of the 1,3-bis(6’-methyl-2’-pyridylimino)isoindolinate anion have been discovered.

In the present contribution, we will show the preparation of novel BPI osmium complexes and some preliminary studies in catalytic reactions.

References 1. (a) Sauer, D. C.; Melen, R. L., Kruck, M; Gade, L. H., Eur. J. Inorg. Chem. 2014, 4715-4725. (b) Csonka,

R; Speier, G; Kaizer, J. RSC Adv 2015, 5, 18401-18419. 2. (a) Sauer, D. C.; Wadepohl, H. Polyhedron 2014, 81, 180-187. (b) Zhang, D. B.; Wang, J. Y.; Wen, H. M.;

Chen, Z. N. Organometallics 2014, 33, 4738-4746. (c) Roth, T.; Wadepohl, H.; Gade, L. H. Eur. J. Inorg. Chem. 2016, 8, 1184-1191.

3. (a) Baird, D. M.; Shih, K. Y.; Welch, J. H. Bereman, R. D. Polyhedron 1989, 8, 2359-2365. (b) Baird, D. M.; Shih, K. Y.; Polyhedron 1991, 10, 229-235. (c) Dietrich, B. L.; Egbert, J.; Morris, A. M.; Wicholas, M.; Anderson, O. P.; Miller, S. M. Inorg. Chem. 2005, 44, 6476-6481. (d) Muller, A. L.; Bleith, T.; Roth, T.; Wadepohl, H; Gade, L. H. Organometallics 2015, 34, 2326-2342.

4. (a) See for example: Geri, J. B.; Szymczak, N. K. J. Am. Chem. Soc. 2015, 137, 12808-12814. (b) Tseng, K. N. T.; Lin, S.; Kampf, J. W.; Szymczak, N. K.; Chem. Commun. 2016, 52, 2901-2904. (c) Tseng, K. N. T.; Kampf, J. W.; Szymczak, N. K. J. Am. Chem. Soc. 2016, 138, 10378-10381.

Page 90: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

88

FP23 P23

Room temperature reversible oxidative addition of phosphine-stabilized silylenes into Si-H and P-H σ-bonds

Nougué Raphaël,a Rodriguez Ricardo,a Contie Yohan,a Saffon-Merceron Nathalie,a

Sotiropoulos Jean-Marc,b Baceiredo Antoine,a* Kato Tsuyoshia*

aUniversité de Toulouse, and CNRS, LHFA, 118 route de Narbonne 31062 Toulouse (France) bUniversité de Pau, and CNRS, 2 avenue du Président Angot, 64053 Pau (France)

[email protected] Oxidative addition and reductive elimination are very important processes in organometallic chemistry and are essential in many catalytic reactions. This behavior is frequently encountered in transition metal complexes but is extremely rare for main group element species. Since several years, we develop the chemistry of phosphine-stabilized-silylenes 1 which present a high reactivity (like free-silylenes) and, to some extent, a transition metal like behavior.1,2

H

EPR2

SiNAr R

PR2

SiNAr R H

E

1 2

+

H-E = H-SiH2Ph, H-SiHPh2, H-PPh2

Reversible Oxidative addition/Reductive eliminaton at RT !!

PR2

SiNAr

3

L

Indeed, the silylene complex 1 reversibly reacts with silanes (or phosphine) by silylene insertion into E-H σ-bonds (E = Si, P) at room temperature to give the corresponding silanes 2, this process can be regarded as reversible oxidative addition/reductive elimination reactions.3 We will discuss this type of reaction in detail. In addition, we also present the chemistry of new cationic silylene complexes 3 with an unique reactivity. References 1. R. Rodriguez, D. Gau, T. Kato, N. Saffon-Merceron, A. De Cósar, F. P. Cossío, A. Baceiredo, Angew.

Chem. Int. Ed., 2011, 50, 10414. 2. R. Rodriguez, Y. Contie, D. Gau, N. Saffon-Merceron, K. Miqueu, J.-M. Sotiropoulos A. Baceiredo, T.

Kato, Angew. Chem. Int. Ed., 2013, 52, 8437. 3. R. Rodriguez, Y. Contie, R. Nougué, N. Saffon-Merceron, K. Miqueu, J.-M. Sotiropoulos A. Baceiredo,

T. Kato, Angew. Chem. Int. Ed., 2016, 55, 14355.

Page 91: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

89

FP24 P24

Hydration of terminal alkynes catalysed by a gold (I) complex bearing a pyrene-based bis-N-heterocyclic ligand

D. Nuevo, M. Poyatos, E. Peris*

Institute of Advanced Materials (INAM), Universitat Jaume I, Av. Sos Baynat, 12071 Castellón,

Spain [email protected]

The regioselective hydration of terminal alkynes to methyl ketones represents one of the most important C-O bond-forming reactions in organic synthesis.1 Very importantly; it is a reaction with high atom economy. Gold complexes and, in particular, those bearing NHC ligands, have emerged as promising catalysts for this transformation.2 In this context, we have synthesized a neutral Au(I) complex supported by a pyrene-based bis-NHC ligand (complex 1). Complex 1 has been tested in the hydration of terminal alkynes to ketones, showing good to excellent catalytic performance. The self-association and the formation of supramolecular aggregates have also been study by means of 1H NMR titrations. Our studies have revealed that the Au(I) complex shows selective affinity to interact with electron rich molecules.

RR

OCat. (0.25 mol%)

MeOH/H2O (2:1), 110ºC, 6h N

NN

N

n-Bu

n-Bu

n-Bu

n-Bu

AuAu II[Cat] =

Complex 1

Scheme 1. General reaction of hydration of terminal alkynes with Au(I) complex.

References 1. F. Alonso; I.P. Beletskaya; M. Yus. Chem. Rev. 2004, 3079-3159 2. F. Li; N. Wang; L. Lu; G. Zhu. J. Org. Chem. 2015, 3538-3546. We gratefully acknowledge financial support from MINECO of Spain (CTQ2014-51999-P and BES-2015-073136).

Page 92: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

90

FP25 P25

Towards a Salen-Based Double Strained DNA

M. Carmen Pérez-Aguilar[a,b], Miguel Ángel Sierra[a,b], Luis Casarrubios[a,b], Mar Gómez-Gallego[a,b].

aDepartamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid (Spain). bCentro de Innovación en Química Avanzada (ORFEO-CINQA).

[email protected] The development and design of new metal labelled biomolecules having tailored optical and electrochemical properties which make them suitable for detection in a biological environment are important area of research. Metal-based complexes containing nucleic acid derivatives have been extensively studied in our research group due to their redox and photochemical features.1 Moreover, the functionalization of oligonucleotides with photophysical properties containing DNA fragments has recently attracted our interest.2

In this context, we report the synthesis of different metallosalen complexes (M= Zn, Ni, Fe, Mn, Cu) containing metallated nucleic acid derivatives through a copper-catalyzed [3+2] cycloaddition between ethynil salicylaldehydes and azide metallonucleosides. The label is already incorporated into the metallanucleoside moiety by an alkyne insertion in the metallacycle. This methodology will allow the incorporation of oligonucleotide strains into the final product in future work. Finally, photophysical and redox properties of these compounds will herein be presented.

N N

O OMNN

N NNN

MetalatedNucleotide

= oligonucleotide strain

MetalatedNucleotide

References 1. a) Valencia, M.; Martín-Ortiz, M.; Gómez-Gallego, M.; Ramírez de Arellano, C.; Sierra, M.A. Chem. Eur.

J. 2014, 20, 3831-3838; b) Martín-Ortiz, M.; Gómez-Gallego, M.; Ramírez de Arellano, C.; Sierra, M.A. Chem. Eur. J. 2012, 18, 12603-12608.

2. To, Y.N.; Kool, E. T. Chem. Rev. 2012, 112, 4221-4245.

Page 93: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

91

FP26 P26

Regio- And Stereoselective Synthesis Of Borylated 1,4-Dienes Via Catalytic Allylboration Of Alkynes

E. Rivera-Chao, J. Mateos, M. Fañanás-Mastral

Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS),

Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain. [email protected]

1,4-Dienes, also known as skipped dienes, are present in wide range of natural products with biological activity. Consequently, general methods that allow for the efficient and stereoselective preparation of this dienes are in high demand. Among the methods available for the synthesis of these molecules, transition metal-catalyzed allylic substitution using alkenylmetal reagents has become a powerful tool.1 However, these methodologies require the use of stoichiometric amount of organometallic reagents generating toxic and stoichiometric amount of waste and impose some limitations with respect to the functional group tolerance due to the high reactivity of most of these reagents. A methodology using catalytically generated alkenylmetal species has been recently described. However, it shows limited substrate scope and selectivity issues associated with a substrate controlled regioselectivity.2 Here we present catalytic methodologies to obtain borylated 1,4-dienes in a easy and sustainable manner. We have been able, by fine tuning of the catalyst and reaction conditions, to develop either SN2 or SN2’ selective allylic substitution of catalytically generated β-borylalkenylcopper intermediates (Scheme 1). These methodologies stand out for the easy access to complex structures in one single step starting from simple starting materials.

Scheme 1. Catalytic allylboration of alkynes. In one way, we obtain lineal 1,4-dienes via cooperative copper/palladium catalysis using allylic carbonates. On the other hand, the use of difunctionalized allyl derivates allows for the synthesis of branched difunctionalized 1,4-dienes under copper catalysis. References 1. Matsushita, H.; Negishi, E. J. Am. Chem. Soc. 1981, 103, 2882.; Lee Y.; Akiyama K.; Gillingham, D. G.; Brown, M. K.; Hoveyda, A. H.. J. Am. Chem. Soc. 2008, 130, 446. 2. Bin H. Y.; Wei, X.; Zi, J.; Zuo, Y. J.; Wang, T. C.; Zhong, C. M.. ACS Catalysis 2015, 5, 6670.

R'

R

Cu/Pd catalysis

Base, B2(pin)2

Cu catalysisBase, B2(pin)2

R'' OCO2R X Y

R''= alkyl,aryl X, Y= hal,

OCO2R

R''

RR'

Bpin

RR'

BpinX

SN2 SN2'

Page 94: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

92

FP27 P27

Multicriteria optimization of chemostructural drafts with a modular software platform: GaudiMM

J. Rodríguez-Guerra1, G. Sciortino1, J. D. Maréchal1

Departament de Química, Universitat Autònoma de Barcelona, 08193

Cerdanyola del Vallès, Barcelona, Spain [email protected]

GaudiMM (for Genetic Algorithms with Unrestricted Descriptors for Intuitive Molecular Modeling)1 is here presented as a modular platform for easy 3D sketching of molecular systems. It combines a Multi-Objective Genetic Algorithm (MOGA) with diverse molecular descriptors to overcome the difficulty of generating candidate models for systems with scarce structural data. Modelling a system in GaudiMM means choosing between the available descriptors to obtain a sufficiently accurate depiction of the system variability, and then a set of objectives that should be fulfilled along the simulation. Here we present a set of descriptors and objectives that successfully reproduce the metal-bound form of the siderophores found on E. coli FepB protein,2 which features a tetrahedral iron ion, a volume-constrained peptide folding, and a set of benchmarked standard protein-ligand dockings. This case study serves the purpose of showing how the multi-objective capabilities of GaudiMM can be used to setup complex restrained optimizations of structures, even including metal ions. 3

References 1. Rodríguez-Guerra, J., Sciortino, G., Guasp, J., Municoy, M., Maréchal, J.-D. J. Comput. Chem. 2017.

(accepted). 2. Li, N. and Gu, L., To be Publ. n.d., DOI 10.2210/PDB3TLK/PDB. 3. Mujika, J. I., Rodríguez-Guerra, J., Lopez, X., Ugalde, J. M., Rodríguez-Santiago, L., Sodupe, M.,

and Maréchal, J.-D., Chem. Sci. 2017, DOI 10.1039/C7SC01296A.

Page 95: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

93

FP28 P28

M-Carbene Catalysts With 1,2,3-Triazole Ligands Supported On Graphene Oxides

Beatriz Sánchez, M. Victoria Jiménez, Jesús J. Pérez-Torrente

Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea ISQCH, Universidad de Zaragoza-CSIC, c/ Pedro Cerbuna 12, 50009, Zaragoza, España.

[email protected]

Graphene surfaces as supports of homogeneous catalysts can provide special features to the catalytic systems resulting, in favorable cases, in an enhancement of both the activity and selectivity, allowing for the recycling of the catalysts. In this work, we have prepared carbene-rhodium and iridium hybrid catalysts anchored on a graphene oxide decorated with 3-methyl-4-phenyl-1,2,3-triazolium groups.[1][2] Thermally reduced graphene oxide (TRGO) was functionalized with 4-phenyl-1,2,3-triazolio groups (TRGO-2) by a Huisgen cycloaddition (click reaction) between the azide groups on the functionalized graphene material (TRGO-1) and phenylacetylene.

After alkylation, the triazolium salt supported on the graphene oxide TRGO-3 was treated with methoxo-bridged cyclooctadiene rhodium(I) and iridium(I) dimers, [M(μ-OMe)(cod)]2, to obtain the hybrid carbene catalysts TRGO-Rh and TRGO-Ir. The structure of the rhodium heterogeneous catalysts has been confirmed by EXAFS analysis.

We have studied the catalytic activity of both catalysts in the hydrosilylation of terminal alkynes. Although the iridium hybrid catalyst shows moderate activity, the rhodium material exhibits high activity and complete selectivity to β-Z vinyl silanes. The activity compares well with that shown by the related the homogeneous complex, [Rh(1,4-diphenyl-3-methyl,1,2,3-triazole)(cod)(I)]. Unfortunately, the catalytic activity of the hybrid catalyst decreases in the recycled experiments.

References [1]. M. Blanco, P. Álvarez, C. Blanco, M. V. Jiménez, J. Fernández-Tornos, J. J. Pérez-Torrente, L.A. Oro, R. Menéndez, ACS Catal. 2013, 3, 1307. [2]. M. Blanco, P. Álvarez, C. Blanco, M. V. Jiménez, J. Fernández-Tornos, J. J. Pérez-Torrente, L.A. Oro, J. Blasco, V.Cuartero, R. Menéndez, Catal. Sci. Technol. 2016, 6, 5504

Page 96: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

94

FP29 P29

Selective palladium(II)-mediated oxidation of homoallylic N-tert-butanesulfinyl amine derivatives

Ana Sirvent,1,2 Francisco Foubelo,1,2 Miguel Yus1

1Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-

CINQA), Universidad de Alicante, Apdo. de Correos 99, 03080 Alicante, Spain 2Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, 03080-Alicante (Spain)

[email protected]

Alkenes are the starting reagents in many multi-step syntheses of complex organic molecules. For that reason, methodologies for alkene functionalization at the allylic position through C-H activation1 are of great interest. Palladium(II) compounds were found to be successful in performing allylic oxidations and, as a result, ligands and conditions have been reported for carrying out efficient methods to perform these allylic oxidations in a regioselective manner. The palladium(II)-catalyzed oxidation of homoallylic amine derivatives resulting from the allylation of N-tert-butanesulfinyl imines with allyl bromide,2 led to the formation of the corresponding terminal allylic acetates in a regioselective fashion in moderate yields. In the case of the homoallylic amine derivatives obtained using cyclohexenyl bromide as allylating reagent, the allylic oxidation took place with high regio- and diastereoselectivity and yields ranging from 40 to 85%.3,4

R

HNS

Me MeMe

O

*

R

HNS

Me MeMe

O

*PdLn

R

NHS

O

Me MeMe

OAc

R

NHS

O

Me MeMe

OAc

R

HNS

Me MeMe

O

PdLn

Pd(OAc)2 (10 mol%)

BQ (2 equiv), 3Å MSAcOH, DMSO (1:1)

40 ºC

Pd(OAc)2 (10 mol%)

BQ (2 equiv) AcOH (4 equiv)

1,4-dioxane, 50 ºC

(35-49%) (40-85%)

H

References 1. For reviews, see: (a) Grange, R. L.; Clizbe, E. A.; Evans, P. A. Synthesis 2016, 48, 2911-2968. (b)

Lorion, M. M.; Oble, J.; Poli, G. Pure Appl. Chem. 2016, 88, 381-389. 2. (a) Foubelo, F.; Yus M. Tetrahedron: Asymmetry 2004, 15, 3823-3825. (b) Sirvent, J. A.; Foubelo,

F.; Yus, M. Chem. Commun. 2012, 48, 2543-2545. 3. Sirvent, A.; Soler, T.; Foubelo, F.; Yus, M. Chem. Commun. 2017, 53, 2701-2704. 4. Financial support was provided by the Spanish Ministerio de Economía y Competitividad (MINECO)

(projects CTQ2014-53695-P and CTQ2014-51912-REDC), the Spanish Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER, EU) (project CTQ2016-81797-REDC), the Generalitat Valenciana (PROMETEOII/2014/017) and by the University of Alicante.

Page 97: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

95

FP30 P30

Synthesis of potentially bioactive prolinates through 1,3-dipolar cycloadditions

Elisabeth Selva,1,2 Verónica Selva,1,2 Francisco Foubelo,1,2 Carmen Nájera,1 José M.

Sansano1,2

1Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-

CINQA), Facultad de Ciencias, Universidad de Alicante 03080-Alicante (Spain). 2Instituto de Síntesis Orgánica (ISO), Facultad de Ciencias, Universidad de Alicante 03080-

Alicante (Spain) [email protected]

Microorganisms, especially bacteria, viruses, and in less extension, fungi, have developed resistance mechanisms against drugs. For this reason, the society urgently needs new drugs able to inhibit them efficiently. These long infections are very expensive for the public health. Very recently, it has been proved that a wide family of nucleosidic antibiotics attacked at different stages of the formation of the cellular wall of bacteria and fungi.1 These new molecules are ready to direct the drug to their biological targets reducing in this way undesirable secondary effects. It was also demonstrated that resistance of viruses to a nucleosidic drug is more difficult to achieve. New drug candidates are efficiently prepared through a multicomponent 1,3-dipolar cycloaddition employing aldehydes bearing a purine or a pyrimidine base (or another heterocycle) similar to those employed in the genetic material by animals and plants.2 Apart of these pharmacophores another interesting heterocycles can be inserted as formyl derivatives ready to generate the intermediate imino ester. Depending on the solubility of the heterocyclic carbaldehyde the reaction was performed in ethanol or toluene at variable temperature achieving diastereoselectively the corresponding cycloadducts in very high yields.3

H2N Z1

R1

CHOZ2 R2

SolventT

NH Z1

R1

Z2 R2

N Z1

R1

Z2 R2

Phar

Phar

Phar

Phar (Pharmacophore) = Purines, pyrimidines and other heterocycles

AgX

References 1. Antimicrobial Agents; Bobbarala, V. Ed. InTech Publishing, Rijeka, Croatia, 2012. 2. Nájera, C.; Sansano, J. M. Org. Biomol. Chem. 2009, 7, 4567-4581. 3. Financial support was provided by the Spanish Ministerio de Economía y Competitividad (MINECO)

(projects CTQ2013-43446-P and CTQ2014-51912-REDC), the Spanish Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER, EU) (projects CTQ2016-76782-P and CTQ2016-81797-REDC), the Generalitat Valenciana (PROMETEOII/2014/017) and by the University of Alicante. E. S. thanks the Universidad de Alicante and Medalchemy S. L. for a predoctoral fellowship.

Page 98: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

96

FP31 P31

Blue-green phosphorescent heteroleptic iridium(III) complexes with N-heterocyclic carbene ligands

Miguel A. Esteruelas,1 Ana M. López,1 Enrique Oñate,1 Ainhoa San-Torcuato,1 Jui-Yi

Tsai,2 Chuanjun Xia2

1 Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea

(ISQCH), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain

2 Universal Display Corporation, 375 Phillips Boulevard, Ewing, New Jersey 08618, United States [email protected]

The synthesis of Iridium(III) phosphorescent complexes has attracted a lot of attention

due to their potential of serving as key components for various optoelectronic applications, such as phosphorescent emitters for organic light-emitting diodes (OLEDS).1 Among these complexes homoleptic and heteroleptic cyclometalated phenylpyridine derivatives of Ir(III) have been widely studied due to the relatively short lifetime of the triplet excited state, high emission efficiency and tunable emission color.2 While there are many green and red emitters that meet the requirements of device design, the development of blue phosphorescent emitters remains a challenge.3 In this context, iridium N-heterocyclic carbene complexes have been considered as ideal triplet emitters, because of their high luminescence quantum yield, color purity and stability imparted by the strong Ir-C(NHC) bond.4

In this communication, we describe the synthesis of a new family of neutral heteroleptic Ir(III) complexes bearing N-heterocyclic ligands which are emissive in the blue-green region and have high quantum yields. References: 1. Zanoni, K. P. S.; Coppo, R. L.; Amaral, R. C.; Iha, N. Y. M. Dalton Trans. 2015, 44, 14559-14573. 2. Chi, Y.; Chou, P.-T. Chem. Soc.Rev. 2010, 39, 638-655. 3. Baranoff, E.; Curchod, B. F. E. Dalton Trans. 2015, 44, 8318-8319. 4. (a) Mercs, L.; Albrecht, M. Chem. Soc. Rev. 2010, 93, 1903-1912. (b) Lee, J.; Chen, H.-F.; Batagoda, T.;

Coburn, C.; Djurovich, P. I.; Thompson, M. E.; Forrest, S. R. Nat. Mater. 2016, 15, 92-98.

Page 99: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

97

FP32 P32

Synthesis of Cyclic Carbonates Catalyzed by N,N,O-Scorpionate Zinc Alkyl Complexes

Sonia Sobrino,a Antonio Otero,a* Juan Fernández-Baeza,a* Luis F. Sánchez Barba,b* Andrés

Garcés,b Agustín Lara Sánchez,a Jose Antonio Castro Osma,a

aDpto. Química Inorgánica, Orgánica y Bioquímica. Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla-La Mancha. Avda. Camilo José Cela, S/N. 13071 Ciudad Real.

[email protected] bDpto. Biología y Geología, Física y Química Inorgánica. Campus de Móstoles. Universidad Rey

Juan Carlos. Calle Tulipán. S/N. 28933 Móstoles (Madrid).

The utilisation of carbon dioxide (CO2) as a sustainable chemical feedstock is attracting increasing attention. Unfortunately, most reactions of carbon dioxide require high temperatures and pressures. The transformation of carbon dioxide would not only reduce carbon dioxide emissions, but would also produce useful chemicals. However, requires efficient strategies for the conversion of CO2 into economically competitive products to help to stabilize and reduce atmospheric carbon dioxide levels to mitigate the greenhouse effect and to develop an alternative and sustainable raw material.1 One of the most promising reactions in this field is the synthesis of cyclic carbonates from epoxides and CO2 (Scheme 1). Among these catalysts, bifunctional systems or one-component catalyst, have been less developed probably due to their more synthetically demanding preparation.2

In this work, we illustrate the employment of N,N,O-scorpionate zinc alkys complexes3 as catalysts for the synthesis of cyclic carbonates from epoxides and carbon dioxide in batch

and gas phase flow reactions under mild conditions.

OO

O

Rcatalyst

O

R+ CO2

Scheme 1

Zn

NN

NN R

H

OR'

Epoxide Cyclic Carbonate

References 1. Aresta, M.; Dibenedetto, A.; Angelini, A.; Chem. Rev. 2014, 114, 1709-1742. 2. (a) Martín, C.; Fiorani, G.; Kleij, A. W.; ACS Catal. 2015, 5, 1353-1370; (b) Comerford, J. W.; Ingram,

L. D. V.; North, M.; Wu, X.; Green Chem. 2015, 17, 1966-1987; (c) Maeda, C.; Taniguchi, T.; Ogawa, K.; Ema, T.; Angew. Chem. Int. Ed. 2015, 54, 134-138; (d) Song, Q. W.; Zhou, Z. H.; He, L. N.; 2017, DOI.10.1039/c7gc00199a.

3. (a) Honrado, M.; Otero, A.; Fernández-Baeza, J.; Sánchez-Barba, L. F.; Garcés, A.; Lara-Sánchez, A.; Rodríguez, A. M.; Organometallics 2014, 33, 1859−1866. (b) Honrado, M.; Otero, A.; Fernández-Baeza, J.; Sánchez-Barba; Garcés, A.; Lara-Sánchez, A.; Rodríguez, A. M. Dalton Trans. 2014, 43, 17090−17100.

Page 100: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

98

FP33 P33

From Arylguanidines to 1,3-Benzodiazepines by Rhodium C-H Activation

Jaime Suárez, Álvaro Velasco, Nuria Martínez-Yáñez, Jesús A. Varela, Carlos Saá*

Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) e Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de

Compostela [email protected]

Metal-catalyzed C-H activation directed by nitrogenated groups is nowadays one of the most powerful tools for the synthesis of azaheterocycles.1 We have recently developed a novel Rh(III)-catalyzed [5+1] oxidative cycloaddition of arylguanidines with aliphatic alkynes to 1,4-dihydroquinazol-2-amines (eq 1).2 To gain more insights into the mechanism of this cyclization reaction several stoichiometric experiments were conducted. We now report the formation of 1,3-benzodiazepine-2-amines 3 by a [5+2] oxidative cycloaddition between the arylguanidine 1 and aromatic/aliphatic alkynes 2 (eq 2). Mechanistic investigations showed that new air-stable six and eight-membered rhodacycles3 have been formed. Demetallation of these rhodacycles by addition of CuCl2 gave rise to the desired 1,3-dibenzodiazepines in excellent yields.3a 1,3-Benzodiazepines have been shown to possess a wide range of interesting medicinal applications.4

(1) (2)

Acknowledgements: This work has received financial support from Spanish MINECO (project CTQ2014-59015R), the Consellería de Cultura, Educación e Ordenación Universitaria (project GRC2014/032) and Centro singular de investigación de Galicia, accreditation 2016-2019, ED431G/09 and ERDF. We also thank the ORFEO-CINQA network (CTQ2014-51912REDC). A.V. and J. S. thank the Xunta de Galicia for predoctoral and postdoctoral contracts, respectively. References 1. Guo, X-X.; Gu, D-W.; Wu, Z.; Zhang, W. Chem. Rev. 2015, 115, 1622-1651. 2. Cajaraville, A.; Suárez, J.; López, S.; Varela, J.; Saá, C. Chem. Commun. 2015, 51, 15157-15160. 3. For synthesis of rhodacycles, see: a) Ling L.; Brennessel, W.W.; Jones, W.D. J. Am. Chem. Soc. 2008, 130,

12414-12419. b) Ling, L.; Brennessel, W.W.; Jones, W.D. Organometallics 2009, 28, 3492-3500. 4. Zhu, Z. Y.; Ye, Y.; McKittrick, B.; Greenlee, W.; Czarniecki, M.; Fawzi, A.; Zhang, H.; Lachowicz, J. E.

Bioorg. Med. Chem. Lett. 2009, 19, 5218.

Page 101: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

99

FP34 P34

(3 + 2) Cycloaddition of Aryl and Styryl Gold(I) Carbenes with Allenes

Mauro Mato1, Xiang Yin1 and Antonio M. Echavarren1,2,*

1 Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.

2 Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain.

[email protected] We have recently found that cationic gold(I) complexes promote the retro-Buchner reaction of 7-aryl-1,3,5-cycloheptatrienes, generating gold carbenes that cyclo-propanate alkenes.1 This approach lead to the construction of different structures like indenes, fluorenes or cyclopentenes.2 In this communication, we report the novel reactivity of allenes with aryl and styryl gold(I) carbenes generated by retro-Buchner reaction of 7-substituted 1,3,5-cyclo-heptatrienes to obtain highly substituted indenes and cyclopentadienes.

Application of this formal (3 + 2) cycloaddition in natural products synthesis will also be presented.

References 1. C. R. Solorio-Alvarado, Y. Wang, A. M. Echavarren, J. Am. Chem. Soc. 2011, 133, 11952-11955. 2. (a) Y. Wang, P. R. McGonigal, B. Herlé, M. Besora, A. M. Echavarren, J. Am. Chem. Soc. 2014, 136, 801-

809. (b) Y. Wang, M. E. Muratore, Z. Rong, A. M. Echavarren, Angew. Chem. Int. Ed. 2014, 53, 14022-14026.

Page 102: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

100

Page 103: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

101

Posters

Page 104: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

102

P35 Cyclic Amino(Ylide) Silylene: A Stable Heterocyclic Silylene with Strongly Electron Donating Character

Isabel Alvarado-Beltrána, Antoine Baceiredoa*, and Tsuyoshi Katoa*.

a Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier, Université de

Toulouse, UPS and CNRS, LHFA, 118 route de Narbonne, F-31062 Toulouse, France

[email protected], [email protected] The chemistry of silylenes has attracted considerable attention since the first isolation of a stable cyclic diaminosilylene in 1994 by West and Denk.1 To date, several stable silylenes have been synthesized. However, although N-heterocyclic carbenes (NHC), presenting a high stability and a strongly nucleophilic character, are well recognized to be very useful chemical tools in various domain, the corresponding N-heterocyclic silylenes (NHSi) are highly reactive and poorly nucleophilic.2 Driess et al demonstrated that an introduction of ylide substituents (more electropositive π-donating substituents) into a silylene dramatically increases its nucleophilic character. However, the corresponding cyclic (ylide)(ylide)silylene is so reactive that it reacts even with several solvents such as THF or DME, which makes it difficult use it.3

NC

N NSi

N

NHC NHSi

Very stablestrongly nucleophilic

Very reactivePoorly nucleophilic

CSi

CR3P PR3

Strongly basicDriess et al. Angew 2011

PR2C

SiN

Ar NR2

Enhanced stabilityStrongly electrong donating

(Ylide)(ylide)silylene (Amino)(ylide)silylene

This work

Very useful

We report the synthesis of a new stable NHSi featuring two different π-donating substituents such as an amino and phosphonium ylide groups (Angew. Chem. Int. Ed. 2016, 55, 16141). The combination of these two substituents confers a high thermal stability to the silylene and a strong nucleophilic character on silylene. We will discuss the characterization of the silylene as well as its unique reactivity. References 1. M. Denk, R. Lennon, R. Hayashi, R. West, A. V. Belyakow, H. P. Verne, A. Haaland, M. Wagner, N.

Metzler, J. Am. Chem. Soc., 1994, 116, 2691. 2. a) M. Haaff, T. A. Schemedake, R. West, Acc. Chem. Res. 2000, 33, 704. b) B. Gehrhus, M. F. Lappert.

J. Organomet. Chem., 2001, 617, 209. c) N. J. Hill, R. West, J. Organomet. Chem, 2004, 689, 4165. d) M. Asay, C. Jones, M. Driess, Chem. Rev. 2011, 111, 354.

3. M. Asay, S. Inoue, M. Driess, Angew. Chem. Int. Ed., 2011, 50, 9589

Page 105: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

103

P36 Ruthenium alkylidene complexes with germylene ligands

Lucía Álvarez-Rodríguez, Javier A. Cabeza* and Pablo García-Álvarez*

Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Orgánica e Inorgánica,

Universidad de Oviedo, 33071 Oviedo (Spain) [email protected]

The appearance in the early nineties of the olefin metathesis-active ruthenium alkylidene complexes [RuCl2L2(=CHPh)] (L = phosphane), known as Grubbs' first-generation catalysts, boosted the use of this catalytic reaction in organic and polymer chemistry.1 The activity and stability of this initial generation of catalysts were greatly improved replacing at least one of the phosphane ligands by an N-heterocyclic carbene (NHC) (Grubbs and Hoveyda-Grubbs second-generation catalysts).1 This improvement was attributed to the stronger donation capacity and higher steric bulk of NHC ligands.

Having this in mind and considering that heavier carbene ligands, also known as heavier tetrylenes (HTs), have emerged as promising alternatives to NHCs (some of them have proven to be even stronger donors than NHCs),2 we decided to undertake the synthesis of a new generation of Grubbs-type ruthenium alkylidene complexes featuring HTs as ancillary ligands.

We now report that the reaction of [RuCl2(PCy3)2(=CHPh)] (1) with the very basic amidinatogermylenes Ge(tBu2bzam)R (R = tBu (A), CH2SiMe3 (B); tBu2bzam = N,N’-bis(tertbutyl)benzamidinate) led to the disubstituted derivatives [RuCl2L2(=CHPh)] (L = A (2), B (3)), demonstrating the stronger Lewis basicity of the germylenes as compared to that of PCy3. Curiously, while both germylenes are in a trans arrangement in 2, as has been found in the majority of Grubbs-type ruthenium alkylidene complexes, a cis disposition is observed in 3. We are currently investigating the origin of the different stereochemistry of 2 and 3 and their applicability in olefin metathesis.

1. a) Vougioukalakis, C. G.; Grubbs, R. H. Chem. Rev. 2010, 110, 1746-1787. b) Samonjłowicz, C.; Bieniek, M.; Grela, K. Chem. Rev. 2009, 109, 3708-3742.

2. a) Raoufmoghaddam, S.; Zhou, Y.-P.; Wang, Y.; Driess, M. J. Organomet. Chem. 2017, 829, 2-10. b) Álvarez-Rodríguez, L.; Cabeza, J. A.; García-Álvarez, P.; Polo, D. Coord. Chem. Rev. 2015, 300, 1-28.

Cl

Cl

PCy3

PCy3

RuPh

tBu

NN

tBuPh

GetBu

= tBu2bzamNN

NNGe

tBu

Ph

Ge

Me3SiCH2

Cl

Ph

N N

Ge

tBu

Cl

Ph

NN

Ge

CH2SiMe3

N N

GeCH2SiMe3

2 A

(1)(2) (3)

(A)

(B)

2 B

Cl

Ru

Cl

Ru

NtBu

tBuN

Page 106: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

104

P37 (Z)-β-Iodoenol esters: Synthesis and use as starting materials for the stereoselective preparation of trisubstituted enol esters

Victorio Cadierno,a Pedro J. González-Liste,a Javier Francos,a Sergio E. García-Garrido,a

Félix León,b Antonio Pizzanob

a Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Orgánica e

Inorgánica, IUQOEM, Universidad de Oviedo, 33006 Oviedo, Spain b Instituto de Investigaciones Químicas (IIQ) and Centro de Innovación en Química Avanzada

(ORFEO-CINQA), CSIC and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain [email protected]

Haloalkynes represent a significant class of building blocks in synthetic organic chemistry. In particular, remarkable efforts have been devoted in the last years to their selective hydro-functionalization, giving access to a large variety of 2-functionalized-1-haloalkenes.1 However, an important gap in the field concerned the intermolecular addition of carboxylic acids to access β-haloenol esters. In this context, we have developed very recently a wide scope procedure for the synthesis of (Z)-β-iodoenol esters through the unprecedented catalytic hydro-oxycarbonylation of iodoalkynes with carboxylic acids.2 The process, which is catalyzed by the in situ generated gold(I) cation [Au(PPh3)]+, proceeds with complete regio- and stereoselectivity under mild conditions, affording the desired products in moderate to excellent yields. In addition, the synthetic utility of the resulting (Z)-β-iodoenol esters was demonstrated with the preparation of a broad family of trisubstituted olefins through classical Pd-catalyzed Suzuki and Sonogashira C-C couplings. Their Ni-catalyzed homocoupling allows also the preparation of functionalized dienes with complete stereoselectivity. Details of this chemistry will be presented in this communication.

References 1. Wu, W.; Jiang, H. Acc. Chem. Res. 2014, 47, 2483-2504; Jiang, H.; Zhu, C.; Wu, W. Haloalkyne

Chemistry, Springer, Heidelberg, 2016. 2. González-Liste, P. J.; León, F.; Arribas, I.; Rubio, M.; García-Garrido, S. E.; Cadierno, V.; Pizzano, A.

ACS Catal. 2016, 6, 3056-3060; González-Liste, P. J.; Francos, J.; García-Garrido, S. E.; Cadierno, V. J. Org. Chem. 2017, 82, 1507-1516; León, F.; González-Liste, P. J.; García-Garrido, S. E.; Arribas, I.; Rubio, M.; Cadierno, V.; Pizzano, A. J. Org. Chem. 2017, in press.

Page 107: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

105

P38 Carbodiimide hydroalkynation using simple ZnEt2 as catalyst

Fernando Carrillo-Hermosilla,1 Antonio Antiñolo,1 Antonio Rodríguez-Diéguez.2

1Dpto. de Química Inorgánica, Orgánica y Bioquímica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Fac. de CC. y TT. Químicas. Universidad de Castilla-La Mancha.

13071-Ciudad Real 2Dpto. de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071-Granada

[email protected] Catalysis has a great impact in industrial processes including the production of "commodities" and fine chemicals. Nevertheless, the commercial use of transition metals, as Rh or Pd, in catalytic processes, as well as the trend in chemistry research towards the use of derivatives of the lanthanoids, show some disadvantages due to their minor availability, high prices, or toxicity. Part of the actual research is focused on the substitution by cheaper metals with low toxicity.1 In this way, the use of zinc compounds can be of great interest, due to his abundance, the biological importance and the different capacities of reactivity. In this communication, we present our results on a catalytic process of carbodiimide hydroalkynation,2 to obtain propiolamidines based on simple and easily available ZnEt2.3 We also present the use of this catalyst in the subsequent coupling to isocyanates to obtain substituted imidazolidinones. Mechanistic studies as well as isolated plausible intermediates will be also discussed.

HX

NC

NR R

+ ZnEt2NH

R

NR

X

R NCO

N

NR

O

NR'

R

X

ZnEt2

References 1. M. S. Holzwarth, B. Plietker, ChemCatChem 2013, 5, 1650-1679. 2. M. Arrowsmith, M. R. Crimmin, M. S. Hill, S. L. Lomas, M. S. Heng, P. B. Hitchcock, G. Kociok-Köhn, Dalton Trans 2014, 43, 14249-14256. 3. C. Alonso–Moreno, F. Carrillo–Hermosilla, A. Garcés, A. Otero, I. López–Solera, A. M. Rodríguez, A. Antiñolo, Organometallics 2010, 29, 2789-2795.

Page 108: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

106

P39 Synthesis and Reactivity of the Triphosphorus Complex [Mo2Cp2(µ-P3)(µ-PtBu2)]

M. Ángeles Álvarez, Melodie Casado, M. Esther García, Daniel García-Vivó*, M. Ángel Ruiz

Department of Organic and Inorganic Chemistry, University of Oviedo, 33006 Oviedo, Spain [email protected]

White phosphorus (P4) activation and functionalization has attracted much attention,1 in part because of the need to replace the currently unsustainable industrial technology used to produce organophosphorus derivatives. Thus, direct functionalization of P4 under mild conditions is a desirable goal to avoid the use of dangerous and toxic chemicals in the above industrial processes, and this ultimately relies on the ability to control the cleavage of P-P bonds. Our group has recently achieved the symmetric cleavage of P4 under mild conditions using the 30-electron anions [M2Cp2(μ-PCy2)(μ-CO)2]− (M = Mo, W), and we found that the resulting anionic diphosphorous complex displayed a remarkable chemical reactivity.2 As the electronic and coordinative unsaturation of the anion was a key factor favoring P4 activation, we reasoned that the 30-electron methyl complex [Mo2Cp2(µ-κ1:η2-CH3)(µ-PtBu2)(µ-CO)] (1),3 prepared recently in our laboratory, might act as a suitable organometallic complex to achieve the controlled activation of the P4 molecule. Indeed, herein we report that complex 1 reacts selectively with P4 under moderate thermal activation to give the triphosphorus complex [Mo2Cp2(µ-P3)(µ-PtBu2)] (2), following from an unconventional asymmetric cleavage of the P4 molecule with concomitant elimination of a “PMe” fragment. In turn, this compound proved to be a versatile precursor of different unsaturated complexes through its reaction with different electrophiles.

MeOTf

Mo Mo

P

C

Cp

tBu2

Cp

OC

HH

H

P4Mo Mo

P

P

Cp

tBu2

Cp

P

P

Fe2(CO)9

(CO)4

(CO)4M(CO)5(THF)

1 2

3

4

M

Mo 5a

W 5b

Mo Mo

P

P

Cp

tBu2

Cp

P

P

Fe

Fe

(CO)5

(CO)5

Mo Mo

P

P

Cp

tBu2

Cp

P

P

M

M

Mo Mo

P

P

Cp

tBu2

Cp

P

P

Me

-PMe

References 1. (a) Cossairt, B. M.; Piro, N. A.; Cummins, C. C. Chem. Rev. 2010, 110, 4164. (b) Caporali, M.; Gonsalvi,

L.; Rossin, A.; Peruzzini, M. Chem. Rev. 2010, 110, 4178. (c) Scheer, M.; Seitz, A. Chem. Rev. 2010, 110, 4236.

2. Álvarez, M.A.; García, M.E.; García-Vivó, D; Ramos, A.; Ruiz, M.A. Inorg. Chem. 2011, 50, 2064, Inorg. Chem. 2012, 51, 11061.

3. Álvarez, M.A.; Casado, M.; García, M.E.; García-Vivó, D.; Ruiz, M.A., submitted.

Page 109: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

107

P40 Synthesis of new tethered ruthenium(II) complexes containing η6:κ1-arene-phosphinite ligands

Rebeca González-Fernández, Pascale Crochet and Victorio Cadierno

Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Centro de

Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, Julián Clavería 8, E-33006 Oviedo, Spain

[email protected]

In the last decades, arene-ruthenium(II) derivatives have emerged as versatile catalysts for a wide range of organic synthetic processes.1 Among this particular class of compounds, those with η6:κ1-tethered ligands have attracted attention due to their usually higher stability. However, the diversity of the structures reported still remains limited due essentially to synthetic concerns, and most of the complexes prepared involve an arene linked to a phosphine pendant donor. In contrast, those with other phosphorus donor functionalities are almost unexplored.2 Taking this into account, we described herein the easy access of a new family of tethered arene-ruthenium(II) complexes containing a phosphinite moiety and the study of their catalytic behaviour in the synthesis of silyl ethers through a dehydrogenative coupling.3

RuCl

Cl

R'

PR2

On

120ºC- arene

RuCl

ClPR2

On

Arene = benzene, p-cymene; R = Ph, iPr; n = 1-3, all combinations

ClCH2CH2Cl

ROH + HSiR'3

[Ru]ROSiR'3

+ H2

References

1. Kumar, P.; Gupta, R. K.; Pandey, D. S. Chem. Soc. Rev. 2014, 43, 707-733; Crochet, P.; Cadierno, V. Dalton Trans. 2014, 43, 12447-12462.

2. Weber, I.; Heinemann, F. W.; Bauer, W.; Superchi, S.; Zahl, A.; Richter, D.; Zenneck, U. Organometallics 2008, 27, 4116-4125.

3. For a recent review on this topic see: Kuciňski, K.; Hreczycho, G. ChemCatChem 2017, in press, DOI: 10.1002/cctc.201700054.

Page 110: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

108

P41 Reactivity of a POP-Rhodium(I) Boryl Complex

Sheila G. Curto, Miguel A. Esteruelas, Montserrat Oliván, Enrique Oñate, Andrea Vélez

Departamento de Química Inorgánica – Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA),

Universidad de Zaragoza – CSIC, 50009 Zaragoza [email protected]

Transition metal boryl complexes have received great attention due to their role as key intermediates in a wide range of metal-catalyzed reactions.1 Rhodium boryl complexes are known because are able to catalyze different processes such as the hydroboration and dehydrogenative borylation of olefins, the diboration of alkenes, or the functionalization of hydrocarbons via C-H activation reactions.2 However, and despite this, rhodium(I) boryl derivatives are barely known.3 In the last years, our research group has shown that the 16-electron monohydride complex RhH{xant(PiPr2)2} is an useful starting material for the synthesis of rhodium(I) boryl derivatives, among them Rh(Bpin){xant(PiPr2)2}.4 Benzonitrile and 4-(trifluoromethyl)benzonitrile insert into the Rh−B bond of this complex to form Rh{C(R-C6H4)=NBpin}{xant(PiPr2)2} (R = H, pCF3), key intermediates on the mechanism of the rhodium-mediated decyanative borylation.5

O

PiPr2

PiPr2

Rh BO

OC N

O

P

PiPr2

Rh

BO

O

CN

iPr2

R

R

R = H, CF3

In this presentation we show the reactivity of this rhodium(I) boryl complex with different unsaturated molecules. References 1. Dang, L.; Lin, Z.; Marder, T. B. Chem. Commun. 2009, 3987-3995. 2. (a) Morgan, J. B.; Miller, S. P.; Morker, J. P. J. Am. Chem. Soc. 2003, 125, 8702-8703. (b) Mkhalid, I. A.

I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890-931. 3. (a) Schmid, G. Chem. Ber. 1969, 102, 191-195. (b) Dai, C.; Stringer, G.; Marder, T. B.; Scott, A. J.; Clegg,

W.; Normar, N. C. Inorg. Chem. 1997, 36, 272-273. (c) Teltewskoi, M.; Panetier, J. A.; Macgregor, S. A.; Braun, T. Angew. Chem. Int. Ed. 2010, 49, 3947-3951.

4. Esteruelas, M. A.; Oliván, M.; Vélez, A. Organometallics 2015, 34, 1911-1924. 5. Esteruelas, M. A.; Oliván, M.; Vélez, A. J. Am. Chem. Soc. 2015, 137, 12321-12329.

Page 111: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

109

P42 Bifunctional Aluminium(heteroscorpionate) Catalysts for the Formation of Cyclic Carbonates from Epoxides and Carbon Dioxide

Felipe De la Cruz-Martínez,1 Agustín Lara-Sánchez,1* Antonio Otero,1* José A. Castro-

Osma,2* Juan Fernández-Baeza,1 Javier Martínez,1

1 Dpto. Química Inorgánica, Orgánica y Bioquímica. Facultad de Ciencias y Tecnologías

Químicas. Universidad de Castilla-La Mancha. Avda. Camilo José Cela, S/N. 13071 Ciudad Real. [email protected]

2 Dpto. Química Inorgánica, Orgánica y Bioquímica. Facultad de Farmacia. Universidad de Castilla-La Mancha. Avda. Cronista Francisco Ballesteros, 1. 02071 Albacete

The use of carbon dioxide (CO2) as a universal renewable resource is a challenge for chemists. It requires efficient strategies for the conversion of CO2 into economically competitive products to help to stabilize and reduce atmospheric carbon dioxide levels to mitigate the greenhouse effect and to develop an alternative and sustainable raw material.1 One of the most promising reactions in this field is the synthesis of cyclic carbonates from epoxides and CO2 (Scheme 1). Even though this reaction is highly exothermic due to the release of the epoxide strain energy, it requires a suitable catalyst to lower the high activation barrier. Among these catalysts, bifunctional systems or one-component catalysts, have been less developed probably owing to their more synthetically demanding preparation.2

Inspired by the high catalytic activity displayed by the aluminium complexes,3 this work reports the design of new iodide heteroscorpionate precursors that makes the synthesis of mono- and bimetallic bifunctional aluminium complexes and their application as catalysts for the conversion of epoxides into their corresponding cyclic carbonates, without the need for a cocatalyst, which is normally used in these reactions.

O

R+

CO2catalyst OO

O

R

Scheme 1

Al

References 1. Aresta, M.; Dibenedetto, A.; Angelini, A.; Chem. Rev. 2014, 114, 1709-1742. 2. a) Martín, C.; Fiorani, G.; Kleij, A. W.; ACS Catal. 2015, 5, 1353-1370; b) Comerford, J. W.; Ingram, L.

D. V.; North, M.; Wu, X.; Green Chem. 2015, 17, 1966-1987; c) Maeda, C.; Taniguchi, T.; Ogawa, K.; Ema, T.; Angew. Chem. Int. Ed. 2015, 54, 134-138; d) Song, Q. W.; Zhou, Z. H.; He, L. N.; 2017, DOI.10.1039/c7gc00199a.

3. Martínez, J.; Castro-Osma, J. A.; Alonso-Moreno, C.; Rodríguez-Diéguez, A.; North, M.; Otero, A.; Lara-Sánchez, A.; ChemSusChem 2017, 10, 1175-1185.

Page 112: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

110

P43 Synthesis and Catalytic Applications of Platinum Nanoparticles Stabilized by Tris-imidazolium Tetrafluoroborate

Guillem Fernández, Roser Pleixats*

Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-

CINQA), Universitat Autònoma de Barcelona, 08193-Cerdanyola del Vallès (Barcelona), Spain. [email protected]

The hydrosilylation of terminal alkynes catalysed by transition-metal catalysts is a straightforward process for the obtention of vinylsilanes. These organosilicon reagents are used as versatile building blocks in the synthesis of different organic products.1 Metal nanoparticles have been much less used for this transformation. Our group has previously developed Pd NPs2 and Rh NPs3 as catalysts for the hydrosilylation of the more challenging and less studied internal alkynes. We present herein the synthesis and characterization of Pt NPs stabilized by a tris-imidazolium tetrafluoroborate. These nanoparticles were obtained in two steps, the first one consisting on the reduction of chloroplatinic acid with ethylene glycol (EG) and NaOH at high temperature. The resulting solution of Pt NPs-EG was treated with a solution of the stabilizer in THF at room temperature overnight. The Pt NPs were isolated and characterized. We also describe the catalytic activity and recyclability of the Pt NPs in the hydrosilylation of internal alkynes and in the hydrogen-transfer reduction of ketones with isopropanol.

References 1. The chemistry of Organosilicon Compounds.; Rappoport, Z.; Apeloig, Y. Eds.; Wiley-VCH, New York,

1998. 2. Planellas, M.; Guo, W.; Alonso, F.; Yus, M.; Shafir, A.; Pleixats, R.; Parella, T.; Adv. Synth. Catal. 2014,

356, 179-188. 3. Guo, W.; Pleixats, R.; Shafir, A.; Parella, T.; Adv. Synth. Catal. 2015, 357, 89-99.

Page 113: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

111

P44 Synthesis of oxazolidinones from epoxides and isocyanates catalysed by aluminium heteroscorpionate complexes

Miguel A. Gaona, José A. Castro-Osma,* Javier Martínez, Agustín Lara-Sánchez,* Juan

Fernández-Baeza, Antonio Otero*

Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Castilla-La Mancha, 13071-Ciudad Real, Spain

[email protected] Oxazolidinones find important applications in medicinal chemistry, as chemical intermediates and as chiral auxiliaries.1 Many catalysts have been reported for the synthesis of oxazolidinones from epoxides and isocyanates since Speranza published the first work in 1958;2a including ammonium salts, lanthanide salts, lithium halides, magnesium halides, tetraphenyantimony iodide, trialkyltin halides and metal complexes.2b An important aspect of the reaction is its regioselectivity which determines the 3:4 ratio. In this contribution, we report the combination of an aluminium(heteroscorpionate) complex and tetrabutylammonium bromide as a highly efficient catalyst system for the synthesis of oxazolidinones from epoxides and isocyanates.3 The optimal catalyst was found to be the aluminium bimetallic complex 5. Under the optimal reaction conditions (80 oC in toluene for 24 hours using 5 mol% of both aluminium catalyst and tetrabutylammonium bromide cocatalyst), six epoxides were reacted with six aromatic isocyanates, giving 25 oxazolidinones in moderate to excellent yields showing broad substrate scope. The regiochemistry of the reaction (to produced 3,4– or 3,5–oxazolidinones) is controlled by the substrate with epoxide ring–opening occurring preferentially at the less hindered end of the epoxide unless a substituent on the epoxide can stabilise a positive charge.

Scheme 1. Synthesis of oxazolidinones catalysed by heteroscorpionate aluminium complex 5

References 1. (a) Zappia, G.; Menendez, P.; Monache, G.D.; Misiti, D.; Nevola, L.; Botta, B. Mini Rev. Med. Chem.

2007, 4, 389-409. (b) Laserna, V.; Guo, W.; Kleij, A. W. Adv. Synth. Catal. 2015, 357, 2849-2854. 2. (a) Speranza, G. P.; Peppel, W. J. J. Org. Chem. 1958, 23, 1922-1924. (b) Oxazolidinones, in Antibacterial

Agents: Chemistry, Mode of Action, Mechanisms of Resistance and Clinical Applications; Anderson, R. J.; Groundwater, P. W.; Todd, A.; Worsley, A. J. Eds.; John Wiley & Sons, Ltd, 2012.

3. Castro-Osma, J.A.; Earlam, A.; Lara-Sánchez, A.; Otero, A.; North, M. ChemCatchem 2016, 8, 2100-2108.

O O N

O

CN O+R2R1

R2 O N

O

R2+

5 (5 mol%) Bu4NBr (5 mol%)

80 oC, 24 h, MePhR1 R1(2)(1)

(4)(3)

(5)

Page 114: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

112

P45 Combination of Metal-Catalyzed Cycloisomerizations and Biocatalysis: Asymmetric Construction of Valuable Organic Compounds in Water

J. García-Álvarez,a,* M. J. Rodríguez-Álvarez,a N. Ríos-Lombardía,b S. Schumacher,a F. Morís,b

and J. González-Sabínb,*

aLaboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Departamento de Química Orgánica e Inorgánica, (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo, 33006 Oviedo, Spain.

bEntreChem SL, Edificio Científico Tecnológico, Campus El Cristo, 33006 Oviedo, Spain. [email protected]

The growing need for new sustainable and efficient synthetic organic routes is a central issue in Green Chemistry. In this sense, new one-pot asymmetric catalytic reactions, which are able to construct enantiomerically pure valuable molecules,1 are emerging as new cleaner and more-efficient processes when compared with classical step-by-step procedures.2 In this regard, we have previously reported the one-pot combination of the Ru(IV)-catalyzed isomerization of allylic alcohols with the in situ bioreduction3a or bioamination3b of the transiently formed carbonyl compounds in water. In this communication, we present the unprecedented one-pot combination of the following three reactions in water: i) metal-catalyzed cycloisomerization of alkynols, γ-alkynoic acids or alkynyl amides;4 ii) concomitant hydrolysis of 5-membered heterocycles; and iii) enantioselective bioreduction (KREDs) of the corresponding prochiral carbonyl compounds. The overall transformations provide a variety of enantiopure valuable molecules [e.g., 1,4-diols, lactones and γ-hydroxy-carbonyl compounds (carboxylic acids, esters and amides)] with excellent conversions and enantioselectivities, in aqueous media and under mild reaction conditions.

References 1. Bruggink, A.; Schoevaart, R.; Kieboom, T. Org. Process. Res. Dev. 2003, 7, 622-640. 2. Hayasi, Y. Chem. Sci. 2016, 7, 866-880. 3. a) Ríos-Lombardía, N.; Vidal, C.; Cocina, M.; Morís, F.; García-Álvarez, J.; González-Sabín, J. Chem.

Commun. 2015, 51, 10937-10940; b) Ríos-Lombardía, N.; Vidal, C.; Liardo, E.; Morís, F.; García-Álvarez, J.; González-Sabín, J. Angew. Chem. Int. Ed. 2016, 55, 8691-8695.

4. a) Rodríguez-Álvarez, M. J.; Vidal, C.; Díez, J.; García-Álvarez, J. Chem. Commun. 2014, 50, 12927-12929; b) Vidal, C.; Merz, L.; García-Álvarez, J. Green Chem. 2015, 17, 3870-3878; c) Rodríguez-Álvarez, M. J.; Vidal, C.; Schumacher, S.; Borge, J.; García-Álvarez, J. Chem. Eur. J. 2017, 23, 3425-3431.

Page 115: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

113

P46 Thermal stability of mesityl(amidinato)heavier carbene complexes

Pablo García-Álvarez,* Javier A. Cabeza* and Laura González-Álvarez

Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, 33071 Oviedo (Spain)

[email protected]

The cyclometalation process, which is one of the most versatile methods to synthesise organometallic compounds that feature a metal−carbon σ bond,1a is known for all important types of ligands (pyridines, phosphanes, N-heterocyclic carbenes, etc.) and, interestingly, cyclometalated complexes have found a wide range of applications in catalysis, materials and biological chemistry.1b,c On the other hand, heavier carbene analogues (silylenes, germylenes, stannylenes and plumbylenes) have been used as ligands in coordination chemistry for more than 40 years;2 however, to date, only two works have reported the cyclometalation of these reagents; describing the transformation of a bis(amidinato)silylene into κ3Si,C,Si pincer complexes,3a and the germylene Ge{N(SiMe3)}2 into κ2Ge,C dimeric iridium derivatives.3b We now report preliminary studies aimed at achieving cyclometalation of E(tBu2bzam)Mes (E = Ge (A), Sn (B)), which are heavier carbenes stabilized by a chelating bis(tertbutyl)benzamidinato (tBu2bzam) and equipped with a mesityl group. While the κ1Ge-IrIII derivative 1 could be thermally transformed (90 ºC; 2 h) into the cyclometalated κ2Ge,C-IrIII complex 2, the κ1Ge-IrI and κ1Ge-RuII complexes 3 and 4, gradually decomposed to unidentified products upon similar thermal treatment. The cyclometallation observed for 1 could not be replicated for the analogous stannylene κ1Sn-IrIII derivative 5, which quickly decomposed at high temperature.

(1)

tBu

PhtBu

MesCl

Cl

Ge

N N

Ir

tBu

PhtBu

Cl

Ge

N N

Ir

CH2

Me

Me(3)

MesCl

Cl

Sn

N N

IrMes

iPr

ClCl

Ge

NN

RuMes Cl

GeN

NIr

(4) (5)

90 ºC−

HCl

Thermal cyclometalation not viable

Cyclometalation upon C(sp3)

−H activation of one

of the Mes methyl groups (2)

References 1. a) Albrecht, M. Chem. Rev. 2010, 110, 576-623. b) Djukic, J.-P.; Sortais, J.-B.; Barloy, L.; Pfeffer, M.

Eur. J. Inorg. Chem. 2009, 817-853. c) Palladacycles, Synthesis, Characterization and Applications; Dupont, J.; Pfeffer, M. Eds.; Wiley-VCH, Weinheim, Germany, 2008.

2. Álvarez-Rodríguez, L.; Cabeza, J. A.; García-Álvarez, P.; Polo, D. Coord. Chem. Rev. 2015, 300, 1–28. 3. a) Brück, A.; Gallego, D.; Wang, W.; Irran, E.; Driess, M.; Hartwig, J. F. Angew. Chem., Int. Ed., 2012,

51, 11478-11482. b) Hawkings, S. M.; Hitchcock, P. B.; Lappert, M. F.; Rai, A. K. J. Chem. Soc., Chem. Commun. 1986, 1690-1691.

Page 116: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

114

P47 Synthesis of Trisubstituted Enol Esters Through Gold(I)-Catalyzed Addition of Carboxylic Acids to Internal Alkynes in Aqueous Media

Sergio E. García-Garrido*, Victorio Cadierno, Pedro J. González-Liste

Laboratorio de Compuestos Organometálicos y Catálisis, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Orgánica e Inorgánica, IUQOEM,

Universidad de Oviedo, 33006, Oviedo, Spain [email protected]

The hydro-oxycarbonylation of alkynes, i.e. the direct addition of carboxylic acids to alkynes, is an elegant and usefull method for preparing enol esters, which are valuable intermediates for carbon-carbon and carbon-heteroatom bond formation, and also have specific industrial applications as monomers for the production of several polymers and copolymers.1 However, although countless reports have described the metal-catalyzed intermolecular hydro-oxycarbonylation of terminal alkynes, as well as the cycloisomerization of alkynoic acids to give enol-lactones, examples of the intermolecular addition of carboxylic acids to internal alkynes still remain very scarce.2 This is due to the lower reactivity of internal vs. terminal alkynes associated to their greater steric hindrance, thus leading to much higher activation energies. Other challenges in this area are the control of both the regio- and the stereoselectivity of the addition process, aspects particularly relevant in the case of unsymmetrically substituted internal alkynes, as the reaction can render up to four isomers whose separation is very difficult to achieve. With all this background in mind, we report herein a general protocol for the intermolecular hydro-oxycarbonylation of challenging internal alkynes in water using a catalytic system based on the readily available gold(I) complex [AuCl(PPh3)] (Scheme 1).

H2O / 60 ºC / 3-48 hoil bath or MW (300 W)

+R3

O

OH

[AuCl(PPh3)] (5 mol%)AgOAc (5 mol%)

R3

O

O R2

R1

R1 R2

R3

O

O R1

R2

+

Scheme 1 References 1. See, for example: Dixneuf, P. H. Catal. Lett. 2015, 145, 360-372, and references cited therein. 2. See, for example: González-Liste, P. J.; García-Garrido, S. E.; Cadierno, V. Org. Biomol. Chem. 2017, 15,

1670-1679, and references cited therein.

Page 117: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

115

P48 Reactions of the Heterometallic Complex [MoReCp(μ-PCy2)(CNMe)(CO)5] with Secondary Phosphanes and Dppm·BH3

M. Ángeles Alvarez, M. Esther García, Daniel García-Vivó,* Estefanía Huergo, Miguel. A.

Ruiz

Department of Organic and Inorganic Chemistry / IUQOEM, University of Oviedo, Oviedo, Spain. [email protected]

The chemistry of mixed-metal clusters is an active of area research due to the unique chemical reactivity resulting from having two different metals in close proximity with different chemical properties and also because of the potential catalytic applications which might arise from the intrinsic polarity of the heterometallic M−M’ bonds.1 However, there is a paucity in the number of studies on these type of systems due to either the lack of efficient synthetic methods or their ready degradation to mononuclear species. Then, preparation of new compounds with heterometallic M−M’ bonds stabilized toward degradation remains as an attractive target in this area, especially in the case of complexes with M−M’ multiple bonds or labile ligands which can show an enhanced chemical reactivity. Thus, our group has started recently a research programme aiming to prepare new heterometallic complexes based on group 6 / 7 dimetallic centres. As part of this research line, we have recently published the synthesis and initial exploration of the chemical reactivity of the unsaturated anion [MoReCp(μ-PCy2)(CO)5]−.2 Amongst its neutral derivatives, we were able to isolate the title acetonitrile complex which we identified as a suitable precursor of new heterometallic complexes due to the labile coordination of the nitrile molecule. Herein we report the reactions of this complex with secondary phosphanes and with the chelating phosphane–borane adduct dppm·BH3 (dppm = Ph2PCH2PPh2), a ligand which shows promise for hemilabile behaviour. In both cases, E−H (E = P, B) bond activation of the incoming molecule takes place easily and is accompanied by H2 elimination to give new bis(phosphanyl) complexes or a P-donor stabilized boril bridged complex displaying an unconventional agostic B-H···Mo coordination.

Mo ReP

Cp

C CO

OH

C

C

C

C

N

O

O

OCy2

Mo ReP

Cp

C CO

OH

C

C

PR2H

C

O

O

OCy2

Me

PR2H−H2

Mo ReP

Cp

CO

P

C

C

C

C

O

O

OCy2

R2

O

− 2CO

Mo Re

P

Cp

P C

C

COOCy2 R2

OO

dppm·BH3

P

PH3B

Mo ReP

Cp

C CO

OH

C

C

C

O

O

OCy2

Ph2

Ph2

hν, 263 K−

CO P

PB

Mo ReP

Cp

C CO

OH

CCO

OCy2

Ph2

Ph2

HH

H

P

PB

Mo ReP

Cp

CO

CCO

OCy2

Ph2

Ph2

H

H−H2

CO

hν∆, 383 K+ "O"

References 1. a) Cooper, B.G.; Napoline, J.W.; Thomas, C.M. Catal. Rev.: Sci. Eng. 2012, 54, 1. b) Thomas, C.M.

Comments Inorg. Chem. 2011, 32, 14. c) Collman, J.P.; Boulatov, R. Angew. Chem. Int. Ed. 2002, 41, 3948.

2. Alvarez, M.A.; García, M.E.; García-Vivó, D.; Huergo, E.; Ruiz, M.A. Eur. J. Inorg. Chem. 2017, 1280.

Page 118: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

116

P49 16 e– complex[Cp*RhR2] as excellent precursor of bisarylated RhIII derivatives

M. N. Peñas de Frutos, C. Bartolomé, and P. Espinet*

I. U. CINQUIMA, Universidad de Valladolid, Paseo de Belén 7, 47011-Valladolid, Spain

[email protected] Rhodium(III) and Iridium(III) are transition metals that are very adequate to be employed in the preparation of high-performance catalysts when the use of steric and electronic ligands are conveniently well designed. In this field, the reactivity of binuclear Rh or Ir complexes (µ-Cl)2[Cp*MCl]2 (Cp*: pentamethylcyclopentadienyl) have been widely explored, and thus a good choice of ligands has permitted to attain some interesting catalytic systems.1 However, no many precedents of this set of complexes have been obtained for Iridium systems having two aryl moieties with a Cp* framework.2 In this way, a deep search on this topic has not found bisarylated Rhodium complexes. In this communication, an efficient and clean synthetic method for these organometallic moieties is described. Thus, it has been possible to selectively form a 16-electrons [Cp*RhR2] template, which is an excellent precursor of [Cp*RhLR2] bisarylated systems. In these organometallic complexes, the metal coordinative vacancy has been filled out with neutral and/or anionic ligands having diverse electronic features.

Figure 1. X-Ray structure of [Cp*Rh(C6Cl2F3)2]

References 1. Martínez, A. M.; Echavarren, J.; Alonso, I.; Rodríguez,N.; Gómez-Arrayás, R.; Carretero, J. C. Chem.

Sci. 2015, 6, 5802–5814, and references therein. 2. (a) Mak, K. H. G.; Chan, P. K.; Fan, W. Y.; Leong, W. K.; Li, Y. J. Organomet. Chem. 2013, 741-742,

176–180. (b) Tan, X.; Li, B.; Xu, S.; Song, H.; Wang, B. J. Organomet. Chem. 2013, 735, 72–79.

Page 119: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

117

P50 N Heterocyclic Carbenes from Pyrazolyl Containing ligands. Late Transition Complexes

Jorge Leal,1 M. Carmen Carrion1,2*, Blanca R. Manzano1, Félix A. Jalón1

1 Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orñganica y

Bioquímica, faculta de Ciencias y Tecnologías Químicas-IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain

2 Fundación Parque Científico y Tecnológico de Castilla-La Mancha , Bulevaer Rio Alberche, s/n. 45007 Toledo, Spain [email protected]

There has been an increasing interest in the last years in the synthesis, characterization and applications of transition metals nitrogen heterocyclic carbenes (NHC). They exhibit interesting properties among them their considerable stability. Different applications have been reported, especially in the field of catalysis. 1 These NHC derivatives are very commonly obtained from ligands with imidazolyl rings and the use as precursors of pyrazolyl containing ligands is very scarce. We report in this work the selective methylation in one pyrazolyl ring of 4-substituted bis(pyrazol-1-yl)methane compounds (Figure 1).

N

N N

N N

N N N

R' R' R'

R'

MeCF3SO3

R' = Me, Br

CF3SO3

R' = Me, L1HR' = Br, L2H

Figure 1 The reaction of these pyrazolium salts with palladium, platinum or ruthenium precursors was explored. The formation of the NHC species took place only after the reaction with palladium acetate and dimer species were formed (Figure 2). The evolution of these complexes with DMSO and after the addition of Na(OAc) has been studied. Different complexes have been formed depending on the substituent in position 4 of the pyrazolyl ring.

N

Pd

O

C

O

C

Pd

O

N

O

(CF3SO3)2

2+

L1H orL2H

+ Pd(OAc)2

Figure 2

References

1. Velazquez H. D.; Verpoort, F. Chem. Soc. Rev. 2012, 41, 7032‒7060.

Page 120: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

118

P51 Studies Towards the Preparation of Mesoporous Organosilica Nanoparticles for Biomedical Applications

H. Li, R. Pleixats*

Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA),

Universitat Autònoma de Barcelona, Cerdanyola del Vallès-08193 (Barcelona), Spain [email protected]

The organic-inorganic hybrid silica materials (organosilicas) have attracted the attention of researchers for their use in different fields, including biomedicine1 and catalysis.2 However, the applications for mesoporous organosilicas were still limited by the lack of control on the morphology and particle size. The ability to control both the size and morphology of the materials and to obtain nano-sized silica particles broadens the spectrum of their applications and/or improves their performances.3 So, we intend to prepare periodic mesoporous organosilica nanoparticles (PMO NPs) for biomedical applications, particularly in diagnosis and therapies based on High Intensity Focused Ultrasound (HIFU),4 which is an non-invasive technique for cancer therapies. Herein, we present our advances towards the preparation of these materials. We have synthesized bis-silylated organic precursors containing tert-butoxycarbonyl groups (see below). The surfactant-assisted co-condensation of bis(triethoxysilyl)ethene (BTSE) with different amounts of precursors is being performed in order to obtain the organosilica nanoparticles.

N

O ONN

N NNN

Si(OEt)3

Si(OEt)3

O O OONH

NH

OO

Si(OEt)3(EtO)3Si

O O

References 1. Vallet-Regí, M.; Ruiz-González, L.; Jiménez-Barba, I.; González-Calbet, J. M. J. Mater. Chem. 2006, 16,

26. 2. a) Monge-Marcet, A; Pleixats, R.; Cattoën, X.; Wong Chi Man, M. Cat Sci. Technol. 2011, 1, 1544. b)

Ferré, M.; Pleixats, R.; Wong Chi Man, M.; Cattoën, X. Green Chem. 2016, 18, 881. 3. a) Moitra, N.; Trens, P.; Raehm, L.; Durand, J.-O.; Cattoën, X.; Wong Chi Man, M. J. Mater. Chem. 2011,

21, 13476. b) Croissant, J. G.; Cattoën, X.; Wong Chi Man, M.; Durand, J.-O.; Khashab, N. M. Nanoscale, 2015, 7, 20318. c) Croissant, J. G.; Cattoën, X.; Durand, J.-O.; Wong Chi Man, M.; Khashab, N. M. Nanoscale, 2016, 8, 19945.

4. Zhou, Y.; Wang, Z.; Chen, Y.; Shen, H.; Luo, Z.; Li, A.; Wang, Q.; Ran, H.; Li, P.; Song, W.; Yang, Z.; Chen, H.; Wang, Z.; Lu, G.; Zheng, Y. Adv. Mater. 2013, 25, 4123.

Page 121: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

119

P52 Hidrosilylation of Alkynes Catalyzed by Rhodium(I) Compounds Based on Hemilabile Picoline-NHC Ligands

Laura L. Santos,a Judith P. Morales-Cerón,b Patricia Lara,a Joaquín López-Serrano,a

Verónica Salazar,b Eleuterio Álvarez,a and Andrés Suáreza

aInstituto de Investigaciones Químicas (IIQ) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), CSIC and Universidad de Sevilla, Spain.

E-mail: [email protected] bCentro de Investigaciones Químicas, Universidad Autónoma del Estado de Hidalgo, Mexico

Hydrosilylation of carbon-carbon multiple bonds has been one of the most important methods of forming silicon-carbon bonds and to functionalize organic molecules.1 The hydrosilylation of alkynes represents the most straightforward and atom-economical access to vinylsilanes.2 Although transition-metal catalysts for the addition of hydrosilanes to alkynes have been known for a long time, the search for active, and more importantly, selective catalysts still represents a challenge. In this communication, we present our results in the hydrosilylation of terminal alkynes catalyzed by rhodium(I) complexes containing hemilabile picoline-NHC (NHC = N-heterocyclic carbene) ligands. An active and highly E-selective catalyst has been obtained by the introduction of aryl substituents at the 6-position of the pyridine moiety. Preliminary mechanistic studies are also described.

RR

´3SiH

R

SiR´3R SiR´3 R

R´3Si

β-(E) β-(Z) α

+ [Rh]cat

R NN

N[Rh]

BF4

R = H, aryl

References 1. Lim, D. S. W. A.; Anderson, E. A. Synthesis 2012, 44, 983. 2. Hydrosilylation. Advances in Silicon Science. (Ed.: B. Marciniec), Springer, 2009.

Page 122: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

120

P53 Recent Developments in the Chemistry of Osmium complexes with POP-Ligands

Jaime Martín, Cristina García-Yebra, Enrique Oñate, Miguel. A. Esteruelas*

Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de

Zaragoza−CSIC, 50009 Zaragoza, Spain [email protected]

Diphosphine pincer ligands develop marked abilities to stabilize metal complexes capable of activating inert bonds. Those based on POP-skeletons have particular interest due to the hemilabile properties of the central oxygen atom.1 We have recently reported the formation of molecular hydrogen kinetically-controlled by osmium polyhydride complexes stabilized by a POP pincer ligand. During the process, the ligand changes its coordination fashion mode from κ3-fac to κ3-mer to κ2-P,P’ bidentate to form polyhydrides with nonclassical interactions and classical polyhydrides.2 Related POP osmium systems stabilize elongated σ-borane and σ-borane species towards B-H bond activation. The new osmium-borane complexes have been isolated and their identity confirmed by both spectroscopic characterization and theoretical studies. Here we present our preliminary results in the context of new POP-Osmium polyhydrides with a hydroxide ligand. References 1. See for example: a) Holscher, M.; Prechtl, M. H. G.; Leitner, W. Chem. Eur. J. 2007, 13, 6636-6643. b)

Williams, G. L.; Parks, C. M.; Smith, C. R.; Adams, H.; Haynes, A.; Meijer, A. J. H. M.; Sunley, G. J.; Gaemers, S. Organometallics 2011, 30, 6166-6179. c) Pontiggia, A. J.; Chaplin, A. B.; Weller, A. S. J. Organomet. Chem. 2011, 696, 2870-2876. d) Haibach, M. C.; Wang, D. Y.; Emge, T. J.; Krogh-Jespersen, K.; Goldman, A. S. Chemical Science 2013, 4, 3683-3692. e) Alós, J.; Bolaño, T.; Esteruelas, M. A.; Oliván, M.; Oñate, E.; Valencia, M. Inorg. Chem. 2013, 52, 6199-6213.

2. Esteruelas, M. A.; García-Yebra, C.; Martín, J.; Oñate, E. Inorg. Chem. 2017, 56, 676-683. 3. Esteruelas, M. A.; Fernández, I.; García-Yebra, C.; Martín, J.; Oñate, E. Organometallics. 2017, submitted.

Page 123: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

121

P54 Design, Characterization and Catalytic Applications of Supramolecular Intercluster Compounds Based on Ru and Ir

Juan Miranda-Pizarro, Jesús Campos*

Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de

Innovación en Química Aplicada (ORFEO-CINQA). Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain.

[email protected]

Supramolecular intercluster chemistry is devoted to the study of large inorganic systems constituted by a certain number of well-known assembled units, particularly coordination complexes clusters and polyoxometalates1. These building block-like structures are arranged essentially according to electrostatic forces (mainly ionic and van der Waals) which lead to highly stable and insoluble systems in a wide range of solvents. This would allow its use in catalysis with some of the properties typically attributed to heterogeneous catalyst, as can be the easy separation from the reaction mixture, or the control of porosity, but without the need of any support.

Our work focuses on the synthesis of intercluster compounds based on Ru and Ir as metallic

centre using [PO4·12WO3]3- as counter anion. The structure with [Ir3(dppe)3H7]2+ cluster has shown the firsts insights of catalytic activity in the C-C coupling reaction between benzene and iodobenzene.

References 1 Martin Schulz-Dobrick, and Martin Jansen, 'Supramolecular Intercluster Compounds

Consisting of Gold Clusters and Keggin Anions', European Journal of Inorganic Chemistry (2006), 4498-502.

Page 124: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

122

P55 Synthesis of new guanidines by homogeneous and heterogeneous catalytic methods. Immobilisation of guanidines on mesoporous silica support.

Ana María Moreno de los Reyes, Elena Villaseñor Camacho, Rafael Fernández-Galán,

Fernando Carrillo-Hermosilla, Alberto Ramos and Antonio Antiñolo

Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La mancha, E-13071, Ciudad Real, Spain

[email protected]

Guanidines are nitrogen donor polydentade compounds alternative to classical ancillary ligands. As part of our continuing study1 into the chemistry of guanidines, we report the preparation of new guanidines, using ZnEt2 and B(C6F5)3 as catalyst, by an homogeneous and also an heterogeneous system. The use of a silica with a pendant amine group makes possible the guanylation reaction on the surface of this material giving supported guanidines. By other way, guanidines with pendant donor groups have been grafted on the surface of the mesoporous silicas Al-MCM-41 and SBA-15 through acid-base interactions. The characterization of these guanidine-functionalized silicas includes Fourier transform infrared spectra, elemental analysis and nitrogen adsorption-desorption techniques2. These systems are potential catalysts in the synthesis of biodegradable and biocompatible synthetic polymers which have numerous applications in medicine, pharmaceutics and tissue engineering3.

References 1. Antiñolo, A.; Carrillo-Hermosilla, F.; Fernández-Galán, R.; Martínez-Ferrer, J.; Alonso-Moreno, C.;

Bravo, I.; Moreno-Blázquez, S.; Salgado, M.; Villaseñor E.; Albadalejo, J., Dalton Transactions, 2016, 45, 10717.

2. Xle, W.; Yang, X.; Yang, Z., J. Am. Oil. Chem. Soc., 2015, 915-925. 3. Drumright, D.E.; Gruber, P.R.; Henton D.H., Adv. Mater., 2000, 12, 1841.

Page 125: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

123

P56 Assessment of drug delivery devices made from polycaprolactone generated by novel organoaluminium initiators

E. Niza,a J. Martínez,b J.A. Castro-Osma,a C. Alonso-Moreno,*,a I. Bravo,*,a A. Otero,*,b A.

Lara-Sánchezb

aDpto. de Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla-La Mancha, Facultad de Farmacia, C/ Cronista Francisco Ballesteros Gómez, 1, 02071, Albacete

bDpto. de Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla-La Mancha, Facultad de CC. y TT. Químicas, Av. Camilo José Cela 10, 13071, Ciudad Real

[email protected] Drug delivery system (DDS) is the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals. DDS allows to decrease the number of doses and to maintain effective for long periods of time without reaching toxic levels, which achieves an improvement in the patient's comfort. A series of alkyl organoaluminium initiators based on heteroscorpionate ligands have been prepared to increase the catalytic activity in Ring-Opening Polymerization (ROP) of ε-caprolactone without sacrificing control over the Mw/Mn.1 The easy-to-make polycaprolactones of controlled molecular weight and molecular weight distribution were chosen to manufacture biodegradable devices for drug delivery. Amongst the different formulations evaluated, porous polycaprolactone microspheres showed interesting advantages for application as doxorubicin delivery systems. Finally, a copolymer of ε-caprolactone and L-lactide has been designed, which displayed a pH-independent mechanism of doxorubicin release.

Figure 1. (a) ORTEP view of compound 1. (b) SEM micrograph of PCL- FIII, 10000X. (c) DOX-released profile for

PCL-FIII at pH=5

References 1. (a) Williams, C. K. Chem. Soc. Rev. 2007, 36, 1573–1580. (b) Dubois, P.; Coulembier, O.; Raquez, J.-M.

in Handbook of Ring-Opening Polymerisation, Wiley-VCH, Weinheim, 2000.

Page 126: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

124

P57 Insertion Reactions of Small Unsaturated Molecules in N-B Bonds of Boron Guanidinates

Alberto Ramos,* Mª Pilar Montero-Rama, Fernando Carrillo-Hermosilla, Rafael Fernández-

Galán, Elena Villaseñor, Antonio Antiñolo,*Antonio Rodríguez Diéguez

Instituto Regional de Investigación Científica Aplicada, Avda. Camilo José Cela, s/n, Universidad de Castilla-La Mancha, E-13071 Ciudad Real, Spain

[email protected] Guanidinate anions are highly versatile and readily accessible nitrogen-based ligands, which have been used in recent years, as an alternative to cyclopentadienyl-based ligands, coordinated to metals and main group elements with emerging applications in catalysis and materials science.1 We recently turned our attention to the relatively unexplored chemistry of boron guanidinates.2 Thus, we prepared new symmetrical and asymmetrical dialkylboron guanidinates, as well as the first bisboron guanidinate(2–), by salt metathesis from commercially available or readily-prepared reagents. Diffractometric studies revealed a chelate coordination mode for the guanidinate ligands and thermal stability tests in solution showed unusual carbodiimide de-insertion reactions, which already took place at room temperature for some of the novel boron guanidinates. Inspired by recent work by Stephan and co-workers on the FLP-type reactivity of related boron amidinates towards small unsaturated molecules,3 here we report the reactivity of different boron guanidinates towards aromatic isonitriles, CO, benzaldehyde and CO2 to give either 1,1-insertion (CNAr, CO) or 1,2-insertion (benzaldehyde, CO2) products.

N CN

N

iPr

BH

iPr

tBu

Cy

Cy N CN

N

iPr

BH

iPr

Cy

CyC

E

tBu

C E

E = O, NAr

iPrHNC

N

N

iPr BCy

CyHC O

Ph

tBu

Ph H

O

iPrHNC

N

N

iPr BCy

CyC O

tBu

O

CO

O

References 1. (a) Edelmann F. T. Adv. Organomet. Chem. 2008, 57, 183-352. (b) Edelmann F. T. Adv. Organomet.

Chem. 2013, 61, 55-374. 2. A. Antiñolo, F. Carrillo-Hermosilla, R. Fernández-Galán, M. P. Montero-Rama, A. Ramos, E. Villaseñor,

R. S. Rojas and A. Rodríguez-Diéguez, Dalton Trans., 2016, 45, 15350-15363. 3. M. A. Dureen and D. W. Stephan, J. Am. Chem. Soc., 2010, 132, 13559-13568.

Page 127: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

125

P58 Iron Catalyzed Hydrosilylation of Carbonyl Compounds with a New Anthraquinone-based Complex

A. Raya-Barón,1 C. P. Galdeano-Ruano,1 I. Kuzu,2 P. Oña-Burgos,1,3 I. Fernández1

1 Dpto. Química y Física, Centro Investigación en Biotecnología Agroalimentaria (BITAL),

Universidad de Almería, Ctra. Sacramento s/n, E-04120, Almería, Spain. 2 Fachbereich Chemie, Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany 3 Current address: Instituto de Tecnología Química, Universitat Politècnica de València-Consejo

Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, España [email protected]

The reduction of carbonyl moieties into alcohols is a reaction widely used in synthesis, but in recent years the iron-catalyzed hydrosilylation route has gathered considerably attention. We present herein a new catalytic system for the efficient hydrosilylation of carbonyl compounds, based on an iron(II)-amide complex bearing an anthraquinonic ligand. This homogenous catalyst achieves complete conversion of a wide range of ketone and aldehyde substrates in short times (from 5 minutes to 14 hours) at room temperature, using catalyst loadings below 0.5 mol %. Both the iron(II) complex and the free anthraquinonic ligand have been structurally characterized in the solid state by X-ray diffraction, as well as in solution by NMR spectroscopy, IR, MS and cyclic voltammetry. The current catalyst overcomes the performance of our previously reported iron system,1 presumably due to improved hemilability properties.2

Scheme 1. Fe-catalyzed hydrosilylation of carbonyls which includes the X-ray structure of

our new anthraquinone-based complex.

Acknowledgements: Financial support was given by Junta de Andalucía (Spain) under the project number P12-FQM-2668. References 1. A. Raya-Barón, M.A. Ortuño, P. Oña-Burgos, A. Rodríguez-Diéguez, R. Langer, C.J. Cramer, I. Kuzu, I.

Fernández. Organometallics 2016, 35, 4083-4089. 2. A. Raya-Barón, C.P. Galdeano, M.A. Ortuño, P. Oña-Burgos, A. Rodríguez-Diéguez, R. Langer, C.J.

Cramer, I. Kuzu, I. Fernández, manuscript in preparation.

Page 128: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

126

P59 Synthesis and reactivity toward H2 of iridium complexes based on a

lutidine-derived CNP ligand.

Nuria Rendón, Martín Hernández-Juárez, Práxedes Sánchez, Eleuterio Álvarez, Margarita Paneque, and Andrés Suárez

Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de

Innovación en Química Avanzada (ORFEO-CINQA), CSIC and Universidad de Sevilla, Avda. Américo Vespucio 49, 41092, Sevilla (Spain)

[email protected]

Organometallic compounds that contain N-heterocyclic carbenes (NHC) as ligands have been extensively investigated since 1991 when Arduengo et al. isolated and structurally characterized the first example.1 Many of these complexes are capable to participate in a wide range of chemical transformations and they have found applications in many fields such as catalysis, medicinal chemistry, luminescence and material science. Determining the stability and reactivity of the ancillary ligands is an important aspect in homogeneous catalysis. In this context, we report the hydrogenation of an Ir-coordinated imidazolylidene fragment forming part of a tetracoordinated κ4-P,N,CNHC,Caryl lutidine-derived ligand.

In this contribution we present the synthesis of iridium complexes based on a lutidine-derived hybrid NHC/phosphine (CNP) pincer. In particular, the diolefin pentacoordinated derivative 1 yielded the metalated complex 2 by activation of the ortho C—H bond of the xylyl group.2 Interested in the development of iridium (de)hydrogenation catalysts, we focused on the generation of dihydride complexes and thus the hydrogenation of 2 in the presence of KOtBu or NaH produced a dihydrido derivative 3. In this process the unexpected hydrogenation of the imidazolylidene has taken place as deduced by NMR evidences and confirmed by single crystal X-ray diffraction studies.

1

Cl

2(Cl)

N

P

N N

Ir

Cl

H

IrN

N N Xyl

Ph2P Toluene

reflux

Ph2

THF-d8

KOtBu

H2

3

N

P

N N

Ir

H

H

Ph2

H HHH

Scheme 1 References 1. Arduengo, A. J.; Harlow, R. L.; Kline M. A. J. Am. Chem. Soc. 1991, 113, 361-363. 2. Sánchez, P.; Hernández-Juárez, M.; Álvarez, E.; Paneque, M.; Rendón, N.; Suárez, A. Dalton Trans. 2016,

45, 16997- 17009.

Page 129: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

127

P60 Platinum Nanoparticles Stabilized by Bulky Terphenylphosphines as Highly Active Catalysts for Hydrogen Generation from Ammonia-Borane

Andrés Suárez,a Karine Philippot,b Patricia Laraa

a Instituto de Investigaciones Químicas (IIQ), and Centro de Innovación en Química Avanzada

(ORFEO-CINQA). CSIC and Universidad de Sevilla bLaboratoire de Chimie de Coordination; CNRS; LCC

[email protected]

Ammonia-borane (NH3·BH3), due to its high gravimetric hydrogen content (19.6% wt) and favourable physical properties (stable solid, non-flammable),1 is considered as one of the most promising H2-rich containing materials in the field of hydrogen storage for energetic purposes, with potential applications in automotive and mobile devices.2 Among the different explored approaches, the reaction with an alcohol provides a clean and mild method to release the full hydrogen content from this material.

In this communication, we report initial studies of the application of newly synthetized well-dispersed Pt nanoparticles stabilized with terphenylphosphine ligands for hydrogen generation from the methanolysis of the ammonia-borane adduct.

References 1. Peng, B.; Chen, J. Energy Environ. Sci. 2008, 1, 479-483. 2. Marder, T. B. Angew. Chem., Int. Ed. 2007, 46, 8116-81118.

Page 130: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

128

P61 Highly Active Organocatalysts Based on Hydroxyphenylimidazole for CO2 Fixation into Cyclic Carbonates

María del Prado Caballero Espinosa,1 José Antonio Castro Osma,2 Agustín Lara Sánchez,1 Juan Fernández Baeza,1 Antonio Otero,1 Julián Rodríguez López,1 and Juan Tejeda Sojo1

1 Dpto. Química Inorgánica, Orgánica y Bioquímica. Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla-La Mancha. Avda. Camilo José Cela, 10. 13071 Ciudad Real. 2 Dpto. Química Inorgánica, Orgánica y Bioquímica. Facultad de Farmacia. Universidad de Castilla-La Mancha. Avda. Cronista Francisco Ballesteros, 1. 02071 Albacete.

Carbon dioxide is an ideal C1 source for chemical synthesis because it is abundant, nontoxic and inexpensive.1 It is very useful to generate compounds of high industrial utility as cyclic carbonate from epoxides.

The most used catalyst systems consist on a combination of a metal complex as catalyst and a nucleophile as cocatalyst.2 Metal-free catalysts represent an attractive alternative because they are usually cheaper, readily available and less toxic.3 Furthermore, cations that exhibit a proton-containing functional group are able to polarize the C-O bond and make easier the epoxide ring opening.4 With this aim in mind, we have designed new two-component (1) and one-component (2-4) imidazole-based catalysts for the synthesis of cyclic carbonates from epoxides and CO2.

The one-component catalysts (2-4) exhibited improved catalytic activity for CO2 fixation compared to the neutral compound 1. Catalysts 2-4 showed to be efficient and versatile, being able to convert a range of terminal epoxides into their corresponding cyclic carbonates in good to excellent yields, at 80-90 ºC and 10 bar CO2 pressure in 1-2 hours, using 0.75-1 mol% of catalyst.

References 1. (a) Aresta, M.; Dibenedetto, A.; Angelini, A. Chem. Rev. 2014, 114, 1709-1742; (b) Poliakoff, M.;

Leitner, W.; Streng, E. S. Faraday Discuss. 2015, 183, 9-17; (c) Kleij, A. W.; North, M.; Urakawa, A. ChemSusChem 2017, 10, 1036-1038.

2. (a) Fadlallah, S.; Terrier M.; Jones, C.; Roussel, P.; Bonnet, F.; Visseaux, M. Organometallics 2016, 35, 456-461; (b) Edelmann, F. T. Coord. Chem. Rev. 2016, 306, 346-419.

3. Duan, S.; Jing, X.; Li, D.; Jing, H. J. Mol. Catal. A: Chem. 2016, 411, 34-39. 4. Cokoja, M.; Wilhelm, M. E.; Anthofer, M. H.; Herrmann, W. A.; Kühn, F. E. ChemSusChem 2015, 8,

2436-2454.

Page 131: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

129

P62 Rh(III)-catalyzed [4+2] oxidative annulations of o-alkenylanilides

Andrés Seoane, Cezar C. Comanescu, Xandro Vidal, José Luis Mascareñas* and Moisés Gulías*

Edificio CIQUS, C/ Jenaro de la Fuente s/n 15782 Santiago de Compostela, A Coruña

Spain [email protected]

In recent years there has been a burst on the development of synthetic transformations relying on the functionalization of C-H bonds. Our group has been studying the novel reactivity of o-alkenylphenols towards Rh(III) and Pd(II)-catalyzed C-H annulations with alkynes and allenes1. Herein we show how a Rh(III) complex catalyzes a formal (4+2) annulation between o-alkenylanilides and alkynes leading to naphtylamides. This reaction proceeds under mild conditions and, remarkably, in the absence of oxygen or metal salts, thus opening exciting opportunities in the field of Rh(III)-catalyzed C-H activation.

References: 1. (a) Seoane, A.; Casanova, N.; Quiñones, N.; Mascareñas, J. L.; Gulías, M. J. Am. Chem. Soc. 2014, 136,

7607. (b) Seoane, A.; Casanova, N.; Quiñones, N.; Mascareñas, J. L.; Gulías, M. J. Am. Chem. Soc. 2014, 136, 834. (c) Casanova, N.; Del Rio, K. P.; García-Fandiño, R.; Mascareñas, J. L.; Gulías, M. ACS Catal. 2016, 6, 3349. (d) Casanova, N.; Seoane, A.; Mascareñas, J. L.; Gulías, M. Angew. Chem., Int. Ed. 2015, 54, 2374.

ArAr

NHNHTfTf RR

ArAr

NHNHTfTf RR

RR11RR22

[Cp*RhCl[Cp*RhCl22]]22 (5 (5 mol%)mol%)

NaOAc NaOAc (0.5 (0.5 equiv)equiv)THF, THF, air, air, 70 70 ºC, ºC, 16h16h

++RR22

RR11

.

Page 132: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

130

P63 Polymer [Pd(CH2SO2C6H4Me)2]n, a precursor to remarkably stable Pd organometallics

J. M. Martínez-Ilarduya, C. Pérez-Briso, A. M. Gallego, J. M. Martín-Alvarez, P. Espinet

IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid,

47071 Valladolid, Spain [email protected]

Our interest in stable systems containing Pd–C(sp3) bonds directed our attention to the (arylsulfonyl)methyl organic fragments. In this context we have prepared several complexes with the Pd–CH2SO2C6H4Me bond.1 The inertness of this bond has let us synthesize by thermolysis [Pd(CH2SO2C6H4Me)2]n that is a very general precursor to almost any Pd complex with this group including unusual water, ammonia, and hydrazine complexes where the coordinated OH2 or NH2R (R = H, NH2) ligands brings about cis to trans isomerization to establish double hydrogen bridging to two SO2 groups. As for the inertness of the Pd–C bond observed in this family of compounds, CH2SO2C6H4Me is a highly donor alkyl type group that produces Pd complexes with unusual resistance to reductive elimination and hydrolysis. In this respect it reminds us of the stability of fluorinated aryls, and that of mesityl or fluoromesityl derivatives, and seems superior to that of perfluorinated aryls.2 Consequently it should be a good model for studies of reactions on challenging inert groups. The group is also interesting for application in the field of metal-containing materials demanding thermal stability of the complexes used in the device.

trans-[Pd(CH2SO2C6H4Me)2(OH2)(PPh3)] (µ-N2H4)(trans-[Pd(CH2SO2C6H4Me)2(PPh3)])2

References 1. (a) Espinet, P.; Martínez-Ilarduya, J. M.; Pérez-Briso, C. J. Organomet. Chem. 1993, 447, 145-152.

(b) Pérez-Briso, C.; Gallego, A. M.; Martín-Alvarez, J. M.; Martínez-Ilarduya, J. M.; Espinet, P. Dalton Trans. 2017, in press.

2. Espinet, P.; Albéniz, A. C.; Casares, J. A.; Martínez-Ilarduya, J. M. Coord. Chem. Rev. 2008, 252, 2180-2208 and references therein.

Page 133: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

131

Participants

Page 134: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

132

LIST OF PARTICIPANTS

FULL NAME INSTITUTION CONTRIBUTION A AGUADO RIVERO, SERGIO Universidad Complutense de Madrid ALBERCA MANZANO, SAÚL Universidad Complutense de Madrid ALONSO COTCHICO, LUR University of Groningen OC1 ALONSO MORENO, CARLOS Universidad de Castilla-La Mancha P56 ALVARADO BELTRÁN, MARÍA ISABEL

Université de Toulouse P35

ÁLVAREZ RODRÍGUEZ, LUCÍA Universidad de Oviedo P36, FP3 ANTIÑOLO GARCÍA, ANTONIO FERMÍN

Universidad de Castilla-La Mancha P38, P55, P57

ARRIETA AYESTARÁN, ANA Universidad del País Vasco B BABÓN MOLINA, JUAN CARLOS Universidad de Zaragoza-CSIC FP1 BACEIREDO, J. ANTOINE Université de Toulouse FP23, P35 BAJO VELÁZQUEZ, SONIA Universidad de Zaragoza-CSIC OC2 BARTOLOMÉ, CAMINO Universidad de Valladolid P49 BIZ, CHIARA Universitat Jaume I FP2 BRUGOS LAVIANA, JAVIER Universidad de Oviedo FP3 BUIL JUAN, MARÍA LUISA Universidad de Zaragoza-CSIC FP22 C CABALLERO ESPINOSA, MARÍA DEL PRADO

Universidad de Castilla-La Mancha P61

CABEZA DE MARCO, JAVIER ÁNGEL

Universidad de Oviedo FP3, FP11, P36, P46

CADIERNO MENÉNDEZ, VICTORIO

Universidad de Oviedo P37, OC5, FP6, FP15, P40, P47

CAGIAO MARCOTE, DAVID Universidad de Santiago de Compostela FP16 CARMONA CARMONA, JOSÉ ALBERTO

Universidad de Sevilla-CSIC FP4

CARRILLO HERMOSILLA, FERNANDO

Universidad de Castilla-La Mancha P38, P55, P57

CASADO RUANO, MELODIE Universidad de Oviedo P39 CASTRO OSMA, JOSÉ ANTONIO Universidad de Castilla-La Mancha FP18, FP32, P42, P44, P56,

P61 CHIRIK, PAUL Princeton University L2 COLLADO MARTÍNEZ, ALBA Universidad Complutense de Madrid OC11 CROCHET, PASCALE Universidad de Oviedo P40, FP6 D DE CÓZAR RUANO, ABEL Universidad del País Vasco DE LA CRUZ MARTÍNEZ, FELIPE Universidad de Castilla-La Mancha P42 DURÁN, ALBA Universidad Complutense de Madrid E ESPINET, PABLO Universidad de Valladolid L1, P49, P63 ESTERUELAS RODRIGO, MIGUEL ÁNGEL

Universidad de Zaragoza-CSIC FP1, FP8, FP17, FP22, FP31, P41, P53

Page 135: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

133

F

FERNÁNDEZ BAEZA, JUAN Universidad de Castilla-La Mancha FP18, FP32, P42, P44 FERNÁNDEZ FERNÁNDEZ, ROSARIO

Universidad de Sevilla FP4

FERNÁNDEZ FREIXES, GUILLEM Universitat Autònoma de Barcelona P43 FERNÁNDEZ GALÁN, RAFAEL Universidad de Castilla-La Mancha P55, P57 FILIPPONE, SALVATORE Universidad Complutense de Madrid OC9, FP7 FOUBELO GARCÍA, FRANCISCO Universidad de Alicante FP29, FP30 FRANCOS ARIAS, JAVIER Universidad de Oviedo OC5, P37 FRUTOS PASTOR, MARÍA Universidad Complutense de Madrid OC6, FP10 G GALVÁN CURTO, SHEILA Universidad de Zaragoza-CSIC P41 GAONA FERNÁNDEZ, MIGUEL ÁNGEL

Universidad de Castilla-La Mancha P44

GARCÉS OSADO, ANDRÉS Universidad Rey Juan Carlos FP32 GARCÍA ÁLVAREZ, PABLO Universidad de Oviedo P46, FP3, FP11, P36 GARCÍA ÁLVAREZ, JOAQUÍN Universidad de Oviedo P45 GARCÍA GARRIDO, SERGIO EMILIO

Universidad de Oviedo P47, OC5, FP15, P37

GARCÍA MORALES, CRISTINA Institute of Chemical Research of Catalonia

OC7

GARCÍA VIVÓ, DANIEL Universidad de Oviedo P48, P39 GARCÍA YEBRA, MARÍA CRISTINA

Universidad de Zaragoza-CSIC P53

GARCÍA YUSTE, SANTIAGO Universidad de Castilla-La Mancha GARCÍA-AVELLO MÉNDEZ, MARTA

Universidad Complutense de Madrid-CSIC

FP10

GIRÓN RUBIO, ROSA MARÍA Universidad Complutense de Madrid FP7, OC9 GÓMEZ BAUTISTA, DANIEL Universidad de Zaragoza-CSIC FP8 GÓMEZ GALLEGO, MAR Universidad Complutense de Madrid FP5, FP25 GÓMEZ-ORELLANA SEGUÍN, PABLO

Universitat Autònoma de Barcelona FP9

GONZÁLEZ ÁLVAREZ, LAURA Universidad de Oviedo FP11, P46 GONZÁLEZ FERNÁNDEZ, REBECA Universidad de Oviedo FP6, P40 GRANADOS TODA, ALBERT Universitat Autònoma de Barcelona H HEVIA, EVA University of Strathclyde L3 HERNÁNDEZ GONZÁLEZ, YAIZA Universidad de Zaragoza-CSIC HIMO, FAHMI Stockholm University L6 I IBÁÑEZ MAELLA, SUSANA Universitat Jaume I OC8, FP2 IGLESIAS NICASIO, ANTONIO Universidad de Zaragoza-CSIC FP22 IZQUIERDO CANCHO, CRISTINA Universidad de Sevilla FP13 J

JIMÉNEZ VICENT, DIEGO Universidad Complutense de Madrid L LAGLERA GÁNDARA, CARLOS JAVIER

Universidad de Oviedo

Page 136: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

134

LAMAS PÉREZ, ALEJANDRO Universidad de Santiago de Compostela FP14 LARA SÁNCHEZ, AGUSTÍN Universidad de Castilla-La Mancha FP18, FP32, P42, P44, P56,

P61 LASSALETTA SIMÓN, JOSÉ MARÍA

Universidad de Sevilla-CSIC FP4, FP13

LEAL CRUZ, JORGE Universidad de Castilla-La Mancha P50 LEÓN GARCÍA, FÉLIX Universidad de Sevilla-CSIC FP15, P37 LI, HAO Universitat Autònoma de Barcelona P51 LLEDÓS FALCÓ, AGUSTÍ Universitat Autònoma de Barcelona OC1, FP9 LÓPEZ DE LAMA, ANA MARGARITA

Universidad de Zaragoza-CSIC FP1, FP8, FP31

LÓPEZ MARTÍNEZ, JAVIER Universidad Complutense de Madrid LÓPEZ SANTOS, LAURA Universidad de Sevilla-CSIC P52 M MARTÍN, JAIME Universidad de Zaragoza-CSIC P53 MARTÍN, NAZARIO Universidad Complutense de Madrid L8, OC9, FP7 MARTÍNEZ AGRAMUNT, VÍCTOR Universitat Jaume I FP19 MARTÍNEZ DE ILARDUYA, JESÚS MARÍA

Universidad de Valladolid P63

MARTÍNEZ GRAU, MARÍA ÁNGELES

Eli Lilly and Company L5

MARTÍNEZ GUTIÉRREZ, ANTONIO Universidad de Zaragoza-CSIC FP17 MARTÍNEZ MARTÍNEZ, JAVIER Universidad de Castilla-La Mancha FP18, P42, P44 MARTÍNEZ DE SALINAS UZQUIZA, SARA

Institute of Chemical Research of Catalonia

OC4

MARTÍNEZ DE SARASA BUCHACA, MARC

Universidad de Castilla-La Mancha

MATO GÓMEZ, MAURO Institute of Chemical Research of Catalonia

FP34

MICHELET, VÉRONIQUE Institute de Recherche de Chimie Paris L7 MIGUEL ÁVILA, JOAN Universidad de Santiago de Compostela FP21 MIRANDA PIZARRO, JUAN Universidad de Sevilla-CSIC P54 MORA PANIAGUA, ERIK Universidad de Zaragoza-CSIC MORENO DE LOS REYES, ANA MARÍA

Universidad de Castilla-La Mancha P55

MORENO DÍAZ, JUAN JOSÉ Universidad de Sevilla-CSIC OC10 N NÁJERA DOMINGO, CARMEN Universidad de Alicante FP30 NIZA GONZÁLEZ, ENRIQUE Universidad de Castilla-La Mancha P56 NORTH, MICHAEL University of York L4 NOUGUÉ, RAPHAËL Université de Toulouse FP23 NUEVO VIALÁS, DANIEL Universitat Jaume I FP24 O ODRIOZOLA GIMENO, MIKEL Universidad del País Vasco FP20 OLIVÁN ESCO, MONTSERRAT Universidad de Zaragoza-CSIC FP17, P41 OÑATE RODRÍGUEZ, ENRIQUE Universidad de Zaragoza-CSIC FP1, FP8, FP17, FP22,

FP31, P41, P53 ORTEGA FERNÁNDEZ-PACHECO, PABLO

Universidad de Castilla-La Mancha

Page 137: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

135

OTERO MONTERO, ANTONIO LEANDRO

Universidad de Castilla-La Mancha FP18, FP32, P42, P44, P56, P61

P PÉREZ AGUILAR, MARÍA DEL CARMEN

Universidad Complutense de Madrid FP25

PÉREZ JIMÉNEZ, MARINA Universidad de Sevilla-CSIC OC3 PIZZANO MANCERA, ANTONIO Universidad de Sevilla-CSIC FP15, P37 POYATOS LORENZO, MACARENA Universitat Jaume I OC8, FP2, FP24 R RAMOS ALONSO, ALBERTO Universidad de Castilla-La Mancha P57, P55 RAYA BARÓN, ÁLVARO Universidad de Almería P58 RENDÓN MÁRQUEZ, NURIA Universidad de Sevilla-CSIC P59 RÍOS MORENO, PABLO Universidad de Sevilla-CSIC OC12 RIVERA CHAO, EVA Universidad de Santiago de Compostela FP26 RODRÍGUEZ LÓPEZ, JULIÁN Universidad de Castilla-La Mancha P61 RODRÍGUEZ-GUERRA PEDREGAL, JAIME

Universitat Autònoma de Barcelona FP27

ROJAS GUERRERO, RENÉ Pontífica Universidad Católica de Chile S SAÁ RODRÍGUEZ, CARLOS Universidad de Santiago de Compostela FP33 SAN JOSÉ ORDUNA, JESÚS Institute of Chemical Research of

Catalonia OC13

SAN TORCUATO SANZ, AINHOA Universidad de Zaragoza-CSIC FP31 SÁNCHEZ PAGE, BEATRIZ Universidad de Zaragoza-CSIC FP28 SÁNCHEZ-BARBA MERLO, LUIS FERNANDO

Universidad Rey Juan Carlos FP32

SANSANO GIL, JOSÉ MIGUEL Universidad de Alicante FP30 SEBASTIÁN PÉREZ, ROSA MARÍA Universitat Autònoma de Barcelona SELVA MARTÍNEZ, ELISABET Universidad de Alicante FP30 SIERRA, MIGUEL ÁNGEL Universidad Complutense de Madrid OC6, FP5, FP10, FP25 SIRVENT VERDÚ, ANA Universidad de Alicante FP29 SOBRINO RAMÍREZ, SONIA Universidad de Castilla-La Mancha FP32 SUÁREZ ESCOBAR, ANDRÉS Universidad de Sevilla-CSIC P60, P52, P59 T TEJEDA SOJO, JUAN Universidad de Castilla-La Mancha P61 U UJAQUE PÉREZ, GREGORI Universitat Autònoma de Barcelona FP9 V VALENZUELA VALDÉS, Mª LUISA Universidad Autónoma de Chile VALLRIBERA MASSÓ, ADELINA Universitat Autònoma de Barcelona FP12 VARELA CARRETE, JESÚS ÁNGEL Universidad de Santiago de Compostela FP33 VELASCO RUBIO, ÁLVARO Universidad de Santiago de Compostela FP33 VIDAL PEREIRA, XANDRO Universidad de Santiago de Compostela P62 VILLACAMPA SANAGUSTÍN, ALEJANDRO

Universidad Complutense de Madrid

VILLASEÑOR CAMACHO, ELENA Universidad de Castilla-La Mancha Y YUS ASTIZ, MIGUEL Universidad de Alicante FP29

Page 138: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

136

Page 139: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

X International School on Organometallic Chemistry “Marcial Moreno Mañas”

137

Page 140: Eventos Emagister · Cabeza de Marco, Javier A. Ujaque Pérez, Gregori . Lledós Falcó, Agustí . Saá Rodríguez, Carlos . Mascareñas Cid, José Luis . Vallribera Massó, Adelina

Recommended