+ All Categories
Home > Documents > Evolution of bacterial regulatory systems

Evolution of bacterial regulatory systems

Date post: 13-Jan-2016
Category:
Upload: colm
View: 20 times
Download: 1 times
Share this document with a friend
Description:
Evolution of bacterial regulatory systems. Mikhail Gelfand Research and Training Center “Bioinformatics” Institute for Information Transmission Problems Moscow, Russia. CASB-20, UCDS, La Jolla, 13-14.III.2009. Plan. Co-evolution of transcription factors and their binding motifs - PowerPoint PPT Presentation
39
Evolution of bacterial regulatory systems Mikhail Gelfand Research and Training Center “Bioinformatics” Institute for Information Transmission Problems Moscow, Russia CASB-20, UCDS, La Jolla, 13-14.III.2009
Transcript
Page 1: Evolution of bacterial regulatory systems

Evolution of bacterial regulatory systems

Mikhail Gelfand

Research and Training Center “Bioinformatics”Institute for Information Transmission

ProblemsMoscow, Russia

CASB-20, UCDS, La Jolla, 13-14.III.2009

Page 2: Evolution of bacterial regulatory systems

Plan

• Co-evolution of transcription factors and their binding motifs

• Evolution of regulatory systems and regulons

Page 3: Evolution of bacterial regulatory systems

Regulators and their motifs

• Cases of motif conservation at surprisingly large distances

• Subtle changes at close evolutionary distances

• Correlation between contacting nucleotides and amino acid residues

Page 4: Evolution of bacterial regulatory systems

NrdR (regulator of ribonucleotide reducases and some other replication-related genes): conservation at large

distances

Page 5: Evolution of bacterial regulatory systems

DNA motifs and protein-DNA interactions

CRP PurR

IHF TrpR

Entropy at aligned sites and the number of contacts (heavy atoms in a base pair at a distance <cutoff from a protein atom)

Page 6: Evolution of bacterial regulatory systems

The CRP/FNR family of regulators

FNR

HcpR

CooA

Gam ma

Desulfovibrio

Desulfovibrio

TGTCGGCnnGCCGACA

TTGTgAnnnnnnTcACAA

TTGTGAnnnnnnTCACAA

TTGATnnnnATCAA

Page 7: Evolution of bacterial regulatory systems

Correlation between contacting nucleotides and amino acid

residues• CooA in Desulfovibrio spp.• CRP in Gamma-proteobacteria• HcpR in Desulfovibrio spp. • FNR in Gamma-proteobacteria

DD COOA ALTTEQLSLHMGATRQTVSTLLNNLVRDV COOA ELTMEQLAGLVGTTRQTASTLLNDMIREC CRP KITRQEIGQIVGCSRETVGRILKMLEDYP CRP KXTRQEIGQIVGCSRETVGRILKMLEDVC CRP KITRQEIGQIVGCSRETVGRILKMLEEDD HCPR DVSKSLLAGVLGTARETLSRALAKLVEDV HCPR DVTKGLLAGLLGTARETLSRCLSRMVEEC FNR TMTRGDIGNYLGLTVETISRLLGRFQKYP FNR TMTRGDIGNYLGLTVETISRLLGRFQKVC FNR TMTRGDIGNYLGLTVETISRLLGRFQK

TGTCGGCnnGCCGACA

TTGTgAnnnnnnTcACAA

TTGTGAnnnnnnTCACAA

TTGATnnnnATCAA

Contacting residues: REnnnRTG: 1st arginineGA: glutamate and 2nd arginine

Page 8: Evolution of bacterial regulatory systems

The correlation holds for other factors in the family

Page 9: Evolution of bacterial regulatory systems

The LacI family: subtle changes in motifs at close

distances

G

An

CGGn GC

Page 10: Evolution of bacterial regulatory systems

The LacI family: systematic analysis

• 1369 DNA-binding domains in 200 orthologous rows <Id>=35%, <L>=71 а.о.

• 4484 binding sites, L=20н., <Id>=45%

• Calculate mutual information between columns of TF and site alignments

• Set threshold on mutual information of correlated pairs

Page 11: Evolution of bacterial regulatory systems

Definitions

SitesLAFDHDQILQMAQERLQGKVRYQP-IGFELLPEKFSLRQLQRMYETVLGRS---LDKRNFLAFDHNQILDYGYQRLRNKLEYSP-IAFEVLPELFTLNDLFQLYTTVLGED--FADYSNF

tTAaTGgCTTTAtGcCACTAT

LSFDHNEILAYGHRRLRNKLEYSP-VAFEVLPEMFTLNDLYQLYTTVLGEN--FSDYSNFLSFDHNEILAYGHRRLRNKLEYSP-VAFEVLPEMFTLNDLYQLYTTVLGEN--FSDYSNFLAFDHSKILAYGHRRLCNKLEYSP-VAFDVLPEYFTLNDLYQFYSTVLGAN--FSDYSNFLAFDHSKILAYGHRRLCNKLEYSP-VAFDVLPEYFTLNDLYQFYSTVLGAN--FSDYSNFLAFDHSKILAYGHRRLCNKLEYSP-VAFDVLPEYFTLNDLYQFYSTVLGAN--FSDYSNFLAFDHNQILDYGYQRLRNKLEYSP-IAFEVLPELFTLNDLFQLYTTVLGED--FADYSNFLSFDHNEILAYGHRRLRNKLEYSP-VAFEVLPEMFTLNDLYQLYTTVLGEN—-FSDYSNFLSFDHNEILAYGHRRLRNKLEYSP-VAFEVLPEMFTLNDLYQLYTTVLGEN--FSDYSNF

TTAaaGTAAtAaTTACCATAAAaAtTGTCTTTAtGcCACTATTTATGGTAAATTcTACCATAATTATGGTAAATTcTACCATAATTATgGTCAgTTTcACcAaAA

tTAaTGgCTTTAtGcCACTAT

TTaGTCgAAATAaccaACtAATTATCGTCAtCtcGACGACAATttAGGTAAgTTATACTTTTA

4

1

20

1

,, )()(

),(log),(),(

n a ji

jiji npap

napnapjiI

)~(

)~(

,

,,,

ji

jijiji I

IEIZ

jiI ,~

i j

Z-score

Mutual information

Protein alignment

Page 12: Evolution of bacterial regulatory systems

Correlated pairs

Page 13: Evolution of bacterial regulatory systems

Higher order correlations-ATIKDVAKRANVSTTTV- AATTGTGAGCGCTCACT

SL SQ

TL

TQ

Page 14: Evolution of bacterial regulatory systems

Not a phylogenetic trace

38[3]_ A R _GA A39[2]_ A R _GA A

28[4]_ S R _GCA _A CA

30_S R _GA A _ GCA29[12]_S R _GCA _ GA A

31_S R _GA A _ GCA27[8]_ S R _GCA _A CA

35[19]_T R _CA A _ GA A

32[5]_ S R _GCA _GA A

87[3]_ A R _GT A94_A R _GT A

56_S R _GGT

100[3]_A R _GT A

102_A R _ GT A101[3]_A R _GA A

110[2]_A R _GT A

41_S R _GGA

99[6]_ S R _GCA

93_A R _GA A

89[3]_ A R _GT A

88[5]_ A R _GT A91_A R _GA A

90[3]_ A R _GT A

49[7]_ A R _GA A _GGA

50[2]_ A R _GA A

92[3]_ S R _GA A

86_A R _GA A _ GCA

85[2]_ A R _GGA _GT A

84[13]_A R _GA A _ GT G

16_S R _GA A _ GAC

42[3]_ A R _GT A

37_A R _GT A

36[10]_A R _GA A

40_A R _GA A43[2]_ S R _GA A

98_S R _A CA _ GCA

97[2]_ A R _GA A _GCA

115[5]_A R _GA A

114[5]_A R _GT A _ GA T

14[3]_ S R _GA A _GA C

12[3]_ S R _GCA10[3]_ S R _GCA

13[3]_ S R _GCA

1[4]_S R _ GA A _GCA

11[12]_S R _GCA _ GA A

75[4]_ A R _GT A _T T A

83_S R _GA A82[5]_ S R _GCA _A CA

117[18]_ SR _ GGG_GGT

17[11]_A R _GT A _ GA A

57[3]_ S R _GGG_GCA

53_S R _T A A _ GAA51[14]_S R _GGA _ T GA

54_S R _GGA _ GTA52[8]_ S R _GGA _A A A

55[4]_ S R _GGA _GA A

9[7]_A R _ GT A _GA A18[4]_ A R _GT A

23[3]_ A R _GT A _GA A

19_A R _GT A _ GAA20_S R _GCA

21[2]_ A R _GCA _GT A

6_ MR _GT T _GGT

7[8]_MR _ GA T _GT T5[7]_MR _ GT T _T T T

4[5]_S R _ GGC_GGT8[10]_ MR _GT T _GA T

79[4]_ S R _GGT _GGA

15[2]_ S R _GCA _GA A112[8]_A R _GT A _ GA A

109[3]_A R _GT A _ GA A

111[7]_A R _GA A _ GA T113[2]_S R _GA A

108[31]_ AR _ GT A _GA A

95[12]_MR _GT T _ GA T

105[6]_A R _GT A _ GGA106_A R _ GT A _GA T

107[2]_A R _GA A _ GGA

104[22]_ AR _ GT A _GA A

103[9]_A R _GT A _ GA A

74[2]_ A R _GT A

76_T R _GA A _ GTA

77_MR _GT T

22[7]_ A R _GT A _GA A

24[17]_MR _GT T _ T T T

3[30]_ MR _GA T _GT T

2[54]_ MR _GT T _GA T

78[3]_ T R _CGA _GA A

81[65]_S R _GCA _ GA A

80[5]_ S R _GGT _GGA

116_S R _ GA A _GCA72_T R _GA A _ GGA

73_T R _GA A _ GAG

96[3]_ S R _GA A

71[4]_ A R _GT A

66[4]_ T R _GA A

68_S R _GA A _ GGT

70[3]_ S R _GGA69_A R _GA A

67_S R _GGT

65_S R _GA A

62[8]_ S R _GGA _GGT

60[8]_ T R _GA A

64_T R _GA A

61[8]_ S R _GA A63[3]_ T R _GA A

59_T R _GA A _ GTT58[4]_ A R _GT T _GT A

25[5]_ S R _GCA _GA A26[4]_ A R _GT A _GCA

34[11]_A R _GT A _ GA A48_A R _GA A _ GGT

47[3]_ A R _GA A _GT A

46[7]_ S R _GGG_GGA

45_S R _GA A44[2]_ S R _GGA _GCA

33[3]_ A R _GA A

Page 15: Evolution of bacterial regulatory systems

NrtR (regulator of NAD metabolism)

Page 16: Evolution of bacterial regulatory systems

Comparison with the recently solved structure: correlated positions indeed

bind the DNA (more exactly, form a hydrophobic cluster)

Page 17: Evolution of bacterial regulatory systems

Catalog of events

• Expansion and contraction of regulons

• New regulators (where from?)

• Duplications of regulators with or without regulated loci

• Loss of regulators with or without regulated loci

• Re-assortment of regulators and structural genes

• … especially in complex systems

• Horizontal transfer

Page 18: Evolution of bacterial regulatory systems

Regulon expansion, or how FruR has become CRA

• CRA (a.k.a. FruR) in Escherichia coli:– global regulator

– well-studied in experiment (many regulated genes known)

• Going back in time: looking for candidate CRA/FruR sites upstream of (orthologs of) genes known to be regulated in E.coli

Page 19: Evolution of bacterial regulatory systems

Common ancestor of gamma-proteobacteria

icdA

aceA

aceB

aceEF

pckA

ppsApykF

adhE

gpmApgk

tpiA

gapApfkAfbp

FructosefruKfruBA

eda

eddepd

Glucose

ptsHI-crr

Mannose

manXYZ

mtlDmtlAMannitol

Gamma-proteobacteria

Page 20: Evolution of bacterial regulatory systems

Common ancestor of the Enterobacteriales

icdA

aceA

aceB

aceEF

pckA

ppsApykF

adhE

gpmApgk

tpiA

gapApfkAfbp

FructosefruKfruBA

eda

eddepd

Glucose

ptsHI-crr

Mannose

manXYZ

mtlDmtlAMannitol

Gamma-proteobacteriaEnterobacteriales

Page 21: Evolution of bacterial regulatory systems

Common ancestor of Escherichia and Salmonella

icdA

aceA

aceB

aceEF

pckA

ppsApykF

adhE

gpmApgk

tpiA

gapApfkAfbp

FructosefruKfruBA

eda

eddepd

Glucose

ptsHI-crr

Mannose

manXYZ

mtlDmtlAMannitol

Gamma-proteobacteriaEnterobacterialesE. coli and Salmonella spp.

Page 22: Evolution of bacterial regulatory systems

Regulation of amino acid biosynthesis in the Firmicutes

• Interplay between regulatory RNA elements and transcription factors

• Expansion of T-box systems (normally – RNA structures regulating aminoacyl-tRNA-synthetases)

Page 23: Evolution of bacterial regulatory systems

Recent duplications and bursts: ARG-T-box in Clostridium difficile

LJ_ARGS

LME_ARGS

LR_ARGS

LP_ARGS

CBE_ARGS

CPE_ARGSCB_ARGS

CTC_ARGS

CAC_ARGS

CDF_YQIXYZ

RDF02391

СDF_ARGC

CDF_ARGH

BC_ARGS2EF_ARGS

BH_ARGS

LSA_ARGSPPE_ARGS

LGA_ARGS

Bacillales

argSyqiXYZ

RDF02391

argCJBDF

predictedamino acidtransporters

NEW

argG

argH

Clostridiumdifficile

amino acidbiosynthetic genes

: ARG-specific T-box regulatory site

aminoacyl-tRNA synthetase

biosynthetic genes

amino acid transporters

NEW

Lactobacillales Clostridiales

argS argS

others

Page 24: Evolution of bacterial regulatory systems

… caused by loss of transcription factor AhrC

Expansion of T-box regulon

regulation of expression of arginine biosynthetic and transport genes by T-box antitermination

: ARG-specific T-box regulatory site

Binding to 5’ UTR gene region regulation of gene expression

Other clostridia spp. (CA, CTC, CTH, CPE, CB, CPE)

yqiXYZ

argC

argH

yqiXYZ

argC

argG

argH

AhrC regulatory protein (negative regulation of arginine metabolism positive regulation of arginine catabolism)

...AhrC site

: AhrC binding site

Gram+ bacteria: Clostridiumdifficile:

AhrC is lost

5’

Page 25: Evolution of bacterial regulatory systems

Duplications and changes in specificity: ASN/ASP/HIS T-boxes

CB_ASNS2

CDF_ASNA

EF_HISS

EX_HISS

BCL_HISSBH_HISS

OB_HISS

BC_HISS

TTE_HISS

DRE_HISS

CH_HISSCTH_HISS

PL_HISS

BE_HISSBL_HISS

BS_HISS

LME_HISXYZCDF_HISZX

LRE_HISXYZLSA_HISXYZ

OOE_HISXYZ

LP_HISXYZ

SGO_HISC

SMU_HISC

EF_HISXYZ

LMO_HISXYZ

EF_HISXYZ

LME_HIS(Z G\ )

LL_HISCLP_HISZ

LCA_HISZCB_ASNS3

CAC_ASNS32

BC_ASNS2

PPE_HISXYZ

PPE_ASNS

LB_ASNA

LD_ASNALJ_ QHMPgln

LJ_ASNA

PPE_ASNALP_ASNA

EX_ASNA

LB_ASNS2

CTC_ASNS2

PPE_HISSLP_HISS

LB_HISS

LJ_HISS

LRE_HISS

LRE_ASPS

LCA_HISS

CPE_ASNA

BC_ASNACBE_ASNS2

CTC_ASNACDF_ASNS2

CPE_ASNS2

his operon

his XYZ

Lactobacilla les

NEW

hisS

Other Gram +

ASP\ASN

HIS

Bacillales

HIS

aspS

SMU_ASPS2SG_ASPS2glnQHMP

L. johnsoniiasnA

ASP

ASN

asnAASN

Lac acillalestobasnS

ASN

aspS

hisXYZ

P. pentosaceus

asnS

HIS

ASP

Clostridiales

asnAASN

ASN

asnA

asnS

asnA

ASP

Rapid m utation of regulatory codons

ASN

AACGAC

hisSASP

Lac acillalestob

HIS

ASPhisS

L. reuteriaspS

ASN

ASN

ASN

ASN

Page 26: Evolution of bacterial regulatory systems

Blow-up 1

PPE_ASNS2

LB_ASNA

LD_ASNALJ_GLNQHMP

LJ_ASNA

PPE_ASNALP_ASNA

PPE_HISSLP_HISS

LB_HISS

LJ_HISS

LRE_HISS

LRE_ASPS

LCA_HISS

aspShisSASP

Lac acillalestob

HIS ASPhisS

L. reuteri

aspS

ASP HIS

CACGAC

asnAASN

Lac acillalestob

disruption of hisS-aspS operonmutation of regulatory codon

L. johnsonii

asnA

ASP

ASN

glnQHMP

PPE_HISXYZ

ASN

AAC

P. pentosaceus

HIS

ASPhisXYZ

asnS

HIS

CAC

ASPASN

AAC GAC

Page 27: Evolution of bacterial regulatory systems

Blow-up 2. Prediction

Regulators lost in lineages with expanded HIS-T-box regulon??

Page 28: Evolution of bacterial regulatory systems

… and validation

• conserved motifs upstream of HIS biosynthesis genes

• candidate transcription factor yerC co-localized with the his genes• present only in genomes with the motifs upstream of the his genes• genomes with neither YerC motif nor HIS-T-boxes: attenuators

Bacillales (his operon)

Clostridiales

Thermoanaerobacteriales

Halanaerobiales

Bacillales

Page 29: Evolution of bacterial regulatory systems

The evolutionary history of the his genes regulation in the Firmicutes

Page 30: Evolution of bacterial regulatory systems

T-boxes: Summary / History

Page 31: Evolution of bacterial regulatory systems

Life without Fur

Page 32: Evolution of bacterial regulatory systems

Regulation of iron homeostasis (the Escherichia coli paradigm)

Iron:• essential cofactor (limiting in many environments)• dangerous at large concentrations

FUR (responds to iron):• synthesis of siderophores• transport (siderophores, heme, Fe2+, Fe3+)• storage• iron-dependent enzymes• synthesis of heme• synthesis of Fe-S clusters

Similar in Bacillus subtilis

Page 33: Evolution of bacterial regulatory systems

Regulation of iron homeostasis in α-proteobacteria

Experimental studies:• FUR/MUR: Bradyrhizobium, Rhizobium and Sinorhizobium• RirA (Rrf2 family): Rhizobium and Sinorhizobium • Irr (FUR family): Bradyrhizobium, Rhizobium and Brucella

RirA IrrFeS heme

RirA

degraded

FurFe

Fur

Iron uptake systems

Siderophoreuptake

Fe / Feuptake Transcription

factors

2+ 3+

Iron storage ferritins

FeS synthesis

Heme synthesis

Iron-requiring enzymes

[iron cofactor]

IscR

Irr

[- Fe] [+Fe]

[+Fe][- Fe]

[+Fe][ Fe]-

FeS

FeS statusof cell

Page 34: Evolution of bacterial regulatory systems

Distribution of

transcription factors in genomes

Search for candidate motifs and binding sites using standard comparative genomic techniques

Page 35: Evolution of bacterial regulatory systems

Regulation of genes in

functional subsystemsRhizobiales

Bradyrhizobiaceae

Rhodobacteriales

The Zoo (likely ancestral state)

Page 36: Evolution of bacterial regulatory systems

Reconstruction of history

Appearance of theiron-Rhodo motif

Frequent co-regulation

with Irr

Strict division of function

with Irr

Page 37: Evolution of bacterial regulatory systems

All logos and Some Very Tempting Hypotheses:

1. Cross-recognition of FUR and IscR motifs in the ancestor.

2. When FUR had become MUR, and IscR had been lost in Rhizobiales, emerging RirA (from the Rrf2 family, with a rather different general consensus) took over their sites.

3. Iron-Rhodo boxes are recognized by IscR: directly testable

1

2

3

Page 38: Evolution of bacterial regulatory systems

Summary and open problems• Regulatory systems are very flexible

– easily lost– easily expanded (in particular, by duplication)– may change specificity– rapid turnover of regulatory sites

• With more stories like these, we can start thinking about a general theory– catalog of elementary events; how frequent?– mechanisms (duplication, birth e.g. from enzymes,

horizontal transfer)– conserved (regulon cores) and non-conserved (marginal

regulon members) genes in relation to metabolic and functional subsystems/roles

– (TF family-specific) protein-DNA recognition code– distribution of TF families in genomes; distribution of

regulon sizes; etc.

Page 39: Evolution of bacterial regulatory systems

People• Andrei A. Mironov – software, algorithms • Alexandra Rakhmaninova – SDP, protein-DNA correlations

• Anna Gerasimova (now at LBNL) – NadR• Olga Kalinina (on loan to EMBL) – SDP• Yuri Korostelev – protein-DNA correlations• Olga Laikova – LacI• Dmitry Ravcheev– CRA/FruR• Dmitry Rodionov (on loan to Burnham Institute) – iron etc.• Alexei Vitreschak – T-boxes and riboswitches

• Andy Jonson (U. of East Anglia) – experimental validation (iron)• Leonid Mirny (MIT) – protein-DNA, SDP• Andrei Osterman (Burnham Institute) – experimental validation

• Howard Hughes Medical Institute • Russian Foundation of Basic Research• Russian Academy of Sciences, program “Molecular and Cellular

Biology”


Recommended