+ All Categories
Home > Documents > Exact results in analytic hydrodynamics

Exact results in analytic hydrodynamics

Date post: 20-Jan-2016
Category:
Upload: brede
View: 28 times
Download: 0 times
Share this document with a friend
Description:
Exact results in analytic hydrodynamics. UTILIZING THE FLUID NATURE OF QGP M. Csanád, T. Csörgő , M. I. Nagy ELTE MTA KFKI RMKI Budapest, Hungary Quark Matter 2008, Jaipur, Rajastan, India February 8, 200 8. High temperature superfluidity at RHIC!. - PowerPoint PPT Presentation
Popular Tags:
30
2008-02-08 M. Csanád, T. Csörgő, M.I. Nagy Exact results in analytic hydrodynamics UTILIZING THE FLUID NATURE OF QGP M. Csanád, T. Csörgő, M. I. Nagy ELTE MTA KFKI RMKI Budapest, Hungary Quark Matter 2008, Jaipur, Rajastan, India February 8, 2008
Transcript
Page 1: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

Exact results in analytic hydrodynamics

UTILIZING THE FLUID NATURE OF QGP

M. Csanád, T. Csörgő, M. I. Nagy

ELTEMTA KFKI RMKI

Budapest, Hungary

Quark Matter 2008, Jaipur, Rajastan, India February 8, 2008

Page 2: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

High temperature superfluidity at RHIC!

All “realistic” hydrodynamic calculations for RHIC fluids to date have assumed zero viscosity= 0 →perfect fluidBut there is a conjectured quantum limit:

“A Viscosity Bound Conjecture”, P. Kovtun, D.T. Son, A.O. Starinets,

hep-th/0405231 Where do “ordinary” fluids sit wrt this limit?(4 ) η/s > 10 !

RHIC’s perfect fluid (4 ) η/s ~1

on this scale:The hottest (T > 2 Terakelvin)and the most perfect fluid ever made…

(( 44

Density)(Entropyπ

η44

Page 3: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

Equations of relativistic hydroFour-momentum tensor:

Relativistic

Euler equation:

Energy conservation:

Charge conservation:

Consequence is entropy conservation:

Page 4: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

ContextReknown exact solutions

Landau-Khalatnikov solution: dn/dy ~ Gaussian

Hwa solution (PRD 10, 2260 (1974)) - Bjorken 0 estimate (1983)

Chiu, Sudarshan and Wang: plateaux

Baym, Friman, Blaizot, Soyeur and Czyz: finite size parameter

Srivastava, Alam, Chakrabarty, Raha and Sinha: dn/dy ~ Gaussian

Revival of interest: Buda-Lund model + exact solutions,

Biró, Karpenko+Sinyukov, Pratt (2007),

Bialas+Janik+Peschanski, Borsch+Zhdanov (2007)

New simple solutions

Evaluation of measurables

Rapidity distribution Advanced initial energy density

HBT radii Advanced life-time estimation

Page 5: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

Goal

Need for solutions that are:explicitsimpleacceleratingrelativisticrealistic / compatible with the data:

lattice QCD EoSellipsoidal symmetry (spectra, v2, v4,

HBT)finite dn/dy

Report on a new class that satisfies these criteriabut not all simultaneouslyarXiv:0709.3677v1 [nucl-th] PRC(2008) in press

Page 6: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

Self similar, ellipsoidal solutions

Publication (for example):T. Csörgő, L.P.Csernai, Y. Hama, T. Kodama, Heavy Ion Phys. A 21

(2004) 73

3D spherically symmetric velocity profile:

No acceleration, i.e.

Define a scaling variable (compatible to flow):

Self-similarly expanding ellipsoids with principal axes of at, bt and ct

Use EoS of a (massive) ideal gas

Scaling function can be chosen freely

u x u x

2 2 2

2 2 2 2 2 2

ss 0

x y z d

a t b t c t dt

2 2 2

2 2 2 2 2 2

ss 0

x y z d

a t b t c t dt

0 ,nm p p nT 0 ,nm p p nT

0u u 0u u

3 3/ 3 3/

0 0 00 0 0 0 0 0

1, s , ,

sp p n n T T p n T

3 3/ 3 3/

0 0 00 0 0 0 0 0

1, s , ,

sp p n n T T p n T

s s

Page 7: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

New, simple, exact solutions

If If = d = 1 , general solution is obtained, for = d = 1 , general solution is obtained, for

ARBITRARY initial conditions. It is STABLE !ARBITRARY initial conditions. It is STABLE !

Possible cases (one row of the table is one solution):Possible cases (one row of the table is one solution):

Hwa-Bjorken, Buda-Lund Hwa-Bjorken, Buda-Lund typetype

New, accelerating, d New, accelerating, d dimensiondimensiond dimensional withd dimensional with p=p(p=p(,,) ) (thanks T. S. (thanks T. S. Biró)Biró)

Special EoS, but general Special EoS, but general velocityvelocity

Page 8: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

New simple solutions

Different final states from similar initial states are reached by

varying

Page 9: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

New simple solutions

Similar final states from different initial states are reached by

varying

Page 10: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

Rapidity distribution

Rapidity distribution from the 1+1 dimensional solution, for .1 1

Page 11: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

Pseudorapidity distribution

BRAHMS data fitted with the analytic formula ofAdditionally: yη transformation

dn

dy

dn

dy

Page 12: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

Rapidity distribution

BRAHMS data fitted with the analytic formula ofdn

dy

dn

dy

Page 13: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

Advanced energy density estimate

Fit result: Fit result: > 1> 1

Flows accelerate: Flows accelerate: do workdo work

initial energy density initial energy density >> Bjorken’s Bjorken’s

Corrections due toCorrections due to work work && acceleration. Ref: acceleration. Ref:

At RHIC energies the correction can be as high as a factor of At RHIC energies the correction can be as high as a factor of ~2!~2!

For For > 1 (accelerating) flows, both factors > 1> 1 (accelerating) flows, both factors > 1

Page 14: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

Advanced energy density estimate

Correction depends on timescales, dependence is:Correction depends on timescales, dependence is:

With a tipical With a tipical ff//00 of ~8-10, one gets a correction factor of 2! of ~8-10, one gets a correction factor of 2!

Page 15: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

Advanced life-time estimateLife-time estimation: for Hwa-Bjorken type of flows

Makhlin & Sinyukov, Z. Phys. C 39, 69 (1988)

Underestimates lifetime (Renk, CsT, Wiedemann, Pratt, …)

New correction:

dn/dy width related to acceleration and work

At RHIC energies: correction is about +20%

flong Bj

T

TR

m f

long BjT

TR

m

c Bj c Bj

Page 16: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

Conclusions

Explicit simple accelerating relativistic hydrodynamicsAnalytic (approximate) calculation of observables Realistic rapidity distributions; BRAHMS data well

described

New estimate of initial energy density: c/Bj up by factor of 2 @ RHIC

dependence on cs estimated

Estimate of work effects on lifetime: increase by 20% @ RHIC

A lot to do …more general EoSless symmetry, ellipsoidal solutionsasymptotically Hubble-like flows

Page 17: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

New simple solutions in 1+D dim

Fluid trajectories of the 1+D dimenisonal new solution

Page 18: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

Back-up Slides

Page 19: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

Landau-Khalatnikov solutionPublications:

L.D. Landau, Izv. Acad. Nauk SSSR 81 (1953) 51

I.M. Khalatnikov, Zhur. Eksp.Teor.Fiz. 27 (1954) 529

L.D.Landau and S.Z.Belenkij, Usp. Fiz. Nauk 56 (1955) 309

Implicit 1D solution with approx. Gaussian rapidity distribution

Basic relations:

Unknown variables:

Auxiliary function:

Expression of is a true „tour de force”

1 1cosh sinh , sinh cosht x

T T T T

1 1

cosh sinh , sinh cosht xT T T T

0 1cosh ( , ), sinh ( , )

( , ), ( , )

( , )

u t x u t x

T t x t x

T

0 1cosh ( , ), sinh ( , )

( , ), ( , )

( , )

u t x u t x

T t x t x

T

( , )T ( , )T

Page 20: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

Landau-Khalatnikov solution

Temperature distribution (animation courtesy of T.

Kodama)

„Tour de force” implicit solution: t=t(T,v), r=r(T,v)

Page 21: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

Hwa-Bjorken solution

The Hwa-Bjorken solution / Rindler coordinates

Page 22: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

Hwa-Bjorken solution

The Hwa-Bjorken solution / Temperature evolution

Page 23: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

Bialas-Janik-Peschanski solution

Publications:

A. Bialas, R. Janik, R. Peschanski, arXiv:0706.2108v1

Accelerating, expanding 1D solution

interpolates between Landau and Bjorken

Generalized Rindler coordinates:

Page 24: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

0

0

( ), ( ), ( ), , 0

( ) 0

( )

x z dp p s s u v

t dts

sus

T T

v

0

0

( ), ( ), ( ), , 0

( ) 0

( )

x z dp p s s u v

t dts

sus

T T

v

Hwa-Bjorken solutionPublications:

R.C. Hwa, Phys. Rev. D10, 2260 (1974)

J.D. Bjorken, Phys. Rev. D27, 40(1983)

Accelerationless, expanding 1D simple boost-invariant solution

Rindler coordinates:

Boost-invariance (valid for asymptotically high energies):

2 2

cosh , sinh

arctanh ,

t r

rt r x x

t

2 2

cosh , sinh

arctanh ,

t r

rt r x x

t

00, , 1 ( )p D D T T

00, , 1 ( )p D D T T

depends on EoS, e.g.depends on EoS, e.g.

Page 25: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

New simple solutions in 1+d dim

.A constThe fluid lines (red) and the pseudo-orthogonal freeze-out surface

(black)

Page 26: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

1 1

Rapidity distribution

Rapidity distribution from the 1+1 dimensional solution, for .

Page 27: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

1st milestone: new phenomena

Suppression of high pt particle production in Au+Au collisions at RHIC

Page 28: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

2nd milestone: new form of matter

d+Au: no suppression

Its not the nuclear effect

on the structure functions

Au+Au:

new form of matter !

Page 29: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

3rd milestone: Top Physics Story 2005

http://arxiv.org/abs/nucl-ex/0410003

PHENIX White Paper: second most cited in nucl-ex during 2006

Page 30: Exact results in analytic hydrodynamics

                       

2008-02-08

M. Csanád, T. Csörgő, M.I. Nagy

Strange and even charm quarks participate in the flow Strange and even charm quarks participate in the flow

vv22 for the φ follows that for the φ follows that

of other mesonsof other mesons

vv22 for the D follows that for the D follows that

of other mesonsof other mesons

4th Milestone: A fluid of quarks


Recommended