+ All Categories
Home > Documents > Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid...

Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid...

Date post: 01-Jan-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
55
Karlstads universitet 651 88 Karlstad Tfn 054-700 10 00 Fax 054-700 14 60 [email protected] www.kau.se Fakulteten för teknik- och naturvetenskap Marcus Ericsson Missuppfattningar av kraft Elevkunskaper om begreppet kraft Misconceptions of Force Pupils knowledge about the force concept Examensarbete 15 högskolepoäng Lärarprogrammet Datum: 15 juli 2008 Handledare: Per-Eric Åhlén
Transcript
Page 1: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

Karlstads universitet 651 88 Karlstad Tfn 054-700 10 00 Fax 054-700 14 60

[email protected] www.kau.se

Fakulteten för teknik- och naturvetenskap

Marcus Ericsson

Missuppfattningar av kraft Elevkunskaper om begreppet kraft

Misconceptions of Force Pupils knowledge about the force concept

Examensarbete 15 högskolepoäng

Lärarprogrammet

Datum: 15 juli 2008

Handledare: Per-Eric Åhlén

Page 2: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

Abstract

Misconceptions in physics and especially mechanics have been the object of several studies

since the first half of the 20th century. These studies have determined which misconceptions

are present. A few or none studies have been made on how the education counters these

misconceptions. It is therefore important to investigate the differences in knowledge

between pupils in the ages of 13 and 16 years.

This study aims to investigate the knowledge of the concept of force amongst pupils in the

age of 13 and 16 years, moreover to investigate if misconceptions are common with these

pupils. The method selected for investigation was a survey with multiple choice questions

and a few questions were the pupils were asked to draw arrows in pictures to represent

forces. The result is shown in diagrams and interprets that they have a low level of

understanding in this subject, it also shows that misconceptions are dominant. The

difference in the results between the pupils aged 13 and 16 is not significant, and therefore

the conclusion can be made that the education is performed in a wrong fashion.

Moreover, the results interpret that the pupils in the ninth year of compulsory education do

not meet the objectives of the Swedish curriculum, where the pupils should have knowledge

about pressure, energy and the build-up of matter where force plays an important part.

Keywords: Compulsory education, physics, mechanics education, force, misconceptions.

Page 3: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

Sammanfattning

Vardagsföreställningar inom fysik och i synnerhet mekanik har sedan 1900-talet första hälft

hamnat i fokus i flera studier. Dessa studier har kartlagt vilka vardagsföreställningar som är

förekommande. Få eller inga undersökningar har genomförts där man ställer undervisningen

i fokus och hur den motverkar dessa vardagsföreställningar. Det är därför angeläget att

undersöka hur skillnader ser ut mellan år sju och år nio på grundskolan.

Det här arbetets syfte är att undersöka skillnaderna i förståelse för begreppet kraft mellan

grundskoleelever i år sju och nio, dessutom undersöka om vardagsföreställningar är vanliga

hos dessa elever.

Datainsamlingsmetoden för undersökningen var en enkät med flervalsfrågor samt ett fåtal

frågor där eleverna ombads rita kraftpilar i figurer.

Resultaten är sammanställda och pressenteras i diagram och visar att eleverna har en låg

kunskap och flera föreställningar är framträdande. Många har uppfattningen att krafter alltid

verkar på kroppar som är i rörelse.

Skillnaden i resultaten mellan år sju och år nio är inte betydande och slutsatsen kan därför

dras att undervisningen sker på ett felaktigt sätt.

Dessutom tyder resultaten på att måluppfyllelsen inte är tillräcklig för ett godkänt betyg

för stora delar av eleverna i år nio, eftersom eleven enligt uppnåendemålen ska ha kunskap

om tryck, energi och materiens uppbyggnad, där kraft spelar en väsentlig roll.

Nyckelord: Grundskoleelever, fysik, kraft, vardagsföreställningar.

Page 4: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

Innehållsförteckning

1. INLEDNING ............................................................................................................................................... - 1 -

1.1 BAKGRUND.................................................................................................................................................... - 1 - 1.1.1 Styrdokument ................................................................................................................................... - 1 - 1.1.2 Lärobokens innehåll .......................................................................................................................... - 2 - 1.1.3 Tidigare forskning ............................................................................................................................. - 5 -

1.2 SYFTE OCH FRÅGESTÄLLNINGAR ......................................................................................................................... - 9 -

2. METOD ................................................................................................................................................... - 10 -

2.1 DATAINSAMLINGSMETOD ...............................................................................................................................- 10 - 2.2 PROCEDUR ..................................................................................................................................................- 10 - 2.3 URVAL ........................................................................................................................................................- 10 - 2.4 BEARBETNING ..............................................................................................................................................- 11 - 2.6 TILLFÖRLITLIGHET .........................................................................................................................................- 11 -

3. RESULTAT ............................................................................................................................................... - 12 -

3.1 KRAFTER PÅ KROPPAR I VILA ............................................................................................................................- 12 - Fråga 1 ..................................................................................................................................................... - 12 - Fråga 2 ..................................................................................................................................................... - 13 - Fråga 3c ................................................................................................................................................... - 18 - Fråga 9 ..................................................................................................................................................... - 14 - Fråga 10 ................................................................................................................................................... - 15 -

3.2 KRAFTER SOM GER UPPHOV TILL FARTÄNDRING HOS EN KROPP ...............................................................................- 16 - Fråga 3a ................................................................................................................................................... - 16 - Fråga 3b ................................................................................................................................................... - 17 - Fråga 6 ..................................................................................................................................................... - 18 - Fråga 7 ..................................................................................................................................................... - 20 - Fråga 8 ..................................................................................................................................................... - 21 - Fråga 11 ................................................................................................................................................... - 23 - Fråga 12 ................................................................................................................................................... - 24 - Fråga 14 och 15 ....................................................................................................................................... - 25 -

3.3 KRAFTERS RIKTNING ......................................................................................................................................- 26 - Fråga 5 ..................................................................................................................................................... - 26 - Fråga 13 ................................................................................................................................................... - 27 -

3.4 RESULTATSAMMANFATTNING ..........................................................................................................................- 28 -

4. DISKUSSION............................................................................................................................................ - 30 -

4.1 RESULTATDISKUSSION ....................................................................................................................................- 30 - 4.1.1 Resultatdiskussion kring frågor som berör krafter på kroppar i vila och i konstant fart ................ - 30 - 4.1.2 Resultatdiskussion kring frågor som berör krafter som ger upphov till fartändring hos en kropp . - 31 - 4.1.3 Resultatdiskussion kring frågor som berör krafters riktning .......................................................... - 34 - 4.1.4 Sammanfattande resultatdiskussion .............................................................................................. - 34 -

4.2 METODDISKUSSION .......................................................................................................................................- 36 - 4.2.1 Tillförlitlighet .................................................................................................................................. - 36 - 4.2.2 Generaliserbarhet ........................................................................................................................... - 36 -

4.3 SLUTSATS OCH YRKESRELEVANS .......................................................................................................................- 37 -

Page 5: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 1 -

1. Inledning Inledningskapitlet i det här arbetet innehåller en kort bakgrundsbeskrivning av hur idén till

arbetet växt fram. Här finns även ett utdrag ur styrdokument som beskriver

grundskoleutbildningens innehåll och en avdelning som redovisar resultat av tidigare

forskning. Avslutningsvis finns arbetets syfte och frågeställningar.

1.1 Bakgrund

För en blivande lärare i fysik på Karlstads universitet kommer mekanik och Newtons lagar in

väldigt tidigt i utbildningen. Förståelsen för kraftbegreppet är viktig som utgångspunkt för de

fortsatta studierna, eftersom mycket av den övriga fysiken har sin botten i lagarna om kraft

och rörelse. Under den verksamhetsförlagda utbildningen (VFU) blev jag förvånad över att

eleverna inte kunde speciellt mycket om kraft och rörelse. Vid diskussioner med

ämneslärarna fick jag bilden av att de i sin undervisning inte ofta berörde kraftbegreppet.

Därmed var det intressant att ta reda på elevernas kunskaper i det berörda ämnet.

1.1.1 Styrdokument

I läroplanen för det obligatoriska skolväsendet (Lpo94) under Mål och riktlinjer finns

beskrivet att skolan ansvarar för att varje elev efter genomgången grundskola känner till och

förstår grundläggande begrepp och sammanhang bland annat inom de naturvetenskapliga

och tekniska kunskapsområdena. Vidare finns uttryckt att skolan i sin undervisning i fysik ska

sträva efter att eleven utvecklar kunskap om grundläggande fysikaliska begrepp inom

områdena mekanik, optik, akustik, värme, elektricitetslära och magnetism samt atom- och

kärnfysik.

I kursplanen för fysik, som bland annat finns att hitta på Skolverkets hemsida, beskrivs att

fysikämnet ska förklara naturens mångfald av fenomen med ett begränsat antal begrepp och

teorier. Till dessa begrepp hör till exempel energi, rörelse och kraft.

Page 6: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 2 -

I kursplanen för fysik står: ”Fysikämnet omfattar mekanik med akustik och vågrörelse, värmelära, optik samt elektricitetslära och magnetism med elektromagnetisk strålning. Därtill kommer astronomi, kosmologi, atom- och kärnfysik. Energi utgör ett för alla kunskapsområden gemensamt begrepp. Särskild uppmärksamhet riktas mot begrepp som kommer till användning i vardagsliv och teknik samt vid diskussion av miljö- och resursfrågor. Fysikens karaktär belyses genom dess historiska utveckling. Historien visar hur utvecklingen utgått från begrepp och förklaringar som står vardagserfarenheten nära. Under historiens gång har dessa begrepp efterhand ersatts av teoretiska begrepp och modeller. Fysikens historiska utveckling illustrerar kunskapens framväxt och utgör ett värdefullt stöd vid studierna.”

1.1.2 Lärobokens innehåll

Läroboken som används på skolan där undersökningen är genomförd är Fysik LPO; Bok 1, 2

och 3 för grundskolans senare del av Paulsson m.fl. (1996, 1997 samt 1998). I böckernas

förord framkommer att de är omarbetade från en tidigare version för att vara anpassade till

den nya läroplanen. Gemensamt för alla tre böckerna är att de är indelade i kapitel med

ämnesområden som inleds med en faktadel åtföljd av en samling laborationer och slutligen

ett antal studieuppgifter i tre olika svårighetsgrader.

Kapitel som är relevanta för det här arbetet kommer att presenteras i en litteraturstudie.

Bok 1, Krafter s. 23 – 39

Paulsson m.fl. (1996) inleder med att ge exempel på händelser där krafter används för att ge

en önskad verkan, som att trycka in ett häftstift eller driva fram fordon. Boken ger även

exempel då muskelkraft används för att lyfta eller flytta en låda över ett golv. Slutligen

nämns att kraft kan ändra föremåls fart och rörelseriktning.

Begreppet tyngd, tyngdkraft och massa tas upp och exempel på skillnader och likheter

förklaras. Tyngdkraftens riktning visas i en figur och en förklaring på att krafter kan

representeras av pilar som visar kraftens storlek och riktning i figurer ges.

Ett kort avsnitt finns om krafter som samverkar och motverkar varandra och hur dessa kan

visas med kraftpilar vars längd läggs samman eller dras ifrån varandra, för att ge en

ersättande resulterande kraft.

Page 7: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 3 -

Glidfriktion, rullfriktion, luft- och vätskemotstånd får en genomgång efter en avdelning

med tyngdpunktsbestämning men även stödyta, hävstångslagen och vridmoment tas upp.

Friktionskraften beskrivs bero av föremålets tyngd. Kapitlet avslutas med friktionens olika

följder, som friktionsvärme, ökad och minskad friktion, vattenplaning och friktion som

framdrivande kraft exempelvis vid gång.

Bok 1, Tid och rörelse s. 40 – 49

I det här kapitlet ger Paulsson m.fl. (1996) en kort beskrivning av likformig rörelse när ett tåg

kör med samma fart hela tiden på ett alldeles rakt spår. Om tåget ändrar farten eller

kommer in i en kurva beskrivs rörelsen inte längre som likformig.

Acceleration beskrivs genom att samma tåg får starta på en station från farten noll och när

tågets fart ökar kallar Paulsson m.fl. rörelsen accelererad. Författarna nämner även att när

tåget bromsas kallas rörelsen retarderad.

Tröghet förklaras i citatet nedan.

”Enligt fysikens lagar måste det till en kraft för att sätta föremål i rörelse. Detta

verkar ju ganska självklart. Det är kanske svårare att förstå att föremålet sedan

fortsätter i samma riktning och med samma hastighet utan hjälp av någon

kraft. I praktiken avstannar rörelsen efter en stund, men inte av sig själv!

Föremålet stannar därför att det utsätts för bromsande krafter som orsakas av

luftmotstånd och friktion.”

(Paulsson m.fl. 1996 s. 42)

Galileis försök med fallande kroppar som visade att alla föremål faller lika fort om de inte

påverkas av något luftmotstånd förklaras i en jämförelse mellan två rör som vardera

innehåller en kula och en fjäder från en fågel. I texten beskrivs hur luften pumpas ut ur det

ena röret och rören vänds. Accelerationen för fjädern och kulan blir således lika i det rör där

luften pumpas ut medan det blir en skillnad i acceleration i röret där normalt lufttryck finns.

Skillnaden i acceleration förklaras genom att fjädern bromsas av luftmotståndet.

Försöket leder vidare in på ett resonemang om fallskärmshoppning där luftmotståndets

bromsande verkan utnyttjas. Det beskrivs att några sekunder efter det att skärmen

Page 8: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 4 -

utvecklats blir farten konstant eftersom den bromsande kraften då är lika stor som jordens

dragningskraft.

Bok 2, Arbete – Energi – Effekt s. 2 – 15

Ett kort avsnitt beskriver mekaniskt arbete. Paulsson m.fl. (1997) beskriver i lärobokstexten

att arbete i fysikens mening är när en kraft får ett föremål att ändra läge. De påpekar

skillnaden för arbete i vardaglig mening och mekaniskt arbete. En formel i ord beskriver hur

arbete beräknas som den kraft som åtgår för att flytta föremålet multiplicerat med sträckan

som föremålet förflyttas.

Bok 3, Mekanik s. 4 – 24

Paulsson m.fl. (1998) inleder bok 3 med ett mekanikkapitel som repeterar kraftsamman-

sättning, där krafter som verkar på ett föremål kan sättas samman för att ge en resulterande

kraft. Författarna visar även hur kraftparallellogram och uppdelning av krafter kan användas

för att förenkla beräkningar. I figurer som hör till nyss nämnda metoder görs ingen skillnad

på krafter och resulterande krafter (fysikalisk felaktighet), inte heller syns någon skillnad på

komposanter vid uppdelningen av en kraft.

Kapitlet fortsätter med genomgång av reaktionskraft och kommer in på sammansatt

rörelse. I den här avdelningen beskriver författarna att även hastigheter kan ritas med pilar

där storlek och riktning kan utryckas. En figur med likadana pilar som används i figurerna

med krafter finns för att beskriva detta.

Fritt fall och kaströrelse jämförs och skillnader och likheter mellan dessa belyses. Här

släpps en kula från ett högt hus och en annan kula kastas från samma hus. Farten i

horisontell riktning för den kastade kulan beskrivs vara konstant medan båda kulorna

accelererar i vertikal riktning.

Page 9: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 5 -

1.1.3 Tidigare forskning

Som utgångspunkt i det här stycket underlättar det för läsaren att ha Newtons lagar framför

sig.

1. Varje kropp förblir i vila eller rörelse med konstant fart längs en rät linje om den inte

genom inverkan av krafter tvingas ändra sitt rörelsetillstånd.

2. amFrr

⋅= [Närhelst en kraft verkar på en kropp med en massa, resulterar detta i att

kroppen genomgår en hastighetsändring. Författarens formulering.]

3. Om en kropp påverkar en annan med en given kraft, återverkar den senare kroppen

på den förra med en lika stor men motsatt riktad kraft. (Björn Andersson 2003, s. 5).

Forskning på förståelse för kraft inom mekanik har bedrivits av flera forskare. Många är

beroende av varandra och presenterar varandras resultat eller bygger vidare på de andras

resultat.

En av dessa är Jean Piaget som var utvecklingsforskare och pedagog. Han publicerade

flertalet betydande texter från 1920 och framåt som har haft stor betydelse för undervisning

och pedagogik, inte minst inom mekanik (www.NE.se).

Piaget menar att barnets föreställningar om kraft och rörelse kommer från de

erfarenheter som det skaffar sig redan när det börjar röra på sig vid späd ålder. Barnets

associationer till rörelse är kopplat till liv; när något rör sig är det levande. Piaget menar även

att barn har uppfattningen att anledningen till rörelse skulle vara för att uppfylla ett syfte,

som att solen rör sig över himmelen för att lysa på oss (Piaget, 1999, s.114 – 118).

Modernare forskning visar att dessa föreställningar inte enbart förekommer hos barn utan

även högre upp i åldrarna, inte minst bland studenter (Sjøberg, 2005, s.304).

Föreställningar om att fart och kraft är proportionella och att rörelsens riktning alltid är

samma som kraftens riktning är också vanliga; en stor kraft skulle medföra att farten blir

hög. Denna vardagsföreställning finner stöd i erfarenheter från vardagslivet, där en stor

motor i en bil medför att man kan framföra den i hög fart. På samma sätt finns

föreställningar om att ett föremål skulle stanna när den resulterande kraften på föremålet i

rörelse blir noll, som om en bil skulle stanna då motorn stängs av under färd (Sjøberg, 2005,

s.305).

Page 10: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 6 -

Kibble (2006) menar i sin artikel att abstraktionsförmåga krävs för att kunna tolka

vardagssituationer med ett korrekt fysikalisk förhållningssätt. För en fysiker kan en tänkt

kraftpil sättas på varje föremål med massa på jorden, riktad mot jordens centrum, en

abstraktion som inte är lätt för en nybörjare.

Med en ökad kunskapsnivå inses att kroppar i jämvikt på jorden kräver minst två krafter,

eftersom minst en kraft måste motverka dragkraften från jorden. I undervisningssituationer,

när till exempel en massa är upphängd i en tråd, visar det sig ofta att elever inte har något

större problem med att identifiera denna uppåtriktade kraft. Däremot om kraften kommer

från en yta som ett föremål vilar på, blir utmaningen större.

Förståelse för detta kan erhållas genom att öva på att rita friläggningsdiagram, som är en

modell för att förenkla den verkliga världen. Detta är lämpligt för både Newtons första och

tredje lag. Vid exempel på Newtons första lag är det lämpligt att bara en kropp friläggs och

alla inblandade krafter ritas ut på denna. Vid exempel på Newtons tredje lag är det viktigt att

uppmärksamma skillnaden i jämvikt eftersom kroppar verkar på varandra med krafter och

mot varje kraft finns en lika stor motriktad kraft. Betydligt fler krafter blir nu inblandade

eftersom ett enormt samverkande system av krafter och motkrafter framträder.

Nedan illustreras exempel på Newtons första och tredje lag med en kaffemugg på ett bord.

Den högra figuren är inte komplett med alla inblandade krafter utan bara två isolerade

reaktionskrafter.

(a) En kaffemugg på ett bord.

(b) Krafter i jämvikt på ett enskilt föremål i vila: Newtons första lag

(c) Reaktionskrafter: Bordet verkar tillbaka på muggen med en lika stor kraft som muggen verkar på bordet fast motriktad: Newtons tredje lag

Figur 1: Exempel på friläggningsdiagram enligt Newtons första lag (b) och isolerade reaktionskrafter enligt Newtons tredje lag (c) på samma situation. Observera att den nedåtriktade kraften i båda figurerna är den samma.

Page 11: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 7 -

Kibble menar vidare att en vanlig vardagsföreställning är att konstant rörelse längs en rät

linje ofta är associerad med en pådrivande kraft i rörelseriktningen, vilken verkar på

föremålet i rörelse. En möjlig förklaring till detta skulle vara det vardagliga språket. Det är

uppenbart för eleven att en sådan rörelse kommer att stanna upp och man förklarar det

med en förlust av något slag. Ofta blir förklaringen att föremålet förlorat kraft, eller att

kraften har minskat. Men detta blir fysikaliskt fel eftersom det i själva verket är

friktionskrafter, som uträttar ett arbete, som bromsar rörelsen och får farten att minska.

Kraften är alltså riktad åt andra hållet och den förlust som eleven ser är en förlust i

rörelsemängd eller minskad rörelseenergi.

Språket och bruket av ord som kraft i missvisande, vardagliga sammanhang är enligt Kibble

en orsak till missförstånden och vardagsföreställningarna inom fysiken. På samma sätt är

abstrakta generaliseringar, som partiklar utan volym och masslösa trådar, lika svåra att

begripa som friktionslösa världar, för den som inte har tränat på att abstrahera och

generalisera.

Projektet NORDLAB-SE NORDLAB är ett pedagogiskt forskningsprojekt inom naturorienterande undervisning som

bedrivs genom samarbete mellan de fem nordiska länderna. Den svenska delen är inriktad

på elevtänkande och undervisning inom naturvetenskap. Nedan följer en presentation av

NORDLAB-SE:s ämnesdidaktiska skrift nummer 3.

Projektet syftade till att presentera den senaste forskningen angående vanligt

förekommande vardagsföreställningar inom naturvetenskapliga företeelser. Detta har gjorts

genom 23 mindre enheter, där ett par utav dessa bearbetar grundläggande mekanik.

Samtliga enheter i NORDLAB-SE:s projekt bygger på förståelse för fenomen och företeelser

för samtliga naturvetenskapliga ämnen. NORDLAB-SE har även delat upp projektet i tre

teman, där ett av dessa behandlar naturvetenskapens innehåll. Detta tema är uppbyggt för

att granska elevernas möjligheter att förstå skolkursernas undervisningsinnehåll.

I NORDLAB-SE:s enhet för mekanik inleds med att framhäva vikten av förståelse för

Newtons lagar, då det är dessa lagar som utgör plattformen för mekanik och klassisk fysik

över huvud taget. Enligt en mängd forskningsresultat har elever svårt att ta till sig Newtons

mekanik då de ska förklara vardagliga företeelser. NORDLAB-SE:s enhet för mekanik belyser

Page 12: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 8 -

skillnader mellan elevernas vardagliga förklaringar inom mekanik och newtonskt

förhållningssätt till mekanik.

NORDLAB-SE:s projekt Mekanik 1 visar att elever kopplar ihop rörelse längst en rät linje

med en verksam kraft. Det vill säga att om ett föremål rör sig åt något håll, är det vanligt

elever anser att det måste finnas en kraft som verkar på föremålet i rörelseriktningen.

Denna upplevelse av krafter är mycket likt det synsätt Aristoteles hade i antikens grekland,

enligt NORDLAB-SE. Aristoteles menade att om en kropp rör sig med farten v så påverkas

den av en kraft F. Ju högre fart desto större kraft, v ~ F.

Anledningen till att elever ofta har den förklaringsmetoden är, enligt NORDLAB-SE, att de

troligtvis utgår från sina upplevelser om hur det känns när de går, springer, skjuter eller drar.

De behöver ta i för att verkställa dessa handlingar. Upplevelserna av att ta i är så

framträdande att de inte tänker på att det är friktion som motverkar rörelsen och att deras

pådrivande kraft vid konstant fart är lika stor som friktionskraften.

NORDLAB-SE nämner en uppgift som gavs till omkring 50 collegestudenter i USA, där de

skulle rita en kulas bana då den rullar på ett bord och faller över kanten. Av studien framkom

att en stor del av svaren på uppgiften som studenterna gav är mycket lika en teori som kallas

impetusteorin som framlades av Jean Buridan på 1300-talet, som strider mot Newtons första

och andra lag. Impetusteorin menar att ett föremål i rörelse påverkas av en förflyttare, en så

kallad impetus. På grund av luftens motstånd och gravitationen försvagas denna impetus.

Tillslut kommer impetus vara helt borta och gravitationen tar över, föremålet dras då rakt

neråt till sin naturliga plats.

v v

Figur 2: Kurvorna illustrerar två exempel av kulans bana efter att den fallit över bordskanten. Till vänster enligt teorin om impetus som försvagas och tar slut. Till höger faller kulan i en kastparabel där farten i rörelseriktningen fortsätter att vara konstant medan en acceleration samtidigt sker nedåt på grund av gravitationen, enligt Newtons första och andra lag.

Page 13: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 9 -

1.2 Syfte och frågeställningar

Syftet med arbetet är att undersöka hur kunskaperna om begreppet kraft ser ut bland

elever i grundskolans senare år och dessutom undersöka om vardagsföreställningar

förekommer om Newtons lagar och om dessa överlever grundskolan. För att besvara detta

har fyra frågor konstruerats:

• Vilken förståelse för Newtons lagar har elever i år sju?

• Vilken förståelse för Newtons lagar har elever i år nio?

• Är vardagsföreställningar vanliga förekommer om Newtons lagar, bland elever i

tidigare nämnda ålder?

Page 14: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 10 -

2. Metod

Under detta avsnitt presenteras metoden för undersökningen under rubrikerna

datainsamlingsmetod, procedur, urval, bearbetning och tillförlitlighet.

2.1 Datainsamlingsmetod

Eftersom syftet med undersökningen är att ta reda på elevers kunskaper inom Newtons

mekanik, bedömdes en enkät, huvudsakligen med flervalsfrågor, vara en bra metod för att

samla in data som kan besvara frågeställningarna. Detta är en bra metod för att få en bred

bild av elevernas kunskaper (Johansson & Svedner, 2001, s. 31).

Konstruktionen och valet av frågor till enkäten inspirerades till viss del av Björn Anderssons

rapport (2003), där många frågor med adekvat samband till denna undersökning finns.

Dessutom diskuterades frågorna med handeldaren till arbetet, Per-Eric Åhlén. Enkäten som

användes vid undersökningen (bilaga 1) omfattade fyra dubbelsidiga A4-ark med totalt 15

frågor. Försättsbladet informerar deltagaren om att forskningsetiska förfaranden kommer

att beaktas, genom att enkäten endast kommer att användas i samband med

undersökningen och kommer att förstöras efter att sammanställningen av resultatet är

färdigt.

2.2 Procedur

En rektor för en skola kontaktades per telefon med en förfrågan om huruvida det fanns

möjlighet att genomföra en enkätundersökning på ett antal elever i år sju och nio. Efter

detta besöktes skolan och rektorn granskade enkäten och godkände den. Ett antal lärare

som undervisar i naturorienterande ämnen kontaktades personligen, för att få deras

godkännande att disponera tid för att genomföra undersökningen.

Enkäten besvarades under en vecka i början av vårterminen, för att ordinarie undervisning

skulle påverkas så lite som möjligt.

2.3 Urval

Av syftet framgår att arbetet och frågeställningarna ska undersöka kunskaperna i år sju och

nio i grundskolan. Som plats för undersökningen valdes en medelstor skola i västra Sverige.

Av yttre omständigheter begränsades antalet besvarade enkäter till 21 stycken i år sju och

63 stycken i år nio. Att antalet besvarade enkäter i år sju är så mycket lägre än antalet i år nio

Page 15: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 11 -

beror på att endast en undervisande lärare på den kontaktade skolan hade möjlighet att

släppa till undervisningstid för genomförandet av undersökningen i den berörda

åldersgruppen.

2.4 Bearbetning

Enkäten samlades in och resultatet sammanställdes på så sätt att svaren från respektive

fråga sammanfördes i en frekvenstabell med avseende på årskurs. Tabellerna användes för

att konstruera diagram för att ge en visuell bild av resultatet.

2.6 Tillförlitlighet

För att öka undersökningens tillförlitlighet har ett antal åtgärder vidtagits. Varken elever,

lärare eller vårdnadshavare har informerats om undersökningens egentliga syfte, utan

eventuell förfrågan har endast besvarats med att undersökningen berör ett ämne i fysik som

omnämns i kursplanen. Enkäten har samlats in personligen för att inte lösa exemplar skulle

komma i cirkulation bland eleverna, eftersom genomförandet blev förlagt till flera dagar av

schematekniska skäl.

Faktorer som väger emot undersökningen är att antalet besvarade enkäter är ganska litet

och endast kommer från en skola. Det medför att resultatet inte är statistiskt säkerställt över

hela Sverige. Läsaren bör därför ha detta i åtanke då resultatet genomläses.

Page 16: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 12 -

3. Resultat

Den här avdelningen delger resultatet från enkätundersökningen, vilket redovisas i diagram

med relativ frekvens. Resultatdelen är indelad i fyra underavdelningar, tre avdelningar som

håller samman resultatet i kategorier och en fjärde avdelning som är en

resultatsammanfattning.

3.1 Krafter på kroppar i vila

Denna rubrik innefattar elevsvar på frågor från enkäten, där krafter som påverkar kroppar i

vila. Svaren är från frågor som utformats så att eleven ska svara med givna alternativ.

För att resultatet ska bli lättare att tolka har figurerna från enkäten lagts i samband med

diagrammen

Fråga 1

Vilken bild visar kraften eller krafterna som påverkar boken när den ligger på ett plant,

horisontellt bord, den ligger helt stilla?

Det korrekta svaret är alternativ b, eftersom boken ligger på bordet i vila kommer

kraftresultanten att vara noll. Resultaten som framkom redovisas i ett diagram som visar en

sammanställning av elevernas svar (Diagram 1: Resultat från fråga 1).

Diagram 1: Resultat från fråga 1

0%

14%

50%

14%

0% 5%14%14%

21%

56%

3% 3% 0% 3%

0%

20%

40%

60%

80%

100%

a b c d e f g

ÅK 7 ÅK 9

Figur 3: Alternativ från fråga 1

Page 17: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 13 -

Fråga 2

Vilken bild visar kraften eller krafterna som påverkar kulan när den hänger i ett snöre.

Det korrekta svaret är alternativ d, eftersom kulan förutsätts hänga i vila kommer

kraftresultanten att vara noll. Resultaten som framkom redovisas i ett diagram som visar en

sammanställning av elevernas svar (Diagram 2: Resultat från fråga 2).

Diagram 2: Resultat från fråga 2

5%14%

5%

23%

41%

9%0%

22%

6% 10%

60%

2%0%

20%

40%

60%

80%

100%

a b c d e f

ÅK 7 ÅK 9

Figur 4: Alternativ från fråga 2

Page 18: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 14 -

Fråga 9

En fallskärmshoppare faller med konstant hastighet rakt ner. Vilka krafter verkar på

hopparen?

Det korrekta svaret är alternativ b, eftersom fallskärmshopparen faller med konstant

hastighet rakt ner. Hastigheten förändras inte, alltså är summan av alla krafter som verkar på

hopparen noll. Resultaten som framkom redovisas i ett diagram som visar en

sammanställning av elevernas svar (Diagram 3: Resultat från fråga 9).

Diagram 3: Resultat från fråga 9

45%

14%

27%

14%

51%

15% 18% 15%

0%

20%

40%

60%

80%

100%

a b c d

ÅK 7 ÅK 9

(A) Tyngdkraften T och kraften K från fallskärmen. T är större än K.

(B) Tyngdkraften T och kraften K från fallskärmen. T är lika stor som K.

(C) Tyngdkraften T och kraften K från fallskärmen.

(D) Bara kraften K från fallskärmen verkar på hopparen.

Figur 5: Alternativ från fråga 9

Page 19: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 15 -

Fråga 10

Vilket av följande alternativ förklarar bäst ditt svar i förra frågan?

Ringa in ditt svar A, B, C eller D.

a. Eftersom hopparen är tyngdlös under själva fallet verkar inte tyngdkraften T.

b. För att hopparen ska komma nedåt måste T vara större än K. Om T blir lika stor som

K så skulle hopparen stanna i luften.

c. Om hopparen rör sig med konstant hastighet så måste K och T vara lika stora.

d. På grund av att fallskärmen är så pass stor blir kraften K större än T.

Det korrekta svaret är alternativ c. Fråga 9 och 10 är kopplade till varandra för att få en

tydligare förståelse om hur eleverna tänkt. Resultaten som framkom redovisas i ett diagram

som visar en sammanställning av elevernas svar (Diagram 4: Resultat från fråga 10).

Diagram 4: Resultat från fråga 10

5%

45%

9%

36%

5%10%

57%

13%17%

3%

0%

20%

40%

60%

80%

100%

a b c d Ej svar

ÅK 7 ÅK 9

Page 20: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 16 -

3.2 Krafter som ger upphov till fartändring hos en kropp

Denna rubrik innefattar elevsvar på frågor från enkäten, där krafter som ger upphov till en

fartändring hos en kropp. Svaren är från frågor som utformats så att eleven ska svara med

givna alternativ.

För att resultatet ska bli lättare att tolka har figurerna från enkäten lagts i samband med

diagrammen.

Fråga 3a

Vilken bild visar kraften eller krafterna som påverkar kulan just när den släppts från tornet?

Det korrekta svaret är alternativ c, eftersom farten på kulan då den just släpps är liten och

därmed behövs ingen hänsyn tagas till luftmotståndet, därför kommer jordens

dragningskraft på kulans massa vara den enda kraften som verkar på kulan. Resultaten som

framkom redovisas i ett diagram som visar en sammanställning av elevernas svar (Diagram 5:

Resultat från fråga 3a).

Diagram 5: Resultat från fråga 3a

32%

0%

41%

9% 9%5%

33%

17%

38%

3% 6%2%

0%

20%

40%

60%

80%

100%

a b c d e f

ÅK 7 ÅK 9

Figur 6: Alternativ från fråga 3a

Page 21: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 17 -

Fråga 3b

Vilken bild visar kraften eller krafterna som påverkar kulan när den har fallit ett tag, men

dess hastighet fortsätter att öka?

Det korrekta svaret är alternativ a, eftersom kulan fallit ett tag och farten ännu ökar kommer

jordens dragningskraft vara större än luftmotståndet. Hänsyn bör ändå tagas till

luftmotståndet. Resultaten som framkom redovisas i ett diagram som visar en

sammanställning av elevernas svar (Diagram 6: Resultat från fråga 3b).

Diagram 6: Resultat från fråga 3b

18%14%

41%

5%

18%

0%

32%

14%

41%

3%8%

2%0%

20%

40%

60%

80%

100%

a b c d e f

ÅK 7 ÅK 9

Figur 7: Alternativ från fråga 3b

Page 22: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 18 -

Fråga 3c

Vilken bild visar kraften eller krafterna som påverkar kulan när den har fallit länge och faller

med konstant hastighet.

Det korrekta svaret är alternativ b, eftersom kulan faller med konstant hastighet rakt ner.

Hastigheten förändras inte, alltså är summan av alla krafter som verkar på kulan noll.

Resultaten som framkom redovisas i ett diagram som visar en sammanställning av elevernas

svar (Diagram 7: Resultat från fråga 3c).

Diagram 7: Resultat från fråga 3c

9% 9%

55%

9% 14%5%

10%

32% 33%

3% 5%

17%

0%

20%

40%

60%

80%

100%

a b c d e f

ÅK 7 ÅK 9

Figur 8: Altertativ från fråga 3c

Page 23: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 19 -

Fråga 6

En cyklist cyklar på en plan väg, vilken bild visar kraften som får cykelns hastighet att öka?

Det korrekta svaret är alternativ b, eftersom kraften som får cykelns hastighet att öka är

friktionen mot underlaget. Kraften måste vara riktad i samma rikting som fartändringen sker.

Resultaten som framkom redovisas i ett diagram som visar en sammanställning av elevernas

svar (Diagram 8: Resultat från fråga 6).

Diagram 8: Resultat från fråga 6

9%

77%

14%

0%

22%

70%

6%2%

0%

20%

40%

60%

80%

100%

a b c d

ÅK 7 ÅK 9

Figur 9: Alternativ från fråga 6

Page 24: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 20 -

Fråga 7

En cyklist cyklar på en plan väg, vilken bild visar kraften som får cykelns hastighet att

minska?

Det korrekta svaren är alternativ a och c, eftersom krafterna som får cykelns hastighet att

minska är friktionen mot underlaget och/eller luftmotståndet. Kraften måste vara riktad i

den riktingen som fartändringen sker. Resultaten som framkom redovisas i ett diagram som

visar en sammanställning av elevernas svar (Diagram 9: Resultat från fråga 7).

Diagram 9: Resultat från fråga 7

77%

9% 9%5%

70%

24%

6%0%

0%

20%

40%

60%

80%

100%

a b c d

ÅK 7 ÅK 9

Figur 10: Alternativ från fråga 7

Page 25: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 21 -

Fråga 8

Här sammanfattas resultatet från fråga 8, från tabell i Bilaga 2: Fråga 8.

Observera att den relativa frekvensen som redovisas i diagram 10 till 14 bygger på hur

många av eleverna som svarade med ett svar som gick att passa in i kategorierna som visas i

diagrammet. De svaren som inte passade i kategorierna redovisas i kategorin ”Icke relevant

svar”.

Diagrammet nedan (Diagram 10) visar den relativa frekvensen för år sju och år nio för de

vanligaste benämningarna på krafter då de skulle ge namn åt en kraft som får en cykels

hastighet att öka.

Diagram 10: Vanligaste benämningar av kraft som får en cykel att öka hastighet.

Diagrammet nedan (Diagram 11) visar den relativa frekvensen för år sju och år nio för de

vanligaste benämningarna på krafter då eleverna skulle ge namn åt en kraft som får en kula

att falla till marken.

Diagram 11: Vanligaste benämningar av kraft som får en kula att falla till marken

14%

0% 0% 0%10%

76%

45%

16%9% 4% 5%

20%

0%

20%

40%

60%

80%

100%

Inget svar el. (?)

Acceleration Friktion Gravitation Fart/fartkraft Icke relevant svar

ÅK 7 ÅK 9

10% 10% 10%19%

52%

13%

31%22%

31%

4%

0%

20%

40%

60%

80%

100%

Inget svar el. (?)

Dragkraft/ dragningskraft

Gravitation Tyngdkraft Icke relevant svar

ÅK 7 ÅK 9

Page 26: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 22 -

Diagrammet nedan (Diagram 12) visar den relativa frekvensen för år sju och år nio för de

vanligaste benämningarna på krafter då eleverna skulle ge namn åt en kraft som får en bok

att ligga kvar på ett bord. (* Alla svar som innehöll tyngd samlades till denna kategori,

Tyngdkraft, Tyngdlag osv.)

Diagram 12: Vanligaste benämningar av kraft som får en bok att ligga kvar på ett bord

Diagrammet nedan (Diagram 13) visar den relativa frekvensen för år sju och år nio för de

vanligaste benämningarna på krafter då eleverna skulle ge namn åt en kraft som får månen

att rotera runt jorden.

Diagram 13: Vanligaste benämningar av kraft som får månen att rotera runt jorden

5% 10%0%

10%

29%

48%

20% 18%

5%11%

31%

15%

0%

20%

40%

60%

80%

100%

Inget svar el. (?) Dragningskraft Friktion/ friktionskraft

Gravitation Tyngd* Icke relevant svar

ÅK 7 ÅK 9

19%10% 14%

57%

38%31%

16% 15%

0%

20%

40%

60%

80%

100%

Inget svar el. (?) Dragningskraft Gravitation Icke relevant svar

ÅK 7 ÅK 9

Page 27: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 23 -

Fråga 11

En hockeypuck glider på isen. Puckens hastighet minskar hela tiden, och till slut stannar den.

Vad gäller om de horisontella krafterna som verkar på pucken?

Det korrekta svaret är alternativ a. Puckens hastighet kommer från ett slag med en klubba

eller liknande och pucken inte längre påverkas av någon kraft som verkar i rörelseriktningen

efter tillsalget, verkar bara friktionskraften mot underlaget vilket kommer leda till att pucken

tillslut stannar. Resultaten som framkom redovisas i ett diagram som visar en

sammanställning av elevernas svar (Diagram 14: Resultat från fråga 11).

Diagram 14: Resultat från fråga 11

18%23%

32%

14% 14%10% 13%

35%

14%

29%

0%

20%

40%

60%

80%

100%

a b c d e

ÅK 7 ÅK 9

(C) Friktionskraften F och en kraft K i rörelseriktningen verkar på pucken. K är större än F.

(B) Friktionskraften F och en kraft K i rörelseriktningen verkar på pucken. K är lika stor som F.

(D) Bara en kraft K i rörelseriktningen verkar på pucken. Denna kraft minskar hela tiden för att tillslut bli noll och då stannar pucken.

(E) Friktionskraften F och en kraft K i rörelseriktningen verkar på pucken. K är mindre än F.

(A) Bara friktionskraften F som utövas av isen verkar på pucken.

Figur 11: Alternativ från fråga 11

Page 28: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 24 -

Fråga 12

Vilket av följande alternativ förklarar på bäst ditt var i förra uppgiften?

Ringa in ditt svar A, B, C eller D.

a. Eftersom pucken rör sig måste den påverkas med en kraft i samma riktning som

rörelseriktningen. Men denna kraft blir mindre och mindre eftersom pucken saktar

in. Friktion på is är försumbar.

b. Om ett föremål rör sig längs en rät linje, så är den resulterande kraften noll.

c. Eftersom pucken saktar in måste den påverkas av en resulterande kraft som är riktad

åt motsatt håll mot rörelseriktningen.

d. Eftersom pucken rör sig måste kraften i rörelsens riktning vara större än

friktionskraften.

Det korrekta svaret är alternativ c. Fråga 11 och 12 är kopplade till varandra för att få en

tydligare förståelse om hur eleverna tänkt. Resultaten som framkom redovisas i ett diagram

som visar en sammanställning av elevernas svar (Diagram 15: Resultat från fråga 12).

Diagram 15: Resultat från fråga 12

23%

5%

50%

18%

5%

29%

3%

27%35%

6%

0%

20%

40%

60%

80%

100%

a b c d Ej svar

ÅK 7 ÅK 9

Page 29: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 25 -

Fråga 14 och 15

En fågel flyger i konstant fart, rakt fram som framgår av bilden. I näbben har den en kula som

den tappar. Vilken bana kommer kulan att följa?

Det korrekta svaret är alternativ c, eftersom kulan efter den släppts från näbben fortfarande

har rörelsemängd kommer den röra sig med samma fart och i samma riktning som fågeln,

förutsatt att fågeln inte ändrar sin fart eller riktning efter den släppt kulan.

Resultaten som framkom redovisas i ett diagram som visar en sammanställning av elevernas

svar (Diagram 16: Resultat från fråga 14).

Diagram 16: Resultat från fråga 14

Motivering till svaret som på fråga 14 redovisas i Bilaga 3: Fråga 15, kategoriserat efter årskurs och givet svarsalternativ på fråga 14

23%

59%

18%

0%

30%22%

46%

2%0%

20%

40%

60%

80%

100%

a b c Ej svar

ÅK 7 ÅK 9

a. Kulan följer och landar enligt bana A

b. Kulan följer och landar enligt bana B

c. Kulan följer och landar enligt bana C

Figur 12: Alternativ från fråga 14

Page 30: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 26 -

3.3 Krafters riktning

Denna rubrik innefattar elevsvar på frågor från enkäten, där krafter ska ritas in i en figur.

För att resultatet ska bli lättare att tolka har figurerna från enkäten lagts i samband med

diagrammen.

Fråga 5

Genom att rita ut kraftpilar ska du visa hur tyngdkraften är riktad på personerna som står på

jorden.

(Observera att personernas storlek är kraftigt överdriven.)

Nedan visas en sammanställning av elevernas svar i form av ett diagram (Diagram 17:

Resultat från fråga 5). Rätt har bedömts i de fall då eleven ritat kraftpilar mot jordens

mittpunkt.

Diagram 17: Resultat från fråga 5

86%

14%

0%

75%

10%16%

0%

20%

40%

60%

80%

100%

Rätt Fel Ej svar

ÅK 7 ÅK 9

Figur 13: Illustration från fråga 5

Page 31: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 27 -

Fråga 13

En sten som kastas i en bana, som visas i bilden nedan, påverkas av krafter. Rita ut dessa

som kraftpilar. OBS! Bortse från luftmotståndet!

Nedan visas en sammanställning av elevernas svar i form av ett diagram. Då ett föremål

kastas i en bana likt den i Figur 13 och det lämnat handen påverkas föremålet endast av

jordens dragningskraft och i viss mån luften. Eftersom eleverna skulle bortse från

luftmotståndet är det bara en kraft som ska ritas ut i varje punkt, den ska vara riktad rakt ner

mot jordens centrum och vara lika stor på alla ställen, i Diagram 18: Resultat från fråga 13

kallas de svaren Fg.

Flertalet elever har ritat ut krafter i föremålets rörelseriktning, som framgår av samma

diagram. Till kategorin ”Annat” räknas de svar som elever ritat men inte kan inräknas i de

tidigare kategorierna.

Diagram 18: Resultat från fråga 13

0%

27%

41%

23%

9%13%22% 21%

29%

16%

0%

20%

40%

60%

80%

100%

Fg Frörelse och Fg

Frörelse Annat Ej svar

ÅK 7 ÅK 9

Figur 14: Illustration från fråga 13

Page 32: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 28 -

3.4 Resultatsammanfattning

För att sammanfatta resultaten från undersökningen har ett diagram med relativ frekvens

för rätt svar gjorts för frågor som berör kroppar i vila (Diagram 19: Rätta svar, från frågor

som berör krafter på kroppar i vila). Det samma gäller även för frågor som berör krafter som

ger en hastighetsförändring hos en kropp (Diagram 20) samt frågor där elever ska rita krafter

i en figur (Diagram 21). Tolkning av dessa tre diagram kommer att göras i kapitel 4

Diskussion.

Diagram 19: Rätta svar, från frågor som berör krafter på kroppar i vila

Diagram 20: Rätta svar från frågor som berör krafter som ger upphov till en hastighetsändring hos en kropp

14%23%

9% 14% 9%21%

10%

32%

16% 13%

0%

20%

40%

60%

80%

100%

Fråga 1 Fråga 2 Fråga 3c Fråga 9 Fråga 10

ÅK 7 ÅK 9

41%

18%

77% 77%

18%

50%

18%

38%32%

70% 70%

10%

27%

46%

0%10%20%30%40%50%60%70%80%90%

100%

Fråga 3a Fråga 3b Fråga 6 Fråga 7 Fråga 11 Fråga 12 Fråga 14

ÅK 7 ÅK 9

Page 33: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 29 -

Diagram 21: Rätta svar från frågor där elever ska visa krafters riktning

Diagram 22: Jämförelse av svar från fråga 3a, 3b och 3c, där eleven valt att svara med alternativ c; där endast jordens dragningskraft är utritad.

Diagram 23: Jämförelse av rätt svar för fråga 3a, 3b och 3c mellan elever i år sju och år nio.

86%

0%

75%

13%

0%

20%

40%

60%

80%

100%

Fråga 5 Fråga 13

ÅK 7 ÅK 9

41% 41%

55%

38% 41%33%

0%

20%

40%

60%

80%

100%

3a 3b 3c

ÅK7 ÅK 9

41%

18%9%

38%32% 32%

0%

20%

40%

60%

80%

100%

3a 3b 3c

ÅK7 ÅK 9

Page 34: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 30 -

4. Diskussion

I avsnittet kommer först en resultatdiskussion där undersökningens syfte och

frågeställningar knyts ihop med tidigare forskning och resultatet från undersökningen.

Vidare följer en metoddiskussion där metodens tillförlitlighet, validitet och generaliserbarhet

diskuteras. Avslutningsvis formuleras slutsats och yrkesrelevans.

4.1 Resultatdiskussion

Den här avdelningen kommer att innehålla en diskussion kring resultatet från enkätunder-

sökningen och resultat från tidigare forskning. Resultatdiskussionen är indelad i tre

avdelningar, som håller samman resultatet i samma kategorier som resultatet är uppdelat i,

så att läsaren lätt kan följa med i diskussionen.

4.1.1 Resultatdiskussion kring frågor som berör krafter på kroppar i vila och i konstant fart

Något som är framträdande av resultatet är att förståelsen för Newtons första och andra lag

inte är självklar. Kroppar i konstant fart eller i vila kopplas inte samman med att kraft-

resultanten måste vara noll. Om en kraftresultant verkar på kroppen skulle detta leda till att

kroppen genomgår en acceleration i den riktning som kraftresultanten verkar, enligt

Newtons andra lag.

Vid frågor om kroppar som befinner sig stilla i vila, har många svarande uppgett att de

endast identifierar att jordens dragningskraft är verksam på kroppen, oavsett om det är en

bok som ligger på ett bord (50 % i år sju och 56 % i år nio) eller om det är en kula som hänger

i ett snöre (41 % i år sju och hela 60 % i år nio). Detta kan framläsas i resultaten från fråga 1

och fråga 2 (Diagram 1: Resultat från fråga 1 och Diagram 2: Resultat från fråga 2).

Enligt Kibble (2006) är det vanligare att elever identifierar en kraft i snöret som håller kulan

uppe än en normalkraft från ett bord som håller en bok uppe. I resultatet från den här

undersökningen var det 51 % som identifierade en uppåtriktad kraft från snöret på kulan och

19 % som identifierade en uppåtriktad kraft från bordet på boken i år sju. I år nio

identifierade 40 % en kraft från snöret och 38 % en kraft från bordet. Dessa siffror har

erhållits genom att slå samman alla svar med uppåtriktade krafter oavsett vilken storlek

dessa krafter har. Skillnaden är alltså obetydlig i år nio medan en större skillnad finns i år sju.

I läroboken Fysik LPO bok 1 (Paulsson m.fl. 1996) finns ett resonemang om en fallskärms-

hoppare där luftmotståndets bromsande verkan utnyttjas. Fallskärmshopparen kommer

Page 35: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 31 -

efter ett tag att falla med konstant fart, eftersom kraften från luftmotståndet på fallskärmen

kommer att vara lika stort som tyngdkraften på hopparen. På fråga 9 ombads eleverna att

besvara frågan om vilka krafter som verkar på hopparen när den faller med konstant fart.

Nära hälften (45 % i år sju och 51 % i år nio, Diagram 3: Resultat från fråga 9) upplevde att

kraften från fallskärmen skulle vara mindre än tyngdkraften.

På fråga 10 skulle eleverna välja det alternativ som bäst motiverar varför de valt det

alternativ de valt på frågan om vilka krafter som verkar på fallskärmshopparen. Det

vanligaste svaret är alternativ b.

” För att hopparen ska komma nedåt måste T vara större än K. Om T blir lika

stor som K kommer hopparen stanna i luften”.

(Alternativ b, fråga 10)

Detta svar gav 45 % av eleverna i år sju och hela 57 % av eleverna i år nio (Diagram 4:

Resultat från fråga 10). Här har många elevers resonemang gått ifrån teorin som boken lär ut

Istället verkar de ha en uppfattning om att rörelse längs en rät linje paras samman med en

verksam kraft, v ~ F. Det här resultatet, som är ett resonemang som kommer från

Aristoteles, fick redan Piaget i sina undersökningar under 1900-talets första hälft. Även

Kibble och NORDLAB-SE menar att detta är en vanlig föreställning.

Paulsson m.fl. (1996) har beskrivit hur en kraft krävs för att sätta ett föremål i rörelse. De

beskriver också att rörelsen kommer att fortsätta i samma riktning utan att kraften fortsätter

att verka. Detta är ett försök att sätta ord på Newtons första lag, men resultatet i

undersökningen visar att många elever inte lär sig att resonera utifrån denna lag.

4.1.2 Resultatdiskussion kring frågor som berör krafter som ger upphov till fartändring hos en kropp

Resultatet från frågan när en kula släpps från ett torn (Fråga 3a, 3b och 3c) liknar resultatet

från tidigare forskning på området från Kibble och NORDLAB-SE. Resultatet tyder på att en

stor del av eleverna, i både år sju och nio, upplever att den enda kraft som verkar på kulan är

en kraft i rörelseriktningen (alternativ c i 3abc; Diagram 22), även när kulan faller med

konstant hastighet.

Ungefär en tredjedel av eleverna i både år sju och nio har på fråga 3a valt alternativ a

(Diagram 5: Resultat från fråga 3a). Eleverna ska där välja vilken bild som visar vilka krafter

som påverkar en kula just när den släppts. Det finns en risk att den frågan blivit tolkad på ett

sätt som inte var tänkt när den konstruerades. Tanken med frågan var att eleverna skulle

Page 36: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 32 -

visa vilka krafter som påverkar kulan precis i det ögonblick den släpps, i det exakta tillfället

den står stilla i luften. Om de elever som svarade att tyngdkraften och friktionen från luften

verkar på kulan tänkt sig att kulan redan fallit ett tag så har de tänkt rätt.

Vid jämförelse av hur många som valt rätt alternativ i år sju och nio på de tre frågorna

(Diagram 23), framkommer att eleverna i år nio väljer rätt med en jämförelsevis lika stor del

på alla tre frågorna, medan eleverna i år sju har en mer spridd fördelning av svaren.

Nämnas bör även att i fråga 3a är alternativ c det svar som är rätt, eftersom kulans

hasighet efter att den släppts är mycket liten och ingen hänsyn till luftmotståndet behöver

tas. Däremot är accelerationen som störst vid detta tillfälle eftersom kraftresultanten är

störst. I de två följande frågorna (3b och 3c) är det fel att bortse från luftmotståndet

eftersom kulans hastighet har ökat och därmed även luftmotståndet, ändå har en stor del av

eleverna valt detta svar på alla tre frågorna (Diagram 22: Jämförelse av svar från fråga 3a, 3b

och 3c, där eleven valt att svara med alternativ c; där endast jordens dragningskraft är

utritad.).

Resultaten på fråga 6 och 7 (Diagram 8: Resultat från fråga 6 och Diagram 9: Resultat från

fråga 7) om cykeln som ökar och minskar fart, sticker ut lite mot resultaten från andra frågor

i den här undersökningen, främst genom att en relativt stor frekvens har svarat rätt.

I läroboken för år sju finns inte något exempel som påminner om cyklisten som ökar

respektive minskar sin hastighet, däremot i läroboken för år nio och då representerad av ett

tåg. Därför är det lite förvånande att eleverna i båda årskurserna svarar rätt till så

övervägande del i båda frågorna. Men det är troligt att de med uteslutningsmetod kan inse

att det enda alternativ som har en kraft i rörelseriktningen är det rätta alternativet. Eftersom

så många på föregående frågor tänkt sig att om en kropp rör sig finns en kraft i rörelse-

riktningen så är detta den troliga förklaringen. När de på fråga 7 sedan ska få cykelns fart att

minska väljer de då det alternativ som är mest likt, det vill säga det alternativ där kraften

angriper bakhjulet och verkar i motsatt riktning. Anledningen till detta antagande är att en

mycket liten del har valt alternativ c på fråga 7, där kraften verkar på cyklisten och är riktad

motsatt rörelseriktningen.

Som motsats till nyss nämnda frågor har fråga 11, pucken som glider på isen, har en

mycket liten del av eleverna svarat rätt. Av de felaktiga svaren kan man utläsa att 82 % i år

sju och hela 90 % i år nio menar att när pucken glider på isen påverkas den av någon form av

pådrivande kraft. Det är en, som tidigare nämnts, vanlig föreställning att en kraft finns i

Page 37: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 33 -

rörelseriktningen. Denna uppgift har besvarats med mycket spridda resultat varför ingen

definitiv slutsats kan dras. Det är även en komplicerad uppgift eftersom is ofta antas vara

helt friktionsfri.

På fråga 12, som vill utröna hur de svarande har resonerat om hur pucken glider på isen,

verkar inte de svarande vara säkra i sina resonemang. Resultatet förväntades se annorlunda

ut, med hänsyn till hur resultatet ser ut på fråga 11. Bara i ett fall kan ett konsekvent

resonemang återfinnas eftersom lika många i år nio valt alternativ c i fråga 11 och alternativ

d i fråga 12 och dessa alternativ är relaterade till varandra. Intressant att påpeka är att hela

50 % av eleverna i år sju har menat att om pucken saktar in måste den påverkas av en

resulterande kraft mottsatt rörelseriktningen, medan det i föregående fråga bara var

sammanlagt 32 % som valde dessa alternativ (a eller c). Resultatet är också intressant mot

bakgrund av att ämnet inte nämns i läroboken för åt sju utan bara i läroboken för år nio.

När de fyra frågorna ovan betraktas i klump verkar det som om eleverna inte har så stor

förståelse för Newtons andra lag. De relaterar oftare en kraft till en hastighet än till en

ändrig i hastighet, vilket är Newtons andra lag.

När eleverna ombads benämna krafter som orsakar en verkan hos en kropp (fråga 8),

erhölls resultat som tyder på att en del av eleverna i år nio har hört ord som gravitation,

dragningskraft och acceleration och kan relatera dessa till en händelse. Resultatet visar att

eleverna i år sju hade mycket svårt med detta. Dock var det mycket få i såväl år sju som nio

som kunde relatera till att friktion fick en cykel att öka sin hastighet och ingen som menade

att bordet utövade en kraft på boken. Däremot visade flertalet i år nio att de kände till att

jordens dragningskraft drog en kula till marken, även om kraften i vissa fall fick andra namn.

Reflektionen som kan göras är att eleverna troligen hört orden och kunnat associera till en

liknande händelse. När de skulle benämna kraften som får jorden att rotera runt jorden var

det ingen som relaterade till massans tröghet. Istället menade nästan hälften i år nio att det

var gravitation eller dragningskraft, vilket är den kraft som håller månen kvar i sin bana runt

jorden.

I fråga 14 ska eleverna visa vilken bana en kula får då den släpps av en fågel som flyger

med konstant fart. Ungefär lika stor del av de svarande har svarat att kulan faller rakt ner.

Men resultaten (Diagram 16: Resultat från fråga 14) visar att övervägande delen (82 %) i år

sju menar att kulan kommer att ha en annan fart än fågeln efter att den släppts medan i alla

fall 46 % i år nio har förstått att kulan kommer att fortsätta med samma horisontella fart

Page 38: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 34 -

som fågeln. Denna uppgift finns i princip med i läroboken för år nio, där presenterad som en

kula som kastas från ett höghus. Resultaten för år sju är därför inte så intressanta på den här

uppgiften eftersom eleverna inte haft tillfälle i skolan att lära sig detta.

Vid betraktelse av resultaten på fråga 15 visar det sig att de flesta som valt alternativ a

motiverar detta med att tyngdkraften skulle dra kulan till marken. Den vanligaste

motiveringen till alternativ b är att kulans fart i horisontell riktning skulle bromsas av

luftmotståndet, men de eleverna har i alla fall konstaterat att kulan har fart. Motiveringen

att kulans fart skulle avta efter att den lämnat fågelns näbb är enligt Kibble en vanlig

föreställning om att rörelsen kommer att avta när ingen pådrivande kraft finns.

4.1.3 Resultatdiskussion kring frågor som berör krafters riktning

Enligt Kibble är det lätt att alltid identifiera jordens dragningskraft. Resultatet från fråga 5

(Diagram 17: Resultat från fråga 5) och fråga 13 (Diagram 18: Resultat från fråga 13) gav ett

resultat som tyder på att de flesta kan rita ut en kraft riktad mot jordens centrum om

kroppen är stilla. Hos kroppar som rör sig är det svårare att identifiera denna kraft. Där har

fler ritat ut krafter i rörelseriktningen, hela 68 % i år sju och 43 % i år nio.

Endast 13 % i år nio konstaterade att bara jordens dragningskraft verkar på den kastade

bollen i fråga 13. Den här uppgiften ger tillfälle att använda både Newtons första och andra

lag. Det är tydligt att mycket få elever har lärt sig detta. Intressant är dock att de klarat av att

beskriva fallbanan för kulan som fågeln tappar i fråga 14, vilket i princip är samma uppgift.

4.1.4 Sammanfattande resultatdiskussion

Den här undersökningen visar att eleverna inte har lärt sig att förstå och använda Newtons

lagar. Det är tydligt att elevernas genomgående resonemang är att om en kropp är i rörelse

finns en kraft i rörelseriktningen. Detta strider mot Newtons första lag. Eftersom många

elever relaterar en rörelse längs en rät linje med en verksam kraft uppstår problem med att

förklara hastighetsändring, det vill säga Newtons andra lag. Detta tyder på att flera av de

vardagsföreställningar som den tidigare forskningen pekar på är framträdande. De skillnader

i resultaten på frågor som finns mellan år sju och år nio är obetydliga eftersom frekvenserna

för rätt svar varierar mellan årskurserna.

Läromedlen som har sammanfattats i Inledningen tar upp och förebygger många av

vardagsföreställningarna, men samtidigt undergrävs några, som till exempel

vardagsföreställningen om att krafter alltid finns i rörelseriktningen. Detta genom att

Page 39: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 35 -

författarna ritat hasighetspilar och kraftpilar lika. I övrigt hade jag förväntat mig ett mycket

bättre resultat från år nio jämfört med år sju. Bara i fråga 3c och fråga 14 har eleverna i år

nio gjort ett markant bättre resultat än eleverna i år sju. Detta beror säkerligen på att de lärt

sig detta genom undervisning, vilket eleverna i år sju troligtvis inte gjort, eftersom detta inte

finns med i läroboken för år sju.

Reflektionen som dras av resultatet från den här undersökningen är att stora delar av

eleverna i år nio inte uppnår målen för godkänt betyg (G) i grundskoleämnet fysik, eftersom

eleven enligt uppnåendemålen ska ha kunskap om tryck, energi och materiens uppbyggnad,

där kraft spelar en väsentlig roll.

Enligt egen erfarenhet är det ovanligt att elever får icke godkänt (IG eller -) betyg i fysik

eller naturorienterande ämnen i grundskolans senare år. Här borde skolans arbete ses över,

antingen genom att kraven sänks eller att mekanikundervisningen får mer tid så att eleverna

får en rimlig chans att inhämta kunskapen. Kanske ett nationellt prov i fysik skulle vara till

hjälp för skolan, eftersom det skulle visa att undervisningen brister. Det skulle även ställa

denna problematik i ett nationellt fokus. Det skulle dock vara mycket orättvist för de elever

som inte uppnår ett godkänt betyg på grund av att undervisningen inte är tillräcklig.

Page 40: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 36 -

4.2 Metoddiskussion

I detta avsnitt kommer metodens tillförlitlighet och generaliserbarheten att behandlas.

4.2.1 Tillförlitlighet

Den stora risken med flervalsfrågor är att de som besvarar frågorna kan chansa på ett

alternativ om de inte kan använda sina kunskaper för att besvara frågan. En annan fara med

att använda enkät med flervalsfrågor är att eleverna kan missförstå frågan, uppleva ett

begrepp svårt eller inte ha förståelse för ett ords innebörd. Dessa två problem kan ge ett

missvisande resultat om gruppens kunskaper i ämnet, speciellt om frågan har få alternativ. I

den här undersökningen har detta i förväg medvetet gjorts försök att förebygga genom att

på så många frågor som möjligt ha fler alternativ.

Eftersom varken lärare, elever eller vårdnadshavare har fått reda på undersökningens

syfte, samtidigt som enkäten har hållits skyddad, är möjligheterna att resultatet skulle

påverkats av dessa mycket små.

4.2.2 Generaliserbarhet

Eftersom antalet elever i undersökningen endast uppgick till 21 elever i år sju samt 63 i år

nio och att samtliga av dessa var elever på samma skola, kan inga generella slutsatser dras

enbart från resultatet. Men genom att den tidigare forskningens resultatet överensstämmer

i mångt och mycket med resultatet för denna undersökning kan ändå en generalisering göras

för elever i samma ålder.

Viktigt att återigen påpeka är att antalet deltagande i undersökningen från respektive

årskurs skiljer sig, underlaget från år nio är väldigt många fler än i år sju. Kanske hade

resultatet varit annorlunda om elevgrupperna varit lika stora. Kanske hade även resultatet

påverkats om undersökningen genomförts på mer än en skola.

Page 41: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 37 -

4.3 Slutsats och yrkesrelevans

Den här undersökningen visar att eleverna inte har lärt sig att förstå och använda Newtons

lagar och undervisningen bör därför ses över. Vidare tyder undersökningen på att flera av de

vardagsföreställningar som den tidigare forskningen pekar på är framträdande. De skillnader

i resultaten på frågor som finns mellan år sju och år nio är obetydliga.

För att få en tydlig bild av hur kunskapen är i landet som helhet kan ett nationellt prov vara

till hjälp för skolan.

Som nämnts tidigare i diskussionen är förståelsen för Newtons lagar inte alls framträdande.

Jag har uppfattningen att om elever introducerades till dessa lagar och lärde sig resonera

utifrån dessa, skulle de vardagsföreställningar som pressenterats här till stor grad elimineras.

Jag menar inte att lagarna ska användas matematiskt utan snarare i form av ord. Detta för

att det ska bli självklart för eleven att en kropp ändrar sin hastighet, om en resulterande

kraft verkar på den.

Vardagsföreställningar som tagits upp av tidigare forskning förekommer i mycket stor grad

i den här undersökningen, vilket är bra att känna till när undervisning på detta område ska

genomföras.

Resultatet från denna undersökning kan vara skrämmande för många gymnasielärare i

fysik. Samtidigt är det en viktig kännedom i genomförandet av mekanikundervisning,

eftersom krafter och deras verkan är mycket främmande för elever som lämnat grundskolan.

Page 42: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 38 -

Litteraturförteckning

Andersson, Björn (1993). Grundskolans naturvetenskap. Forskningsresultat och nya idéer.

Stockholm: Utbildningsförlaget.

Andersson, Björn (red.) (2003). Att förstå naturen – Från vardagsbegrepp till fysik (Mekanik

1, & Mekanik 2, nr 3). Göteborgs universitet, Enheten för ämnesdidaktik, Göteborg.

Hewitt, G. Paul (2002). Conceptual physics, ninth edition, San Francisco:

Addison–Wesley Cop.

Johansson, Bo & Svedner, Per Olov (2004). Examensarbetet i lärarutbildningen.

Undersökningsmetoder och språklig utformning. Uppsala: Kunskapsföretaget.

Kibble, Bob (2006). Physics Education . Understanding forces: what’s the problem?, 41, 228 -

231.

Nationalencyklopedins ordbok (2008). Jean Piaget [www document].

URL http://www.ne.se/jsp/search/article.jsp?i_art_id=O108581, 2008-05-18

Piaget, Jean (1999). Child's Conception of Physical Causality. London: Routledge

Sjøberg, Svein (2005). Naturvetenskap som allmänbildning – en kritisk ämnesdidaktik.

Lund: Studentlitteratur.

Skolverket (2000). Kursplanen i fysik. [www document].

URL http://www3.skolverket.se/ki03/front.aspx, 2008-05-18

Utbildningsdepartementet (1998). Läroplanen för det obligatoriska skolväsendet,

förskoleklass och fritidshem. Lpo 94 anpassad till att också omfatta förskoleklassen och

fritidshemmet. Stockholm: Skolverket/Fritzes.

Page 43: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 39 -

Figurförteckning

Samtliga figurer är ritade av författaren till detta arbete.

Figur 1: Exempel på friläggningsdiagram enligt Newtons första lag (b) och isolerade reaktionskrafter enligt Newtons tredje lag (c) på samma situation. Observera att den nedåtriktade kraften i båda figurerna är den

samma. ..................................................................................................................................... - 6 - Figur 2: Kurvan illustrerar kulans bana efter att den fallit över bordskanten. Till vänster enligt teorin om

impetus som försvagas och tar slut. Till höger faller kulan i en kastparabel där farten i rörelseriktningen fortsätter att vara konstant medan en acceleration samtidigt sker nedåt på grund av gravitationen, enligt

Newtons första och andra lag. ....................................................................................................... - 8 - Figur 3: Alternativ från fråga 1 ................................................................................................... - 12 -

Figur 4: Alternativ från fråga 2 ................................................................................................... - 13 -

Figur 5: Alternativ från fråga 3c................................................... Fel! Bokmärket är inte definierat.

Figur 6: Alternativ från fråga 9 ................................................................................................... - 14 -

Figur 7: Alternativ från fråga 3a ................................................................................................. - 16 -

Figur 8: Alternativ från fråga 3b ................................................................................................. - 17 -

Figur 9: Alternativ från fråga 6 ................................................................................................... - 19 -

Figur 11: Alternativ från fråga 7 ................................................................................................. - 20 -

Figur 12: Alternativ från fråga 11 ............................................................................................... - 23 -

Figur 13: Alternativ från fråga 14 ............................................................................................... - 25 -

Figur 14: Illustration från fråga 5 ................................................................................................ - 26 -

Figur 15: Illustration från fråga 13 .............................................................................................. - 27 -

Författarens tack

Jag vill till en början tacka mannen som redan för flera år sedan satte ett tankefrö till mitt

examensarbete, i mitt huvud. Utan Bertil Westergren hade inte min fascination för mekanik

växt fram. Tack!

Jag vill även tacka finsliparna och bollplanken.

Tack Morgan Leander, för uträtade frågetecken och pådrivande!

Tack Per-Eric Åhlen, utan tjatandet om friktion, resulterandekraft och Newtons lagar hade

jag aldrig blivit klar. Många tack för stödet när det var tungt och jobbig, eller när skrivandet

bara stannade upp. Tack för kraven, viljan och förtroendet.

Tack Kerstin Moatti, vad är väl en institution på ett universitet utan en sekreterare som alltid

ställer upp och löser problem.

Page 44: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 1 -

Bilaga 1 – Elevenkät

Enkätundersökning bland elever i grundskolans senare år

Det här är en undersökning som syftar till att undersöka elevers kunskaper om krafter. Den enda som kommer att titta på dina svar är jag, Marcus Ericsson. Anledningen till att jag vill att du skriver namn och klass är att jag eventuellt kan behöva genomföra en intervju med dig vid ett senare tillfälle, utifrån de svar som du gett. Intervjun kommer att vara helt frivillig. När resultaten är sammanställda kommer denna enkät att förstöras.

Jag går i klass: _____________ Jag heter: ______________________________________________________ Tack för din medverkan. Marcus Ericsson, Lärarstuderande vid Karlstads universitet

Krafter som påverkar ett föremål ritas som pilar. På detta sätt kan man visa kraftens storlek och åt vilket håll kraften drar eller trycker. Kraftpilens längd visar hur stor kraften är.

5 cm

– 5 newton

Här nedanför visas kraftpilar där 1 centimeter motsvarar 1 newton.

10 cm

10 newton

5 cm

5 newton

Page 45: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 2 -

Du ska nedan avgöra vilken bild som stämmer överens med påståendet. RINGA IN DITT SVAR! Bara ett svar på varje fråga.

3. En kula släpps rakt ner, från ett högt torn.

b. Vilken bild visar kraften eller krafterna som påverkar kulan när den har fallit ett tag, men dess hastighet fortsätter att öka.

c. Vilken bild visar kraften eller krafterna som påverkar kulan när den har fallit länge och faller med konstant hastighet.

a. Vilken bild visar kraften eller krafterna som påverkar kulan just när den släpps från tornet.

2. Vilken bild visar kraften eller krafterna som påverkar kulan när den hänger i ett snöre.

1. Vilken bild visar kraften eller krafterna som påverkar boken när den ligger på ett plant, horisontellt bord, den ligger helt stilla.

Page 46: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 3 -

4. Kjell och Lisa drar i varsin ände på ett rep. Vem är starkast enligt bilden? SVAR: ____________________________________________________________

5. Genom att rita ut kraftpilar ska du visa hur tyngdkraften är riktad på personerna som står på jorden. (Observera att personernas storlek är kraftigt överdriven.)

Page 47: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 4 -

6. En cyklist cyklar på en plan väg, vilken bild visar kraften som får cykelns hastighet att öka? 7. En cyklist cyklar på en plan väg, vilken bild visar kraften som får cykelns hastighet att minska? 8. Vad skulle du kalla kraften som får… a) … en cykel att öka i hastighet? ______________________________________________ b) … en kula att falla till marken? ______________________________________________ c) … en bok att ligga kvar på ett bord? __________________________________________ d) … månen att rotera runt jorden? _____________________________________________

Page 48: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 5 -

9. En fallskärmshoppare faller med konstant hastighet rakt ner. Vilka krafter verkar på hopparen? Ringa in ditt svar A, B, C eller D. Bara ett svar på varje fråga!

10. Vilket av följande alternativ förklarar bäst ditt svar i förra frågan? Ringa in ditt svar A, B, C eller D.

a. Eftersom hopparen är tyngdlös under själva fallet verkar inte tyngdkraften T. b. För att hopparen ska komma nedåt måste T vara större än K. Om T blir lika stor som

K så skulle hopparen stanna i luften. c. Om hopparen rör sig med konstant hastighet så måste K och T vara lika stora. d. På grund av att fallskärmen är så pass stor blir kraften K större än T.

(A) Tyngdkraften T och kraften K från fallskärmen. T är större än K.

(B) Tyngdkraften T och kraften K från fallskärmen.

T är lika stor som K.

(C) Tyngdkraften T och kraften K från fallskärmen. T är mindre än K.

(D) Bara kraften K från fallskärmen verkar på hopparen.

Page 49: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 6 -

11. En hockeypuck glider på isen. Puckens hastighet minskar hela tiden, och till slut stannar den. Vad gäller om de horisontella krafterna som verkar på pucken? Ringa in ditt svar A, B, C, D eller E.

12. Vilket av följande alternativ förklarar på bäst ditt var i förra uppgiften? Ringa in ditt svar A, B, C eller D. a. Eftersom pucken rör sig måste den påverkas med en kraft i samma riktning som

rörelseriktningen. Men denna kraft blir mindre och mindre eftersom pucken saktar in. Friktion på is är försumbar.

b. Om ett föremål rör sig längs en rät linje, så är den resulterande kraften noll.

c. Eftersom pucken saktar in måste den påverkas av en resulterande kraft som är riktad

åt motsatt håll mot rörelseriktningen.

d. Eftersom pucken rör sig måste kraften i rörelsens riktning vara större än friktionskraften.

(A) Bara friktionskraften F som utövas av isen verkar på pucken.

(B) Friktionskraften F och en kraft K i rörelseriktningen verkar på pucken. K är lika stor som F.

(C) Friktionskraften F och en kraft K i rörelseriktningen verkar på pucken. K är större än F.

(D) Bara en kraft K i rörelseriktningen verkar på pucken. Denna kraft minskar hela tiden för att tillslut bli noll och då stannar pucken.

(E) Friktionskraften F och en kraft K i rörelseriktningen verkar på pucken. K är mindre än F.

Page 50: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 7 -

13. En sten som kastas i en bana som visas i bilden nedan påverkas av krafter. Rita ut dessa som kraftpilar. OBS! Bortse från luftmotståndet! 14. En fågel flyger i konstant fart, rakt fram som framgår av bilden. I näbben har den en kula som den tappar. Vilken bana kommer kulan att följa?

Ringa in ditt svar A, B, eller C.

a. Kulan följer och landar enligt bana A

b. Kulan följer och landar enligt bana B

c. Kulan följer och landar enligt bana C

15. Motivera svaret på förra frågan nedan!

Page 51: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 1 -

Bilaga 2: Fråga 8 Vad skulle du kalla kraften som får…

a) … en cykel att öka i hastighet?

b) … en kula att falla till marken?

c) … en bok att ligga kvar på ett bord?

d) … månen att rotera runt jorden?

Nedan redovisas resultat från fråga 8 i form av en tabell. Bara svar från enkäter med minst

en fråga besvarad har tagits med. De frågor som lämnats obesvarade har markerats med

streck (-). Många av frågorna har besvarats med frågetecken och har här förts in med det

samma (?). Felstavade ord har stavats rätt utan kommentar, de ord som upplevs ligga

utanför normal stavning, eller utanför sammanhanget har bara citerats, kommentarer som

skrivits vid svar och figurer har skrivits med inom parentes.

Efter tabellen finns de vanligaste svaren införda i ett diagram för varje fråga (Diagram 10

till och med Diagram 13).

Åk a b c d

7 Gravitation Gravitation Gravitation Gravitation

7 Fart Dragningskraft Dragningskraft Dragningskraft

7 Vridmoment Tyngdkraft Tyngdkraft Dragningskraft

7 Vind/kedja Lite vindmotstånd Tyngdkraft G-kraft

7 Medvind Styrka Ingen Solen

7 Motvind (hihi) Högkraft (hihi) Stillkraft (hihi) Medvind (hihi)

7 Pilen pekar fram Neråt Still, ingen pil alls

Pilen går runt som … ->(Respondenten har ritat en cirkulär pil)

7 En backe Dragningskraft Magi Magi

7 Nerförsbacke Tyngdlagen, Graviditeten

Tyngdlagen, Graviditeten

Tyngdlagen, Graviditeten

7 Nerförsbacke - - -

7 - Dragningskraft Dragningskraft -

7 Framåt Större Svart magi Svart magi

7 Fart Fall Tyngdkraft ?

7 - Tyngdkraft Tyngdkraft -

7 Framåt Neråt Neråt Bakåt

7 Framåt Neråt Stilla Rörlig

7 Dragkraft Gravitation Gravitation Gravitation

7 Vind - Tyngd -

7 Framåt Neråt Ligga Lunt

7 (Oläsligt…) …lust Dragkraft Magi Magi

7 - Tyngdkraft Tyngdkraft Omloppskraft

9 Höger och fin kraft Uppåt och finkraft ? Snurrkraft

9 - Downforce Dragningskraft Dragningskraft

9 Acceleration Tyngdkraft - Gravitation

9 Friktionskraft Tyngdkraft - Dragningskraft

9 ? Tyngdkraft ? ?

Page 52: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 2 -

9 ? Gravitation Gravitation ?

9 ? Dragningskraft Tyngdkraft ?

9 - Gravitation Dragningskraft -

9 Friktionskraft Gravitation - -

9 Gravitation, i nedförsbacke

Gravitation Gravitation Gravitation

9 Horisontella kraften Tyngdkraft Tyngdkraft Rotationskraft

9 - Dragningskraft - -

9 - Gravitation Friktionskraft Dragningskraft

9 - Tyngdkraft Tyngdkraft Dragningskraft

9 Muskelkraft Gravitation Tyngdkraft Dragningskraft

9 - Tyngdkraft - -

9 - Tyngdkraft Dragningskraft -

9 - Gravitation Gravitation Friktion

9 Acceleration Tröghet Konstant Dragning

9 Hästkraft Dragningskraft Tyngdkraft Dragningskraft

9 Människan som cyklar ? Stillhet? Rymden?

9 Friktionskraft Dragningskraft Tyngdkraft -

9 Människans kraft Tyngdkraft Tyngdkraft Tyngdkraft

9 Accelerationskraft Tyngdkraft Tyngdkraft -

9 Rörelsemagi Fallenergi Lägesenergi Tandfé

9 Friktionskraft Dragningskraft Dragningskraft Dragningskraft

9 - Dragningskraft Dragningskraft -

9 Rörelse Dragningskraft Dragningskraft Dragningskraft

9 - - Motståndskraft Cirkulationskraft

9 Stenkast Dragningskraft Tyngdkraft Bark

9 Rörelseenergi Dragningskraft Lägesenergi Dragningskraft

9 Acceleration Gravitation Täthetskraften Gravitation

9 Rörelseenergi Fallenergi Frikvens Luke Skywalker

9 - - Dragningskraft Dragningskraft

9 Acceleration Dragningskraft Motståndskraft Dragningskraft

9 - Dragningskraft Dragningskraft Dragningskraft

9 - - Gravitation -

9 Horisontella kraften Tyngdkraft Tyngdkraft Gravitation

9 - Newton - -

9 Accelerationskraft Tyngdkraft Friktion Gravitation

9 - - Tyngdkraft Dragningskraft

9 Fartkraft Tyngdkraft Tyngdkraft -

9 - Tyngdkraft - -

9 Fartkraft Tyngdkraft Tyngdkraft G-kraft

9 Fartkraft Tyngdkraft Tyngdkraft -

9 - - Tyngdkraft -

9 - Tyngdkraft Gravitation Dragningskraft

9 Acceleration Dragningskraft Dragningskraft -

9 Friktionskraft Dragningskraft Dragningskraft Jordens dragningskraft

9 ? Gravitation ? Gravitation

9 - Tyngdkraft Graviditet -

9 Accelerationskraft Dragningskraft - Dragningskraft

9 - - Lägeskraft Dragningskraft

9 - Gravitation Friktion Gravitation

9 Accelerera Dragningskraft Tyngdkraft -

Page 53: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 1 -

Bilaga 3: Fråga 15 Nedan visas de motiveringar som gavs i fråga 15 av de elever som angett alternativ a i fråga 14. Då motiveringen lämnats tom har denna inte tagits med i tabellen nedan. ÅK Fråga 15 Fråga 14

9 Tyngdkraften drar kulan rakt neråt a

9 Eftersom kulan påverkas av tyngdkraften kommer den att falla rakt nedåt. a

9 Jag vet inte a

9 Jag vet inte a

9 Eftersom fågeln tappar kulan åker den rätt ner på grund av tyngdkraften a

9 Jag tror att sten kommer åka ner precis rakt för att stenen inte kommer flyga framför fågeln

a

9 Jag tror inte fågeln tillsatt en kraft så kulan åker framåt. a

9 Kulan är förhoppningsvis tung a

9 Eftersom kulan väger något så tyngs den ner och om han tappar den så får den bara tyngdkraft och kommer åka rakt ner

a

9 Eftersom fågeln flyger rakt fram så är det luftmotstånd eftersom att kulan ej har någon fart Så trycker luftmotståndet och gravitationen ner den.

a

9 Eftersom stenens tyngdkraften är större än luftens a

9 Jag vet inte a

9 Dragningskraften drar ner kulan direkt a

9 Jag vet inte a

9 Den kastar ju inte iväg kulan så den har ingen kraft, den åker rätt ner på grund av gravitationen

a

9 Kulan har ju tyngre än luft och dras till marken a

9 Gravitationen drar kulan ner a

7 Kulan är så pass tung att den faller neråt a

7 För att kulan är tung så den dras ner till jorden a

Page 54: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 2 -

Nedan visas de motiveringar som gavs i fråga 15 av de elever som angett alternativ b i fråga 14. Då motiveringen lämnats tom har denna inte tagits med i tabellen nedan.

ÅK Fråga 15 Fråga 14

9 Eftersom den släpps i fart så åker den lite framåt tills den faller rakt ner b

9 Eftersom fågeln flyger landar den i b b

9 På grund av fågelns fart så flyger kulan framåt en bit men när farten minskar så gör tyngdkraften att kulan far rakt ner.

b

9 Eftersom fågeln flyger med en viss fart så kan kulan inte ramla rakt ner b

9 Det svaret är mest troligt för att en kula är inte tyngdlös och så skulle den nog inte falla rakt neråt

b

9 Kulan flyger framåt på grund av fågelns tidigare riktning. Luftmotståndet stoppar snart farten och dragningskraften drar kulan neråt

b

9 Eftersom fågeln flyger framåt så måste kulan inte ramla rakt ner. Jag tror kulan följer med en bit så den ramlar i en båge.

b

9 Föra att den väger b

9 Eftersom fågeln kommer i fart så har kulan lite fart framåt innan den går ner till marken b

9 För kulan kommer inte falla direkt ner utan krafter kommer att dra i den b

9 Fågeln flyger så han fortsättar banan rakt fram b

9 Kulan har en hastighet och kan inte stanna utan vidare b

7 Eftersom fågeln rör sig när den släpper kulan åker kulan inte rakt ner utan åt sidan b

7 Stenen har fart men på grund av luftmotståndet och dragningskrafter så saktar den ner b

7 Eftersom det går fort och mycket Vindmotstånd borde den vända väldigt snabbt och gå ner

b

7 Magi b

7 Den går rakt ner b

7 Eftersom den hade en hastighet innan den släpptes b

7 Det verkade mest rimligt b

7 Kulan får fart av fågeln b

Page 55: Examensarbete lub marcus ericsson 20080623 Reutrad248/FULLTEXT...framdrivande kraft exempelvis vid gång. Bok 1, Tid och rörelse s. 40 – 49 I det här kapitlet ger Paulsson m.fl.

- 3 -

Nedan visas de motiveringar som gavs i fråga 15 av de elever som angett alternativ c i fråga 14. Då motiveringen lämnats tom har denna inte tagits med i tabellen nedan.

ÅK Fråga 15 Fråga 14

9 För att det är som att kasta en boll c

9 För den har fart c

9 Det blir aldrig rakt ner när man i luften med fart så faller den inte rakt ner måste bli en böj på den

c

9 Eftersom fågeln har en viss fart hela tiden så kommer kulan ha samma fart från början. Men så fort fågeln tappar den så börjar den tappa fart

c

9 Den går i en båge för den går fort och åker ner c

9 Fågeln flyger framåt när den tappar kulan och då åker kulan också framåt c

9 Eftersom kulan fortfarande hade fart när fågeln tappade den så måste den fortfarande komma framåt samtidigt som den faller

c

9 Den har fart ifrån fågeln och sedan dras den nedåt på grund av tyngdkraften c

9 Farten framåt följer med kulan som fågeln höll c

9 Fågeln har jämn fart och eftersom att stenen från början har samma fart som fågeln fortsätter den ett tag men saktas sedan av luftmotståndet

c

9 Kulan har fortfarande kraft framåt som den faller ner men kraften framåt blir mindra och få faller den ner i en rakare linje

c

9 Därför att fågeln flyger framåt i en hastighet c

9 Kanske släpps kulan med en viss kraft c

9 Kulan får lite kraft från fågeln, men den börjar snart påverkas av dragningskraften c

9 Eftersom den redan har fart kan den inte falla rakt ner, den kan heller inte åka rakt fram en bit och sedan falla rakt ner

c

9 Kulan har en ganska stark kraft som får kulan att falla ner långsammare c

9 Eftersom tröghetskraften fortsätter framåt medans gravitationen drar den neråt c

9 Därför att fågeln flyger framåt , då vill kulan också fortsätta fram men tyngdkraften tar ner kulan

c

9 Jag vet inte c

9 Luftmotståndet påverkar kulan att den fortsätter att falla neråt c

9 Den faller i en båge och inte följer med c

9 Eftersom fågeln flyger framåt borde kulan också göra det ett tag samtidigt som den faller.

c

9 Eftersom fågeln har fart så blir kulans bana böjd och inte lodrät c

9 Om fågeln flyger med konstant fart och släpper kulan sp måste kulans linje bli en mjuk linje

c

7 Den går ju inte rakt ner och inte flyger så långt i luften c

Av både sjuor och nior som valt alternativ a har de flesta motiverat detta med att Jordens

dragningskraft skulle vara anledningen till att kulan faller rakt ner. För alternativ b och c är

den vanligaste motiveringen att kulan har fart.


Recommended