+ All Categories
Home > Documents > Example 3.2 - Continuous Beam-updated 010812

Example 3.2 - Continuous Beam-updated 010812

Date post: 16-Apr-2015
Category:
Upload: muhammad-farhan-gul
View: 129 times
Download: 11 times
Share this document with a friend
15
CONTINUOUS BEAM EXAMPLE 3.2 Figure above shows a plan view of a school building. It is constructed using cast in-situ method and the slab spans 3 x 8 m each. Prepare a complete design of beam 2/A-D. Design data: Slab thickness = 125 mm Loads from finishes, partitions etc. = 15 kN/m Characteristic live load, q k = 10 kN/m Nominal cover, c = 25 mm Concrete’s characteristic strength, f ck = 30 N/mm 2 Steel characteristic strength (main), f yk = 500 N/mm 2 Beam size, b w x h = 250 x 450 mm A A
Transcript
Page 1: Example 3.2 - Continuous Beam-updated 010812

CONTINUOUS BEAM EXAMPLE 3.2

Figure above shows a plan view of a school building. It is constructed using cast in-situ method and the slab spans 3 x 8 m each. Prepare a complete design of beam 2/A-D.

Design data:

Slab thickness = 125 mm Loads from finishes, partitions etc. = 15 kN/m Characteristic live load, qk = 10 kN/m Nominal cover, c = 25 mm Concrete’s characteristic strength, fck = 30 N/mm2 Steel characteristic strength (main), fyk = 500 N/mm2 Beam size, bw x h = 250 x 450 mm

A

A

Page 2: Example 3.2 - Continuous Beam-updated 010812

CONTINUOUS BEAM EXAMPLE 3.2

1. Calculate the loads acting on the beam.

Characteristic permanent action on beam, gk

Self-weight of beam = 25 x bw x h = 25 x 0.25 x 0.45 = 2.81 kN/m

∴Total charac. permanent action on beam 2/A-D, gk = self-weight of beam + finishes

= 2.81 + 15 = 17.81 kN/m

∴Total charac. variable action acting on beam 2/A-D, qk = 10 kN/m

Therefore, design load acting on beam 2/A-D, w = 1.35 gk + 1.5 qk

= 1.35 ( 17.81 ) + 1.5 (10) = 39.04 kN/m

Solution

(1.35 gk + 1.5 qk)

Page 3: Example 3.2 - Continuous Beam-updated 010812

CONTINUOUS BEAM EXAMPLE 3.2

2. Draw the shear force (SFD) and bending moment diagram (BMD).

The coefficients from Table 3.5 can only be applied to continuous beam analysis when all this provisions are fulfilled.

a) Qk ≀ Gk = 10 < 17.81 ∴OK! b) Loads should be uniformly distributed over 3 or more spans = 3 spans ∴OK! c) Variation in span length should not exceed 15% of the longest =same span ∴OK!

Beam 2/A-D

8 m 8 m 8 m

w = 39.04 kN/m

0.45F

0.6F

0.55F 0.6F

0.55F 0.45F

0.09FL

0.11FL

0.07FL

0.11FL

0.09FL

+ + +

- - -

+ + +

- -

Page 4: Example 3.2 - Continuous Beam-updated 010812

CONTINUOUS BEAM EXAMPLE 3.2

3. Calculate the design moments and shear force values.

F = wL = ( 39.04 ) x ( 8 ) = 312.32 kN

4. Design the main reinforcements. i) Calculate the effective depth, d.

Assume Ο†bar = 20 mm

Ο†link = 8 mm

d = h – c - Ο†link - Ο†bar/2 = 450 – 25 – 8 - 20/2

= 407 mm

8 m 8 m 8 m

w = 39.04 kN/m

140.54

187.39

171.78 187.39

171.78 140.54

224.87

274.84

174.9

274.84

224.87

+ + +

- - -

+ + +

- -

h d

Page 5: Example 3.2 - Continuous Beam-updated 010812

CONTINUOUS BEAM EXAMPLE 3.2

β€’ At mid span A-B and C-D (design as flange section)

M = 0.09 FL = 224.87 kNm

Section A-A

Lo values

Mid span A-B & C-D => lo = 0.85 (8000) = 6800 mm

Mid span B – C => lo = 0.7 (8000) = 5600 mm

3000 mm 3000 mm

bw = 250 mm bw = 250 mm bw = 250 mm

Page 6: Example 3.2 - Continuous Beam-updated 010812

CONTINUOUS BEAM EXAMPLE 3.2

Calculate the effective width of flange, bf

𝒃𝒆𝒇𝒇 = �𝒃𝒆𝒇𝒇,π’Š + π’ƒπ’˜ ≀ 𝒃

𝒃𝒆𝒇𝒇,π’Š = 𝟎.𝟐 π’ƒπ’Š + 𝟎.πŸπ’π’ ≀ 𝟎.𝟐 𝒍𝒐 𝑏1 = 𝑏2 = (3000 βˆ’ 250)/2 = 1375 π‘šπ‘š 𝑏𝑒𝑓𝑓,1 = 𝑏𝑒𝑓𝑓,2 = 0.2 (1375) + 0.1(6800) = πŸ—πŸ“πŸ“ π’Žπ’Ž ≀ 0.2 (6800) = 1360 π‘šπ‘š 𝑏𝑒𝑓𝑓,1,2(πŸ—πŸ“πŸ“) = 𝑏1,2(1375) => 𝑂𝐾! 𝒃𝒆𝒇𝒇 = �𝒃𝒆𝒇𝒇,𝟏 + 𝒃𝒆𝒇𝒇,𝟐� + π’ƒπ’˜ = (955 + 955) + 250 = πŸπŸπŸ”πŸŽ π’Žπ’Ž < 𝑏 = 1375 + 1375 + 250 = 3000 π‘šπ‘š ∴ 𝑢𝑲!

Design the main reinforcement.

𝑀𝑓 = 0.567π‘“π‘π‘˜π‘β„Žπ‘“ �𝑑 βˆ’β„Žπ‘“2οΏ½ = 0.567(30)(2160)(125) οΏ½ 407 βˆ’

1252οΏ½ = 1582 π‘˜π‘π‘š

Compare Mf with the design moment, M.

M =224.87 kNm < Mf = 1582 kNm

∴ Neutral axis lies in flange / below flange.

∴Design the beam as rectangular / flanged beam.

𝐾 =𝑀

𝑏𝑑2π‘“π‘π‘˜=

224.87 π‘₯ 106

2160 π‘₯ 4072 π‘₯ 30= 0.02 < 0.167

∴ compression reinforcement is required / not required

𝑧 = 𝑑 οΏ½0.5 + οΏ½0.25 βˆ’πΎ

1.134οΏ½ = οΏ½0.5 + οΏ½0.25 βˆ’

0.021.134

οΏ½ = 0.98𝑑 > 0.95𝑑

∴ use = 0.95d

Flanged beam

Page 7: Example 3.2 - Continuous Beam-updated 010812

CONTINUOUS BEAM EXAMPLE 3.2

π΄π‘ π‘Ÿπ‘’π‘ž =𝑀

0.87π‘“π‘¦π‘˜π‘§=

224.87 π‘₯ 106

0.87π‘₯ 500 π‘₯ 0.95 π‘₯ 407= 1337 π‘šπ‘š2

∴Provide: 5H20 (Asprov = 1570 mm2)

Check the area of reinforcement.

𝐴𝑠,π‘šπ‘–π‘› β‰₯ 0.26 π‘“π‘π‘‘π‘šπ‘π‘‘π‘‘

π‘“π‘¦π‘˜ β‰₯ 0.0013 𝑏𝑑 𝑑

𝐴𝑠,π‘šπ‘–π‘› = 0.26 (2.9)(250)(407)

500= 153 π‘šπ‘š2 β‰₯ 0.0013 (250)(407) = 132 π‘šπ‘š2

∴ 𝑂𝐾!

π΄π‘ π‘šπ‘Žπ‘₯ = 0.04𝐴𝑐 = 0.04 π‘₯ 250 π‘₯ 450 = 4500 π‘šπ‘š2

π΄π‘ π‘šπ‘–π‘› < π΄π‘ π‘π‘Ÿπ‘œπ‘£ < π΄π‘ π‘šπ‘Žπ‘₯ ∴ 𝑂𝐾!

β€’ At support B & C (design as rectangular section)

M = 0.11 FL = 274.84 kNm

𝐾 =𝑀

𝑏𝑑2π‘“π‘π‘˜=

274.84 π‘₯ 106

250 π‘₯ 4072 π‘₯ 30= 0.22 > 0.167

∴ compression reinforcement is required / not required

𝑧 = 𝑑 οΏ½0.5 + οΏ½0.25 βˆ’πΎβ€²

1.134οΏ½ = 0.82𝑑

Calculate d’

𝑑′ = 𝑐 + βˆ…π‘™π‘–π‘›π‘˜ +βˆ…π‘π‘Žπ‘Ÿ

2= 25 + 8 +

202

= 43 π‘šπ‘š

Page 8: Example 3.2 - Continuous Beam-updated 010812

CONTINUOUS BEAM EXAMPLE 3.2

π΄π‘ β€²π‘Ÿπ‘’π‘ž =(𝐾 βˆ’ 𝐾′)π‘“π‘π‘˜π‘π‘‘2

0.87π‘“π‘¦π‘˜(𝑑 βˆ’ 𝑑′) =

( 0.22 βˆ’ 0.167)(30)(250)(407)2

0.87 ( 500 )(407 βˆ’ 43 ) = 416 π‘šπ‘š2

∴Provide: 3H16 (As’prov = 603 mm2)

π΄π‘ π‘Ÿπ‘’π‘ž = πΎβ€²π‘“π‘π‘˜π‘π‘‘2

0.87π‘“π‘¦π‘˜π‘§+ π΄π‘ β€²π‘Ÿπ‘’π‘ž =

0.167(30)(250)( 407 )2

0.87(500)( 0.82 π‘₯ 407)+ 416 = 1845 π‘šπ‘š2

∴Provide: 3H25 (Asprov = 1963 mm2)

Check the area of reinforcement.

𝐴𝑠,π‘šπ‘–π‘› β‰₯ 0.26 π‘“π‘π‘‘π‘šπ‘π‘‘π‘‘

π‘“π‘¦π‘˜ β‰₯ 0.0013 𝑏𝑑 𝑑

𝐴𝑠,π‘šπ‘–π‘› = 153 π‘šπ‘š2

π΄π‘ π‘šπ‘Žπ‘₯ = 4500 π‘šπ‘š2

π΄π‘ π‘šπ‘–π‘› < π΄π‘ π‘π‘Ÿπ‘œπ‘£ < π΄π‘ π‘šπ‘Žπ‘₯ ∴ 𝑂𝐾!

β€’ At mid span B-C (flanged section)

M = 0.07 FL = 174.9 kNm

Calculate the effective width of flange, bf

𝒃𝒆𝒇𝒇 = �𝒃𝒆𝒇𝒇,π’Š + π’ƒπ’˜ ≀ 𝒃

𝒃𝒆𝒇𝒇,π’Š = 𝟎.𝟐 π’ƒπ’Š + 𝟎.πŸπ’π’ ≀ 𝟎.𝟐 𝒍𝒐 𝑏1 = 𝑏2 = (3000 βˆ’ 250)/2 = 1375 π‘šπ‘š 𝑏𝑒𝑓𝑓,1 = 𝑏𝑒𝑓𝑓,2 = 0.2 (1375) + 0.1(5600) = πŸ–πŸ‘πŸ“ π’Žπ’Ž ≀ 0.2 (5600) = 1120 π‘šπ‘š 𝑏𝑒𝑓𝑓,1,2(πŸ–πŸ‘πŸ“) = 𝑏1,2(1375) => 𝑂𝐾! 𝒃𝒆𝒇𝒇 = �𝒃𝒆𝒇𝒇,𝟏 + 𝒃𝒆𝒇𝒇,𝟐� + π’ƒπ’˜ = (835 + 835) + 250 = πŸπŸ—πŸπŸŽ π’Žπ’Ž < 𝑏 = 1375 + 1375 + 250 = 3000 π‘šπ‘š ∴ 𝑢𝑲!

Page 9: Example 3.2 - Continuous Beam-updated 010812

CONTINUOUS BEAM EXAMPLE 3.2

Design the main reinforcement.

𝑀𝑓 = 1582 π‘˜π‘π‘š

Compare Mf with the design moment, M.

M = 174.9 kNm < Mf = 1582 kNm

∴ Neutral axis lies in flange / below flange.

∴Design the beam as rectangular / flanged beam.

𝐾 =𝑀

𝑏𝑑2𝑓𝑐𝑒=

174.9 π‘₯ 106

1920 π‘₯ 4072 π‘₯ 30 = 0.02 < 0.167

∴ compression reinforcement is required / not required

𝑧 = 𝑑 οΏ½0.5 + οΏ½0.25 βˆ’πΎ

1.134οΏ½ = οΏ½0.5 + οΏ½0.25 βˆ’

0.021.134

οΏ½ = 0.98𝑑 > 0.95𝑑

π΄π‘ π‘Ÿπ‘’π‘ž =𝑀

0.87π‘“π‘¦π‘˜π‘§=

174.9 π‘₯ 106

0.87π‘₯ 500 π‘₯ 0.95 π‘₯ 407= 1040 π‘šπ‘š2

∴Provide: 4H20 (Asprov = 1271 mm2)

Check the area of reinforcement.

𝐴𝑠,π‘šπ‘–π‘› β‰₯ 0.26 π‘“π‘π‘‘π‘šπ‘π‘‘π‘‘

π‘“π‘¦π‘˜ β‰₯ 0.0013 𝑏𝑑 𝑑

𝐴𝑠,π‘šπ‘–π‘› = 153 π‘šπ‘š2

π΄π‘ π‘šπ‘Žπ‘₯ = 4500 π‘šπ‘š2

π΄π‘ π‘šπ‘–π‘› < π΄π‘ π‘π‘Ÿπ‘œπ‘£ < π΄π‘ π‘šπ‘Žπ‘₯ ∴ 𝑂𝐾!

Flanged beam

Page 10: Example 3.2 - Continuous Beam-updated 010812

CONTINUOUS BEAM EXAMPLE 3.2

5. Design the shear reinforcement.

VEd = V max = 0.6 F = 187.39 kN

Calculate VRd,c

π‘˜ = 1 + οΏ½200407

= 1.7 ≀ 2.0 𝑑 𝑖𝑛 π‘šπ‘š

πœŒπ‘™ =𝐴𝑠𝑙𝑏𝑀𝑑

= 1963

250 π‘₯ 407= 0.02

𝑉𝑅𝑑,𝑐 = 0.12π‘˜(100πœŒπ‘™π‘“π‘π‘˜)13𝑏𝑀𝑑 β‰₯ π‘‰π‘šπ‘–π‘›

= 0.12(1.7)οΏ½100(0.02)(30)οΏ½13(250)(407) = 81.26 kN > Vmin

π‘‰π‘šπ‘–π‘› = οΏ½0.035 π‘˜3/2π‘“π‘π‘˜1/2�𝑏𝑀 𝑑 = 43.24 kN

∴VRd.c = 81.26 kN

Compare VEd with VRd,c

VEd (187.39) > VRd,c (81.26) => shear reinforcement is required

Calculate VRd,max

@ 22Β°,

𝑉𝑅𝑑,π‘šπ‘Žπ‘₯ = 0.36 𝑏𝑀𝑑 οΏ½1 βˆ’ π‘“π‘π‘˜250οΏ½π‘“π‘π‘˜

(π‘π‘œπ‘‘ πœƒ + π‘‘π‘Žπ‘› πœƒ) (22Β° ≀ πœƒ ≀ 45Β°)

= 0.36 (250)(407) οΏ½1βˆ’ 30

250οΏ½ (30)(π‘π‘œπ‘‘ 22Β° + π‘‘π‘Žπ‘› 22Β°)

= 335.88 π‘˜π‘

Page 11: Example 3.2 - Continuous Beam-updated 010812

CONTINUOUS BEAM EXAMPLE 3.2

Compare VEd with VRd,max

VEd (187.39) < VRd,max (335.88)

Design shear reinforcement

𝐴𝑠𝑀𝑠

= 𝑉𝐸𝑑

0.78π‘“π‘¦π‘˜π‘‘ cot πœƒ

= 187.39 π‘₯ 103

0.78(500)(407)(cot 22Β°)= 0.48

Try H8, Asw = 2Ο€(βˆ…link)2/4 x 2 legs = 101 mm2

𝑠 = 1010.48

= 210 π‘šπ‘š < 0.75𝑑 = 0.75 (407) = 305.25 π‘šπ‘š

∴Provide: H8 – 200 c/c

6. Check beam’s capacity against deflection.

Check only at mid-span with maximum moment.

𝜌 =𝐴𝑠,π‘Ÿπ‘’π‘ž

𝑏𝑀𝑑=

1337250 π‘₯ 407

= 0.013

𝜌0 = οΏ½π‘“π‘π‘˜π‘₯ 10βˆ’3 = 5.48 π‘₯ 10βˆ’3

ρ > ρo

𝑙𝑑

= 𝐾 οΏ½11 + 1.5 οΏ½π‘“π‘π‘˜πœŒπ‘œ

𝜌 βˆ’ πœŒβ€²+

112οΏ½

π‘“π‘π‘˜οΏ½πœŒβ€²πœŒπ‘œοΏ½

From table 7.4N, K = 1.3 (end span of continuous beam) – where the moment is maximum

= (1.3) οΏ½11 + 1.5 οΏ½(30)(5.48 π‘₯ 10βˆ’3)

0.013 βˆ’ 0+

112

οΏ½(30)οΏ½0

(5.48 π‘₯ 10βˆ’3)οΏ½ = 18.8

Page 12: Example 3.2 - Continuous Beam-updated 010812

CONTINUOUS BEAM EXAMPLE 3.2

(i) Calculate the modification factor

a) Modification factor of tension reinforcement,

310πœŽπ‘ 

=500

π‘“π‘¦π‘˜ �𝐴𝑠,π‘Ÿπ‘’π‘žπ΄π‘ ,π‘π‘Ÿπ‘œπ‘£

οΏ½=

500

500 οΏ½13371570οΏ½

= 𝟏.πŸπŸ•

b) Modification factor for flange section,

bf/bw = 2160/250 = 8.64 > 3, therefore the modification factor (flange) = 0.8

c) Modification factor for span length more than 7 m

Effective span length 8 m > 7 m, therefore modification factor span length = 7/l eff

= 7/8 = 0.88

d) Calculate (L/d)allowable

οΏ½πΏπ‘‘οΏ½π‘Žπ‘™π‘™π‘œπ‘€π‘Žπ‘π‘™π‘’

= οΏ½πΏπ‘‘οΏ½π‘π‘Žπ‘ π‘–π‘

π‘₯ π‘šπ‘œπ‘‘π‘–π‘“π‘–π‘π‘Žπ‘‘π‘–π‘œπ‘› π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ

οΏ½πΏπ‘‘οΏ½π‘Žπ‘™π‘™π‘œπ‘€π‘Žπ‘π‘™π‘’

= 18.8 π‘₯ 1.17 π‘₯ 0.8 π‘₯ 0.88 = 15.5

a) Calculate (L/d)actual

οΏ½πΏπ‘‘οΏ½π‘Žπ‘π‘‘π‘’π‘Žπ‘™

=𝑒𝑓𝑓𝑒𝑐𝑑𝑖𝑣𝑒 π‘ π‘π‘Žπ‘› π‘™π‘’π‘›π‘”π‘‘β„Ž

𝑒𝑓𝑓𝑒𝑐𝑑𝑖𝑣𝑒 π‘‘π‘’π‘π‘‘β„Ž =

8000407

= 19.66

b) Compare with (L/d)actual with (L/d)allowable

(L/d)actual > (L/d)allowable

Page 13: Example 3.2 - Continuous Beam-updated 010812

CONTINUOUS BEAM EXAMPLE 3.2

Therefore, the deflection check fails !

Try to increase from 5H20 to 6H20 (As prov = 1890 mm2)

Modification factor for tension reinforcement = Asprov/As req = 1890/1337 = 1.4

Recalculate (L/d)allowable = 18.8 x 1.4 x 0.8 x 0.88 = 18.5

Try to increase from 6H20 to 5H25 (As prov = 2450 mm2)

Modification factor for tension reinforcement = Asprov/As req = 2450/1337 = 1.83

Recalculate (L/d)allowable = 18.8 x 1.83 x 0.8 x 0.88 = 24.2

Compare with L/d actual

(L/d)actual = 19.66 < (L/d)allowable = 24.2

Therefore, the deflection check passes !!

Therefore, beam is safe / not safe against deflection.

i) (L/d)actual ≀ (L/d)allowable – Beam is safe against deflection (OK!) ii) (L/d)actual > (L/d)allowable - Beam is not safe against deflection (Fail!)

Page 14: Example 3.2 - Continuous Beam-updated 010812

CONTINUOUS BEAM EXAMPLE 3.2

7. Check the beam for cracking.

Check only at mid span with maximum spacing.

i) Calculate the clear horizontal distance between bars in tension, S1.

𝑠 = (𝑏 βˆ’ 2π‘π‘œπ‘£π‘’π‘Ÿ βˆ’ 2βˆ…π‘™π‘–π‘›π‘˜ βˆ’ 2βˆ…π‘π‘Žπ‘Ÿ)

𝑠 = 250 βˆ’ 2( 25) βˆ’ 2(8) βˆ’ 2( 20)

= 144 π‘šπ‘š

𝑓𝑠 = π‘“π‘¦π‘˜

1.15 π‘₯

πΊπ‘˜ + 0.3 π‘„π‘˜1.35πΊπ‘˜ + 1.5 π‘„π‘˜

= 5001.15

π‘₯ 17.81 + 0.3 (10)

1.35(17.81) + 1.5 (10) = 232 π‘€π‘ƒπ‘Ž

Taking wk = 0.3 mm

Maximum allowable clear spacing = 230 mm

∴OK!

∴Crack check passed / failed !!

The value must not exceed its maximum allowable clear

spacing

4H20

250 mm

S1

Page 15: Example 3.2 - Continuous Beam-updated 010812

CONTINUOUS BEAM EXAMPLE 3.2

Minimum bar spacing (check for the closest bar spacing)

Minimum bar spacing between reinforcements

= max {k1. Bar diameter, dg + k2, 20 mm}

i) 1.25 = 25 mm ii) dg + k2 = 20 + 5 = 25 mm iii) 20 mm

Minimum bar spacing = 25 mm

Compare with actual bar spacing = 54.5 mm (5H25) > 25 mm ∴Ok!!


Recommended