+ All Categories
Home > Documents > Example Find the cylindrical coordinates for each of the following:

Example Find the cylindrical coordinates for each of the following:

Date post: 19-Jan-2016
Category:
Upload: chad
View: 40 times
Download: 1 times
Share this document with a friend
Description:
For each point ( x,y,z ) in R 3 , the cylindrical coordinates ( r , , z ) are defined by the polar coordinates r and  (for x and y ) together with z. Example Find the cylindrical coordinates for each of the following: ( x , y , z ) = (6 , 6 3 , 8) - PowerPoint PPT Presentation
19
For each point (x,y,z) in R 3 , the cylindrical coordinates (r,,z) are defined by the polar coordinates r and (for x and y) together with z. Example Find the cylindrical coordinates for each of the following: (x , y , z) = (6 , 63 , 8) (x , y , z) = (6 , –63 , 0) (x , y , z) = (–6 3 , –6 , –23) . (r , , z) = (12 , /3 , 8) (r , , z) = (12 , 5/3 , 0) (r , , z) = (12 , 7/6 , –23)
Transcript
Page 1: Example Find the cylindrical coordinates for each of the following:

For each point (x,y,z) in R3, the cylindrical coordinates (r,,z) are defined by the polar coordinates r and (for x and y) together with z.

Example Find the cylindrical coordinates for each of the following:

(x , y , z) = (6 , 63 , 8)

(x , y , z) = (6 , –63 , 0)

(x , y , z) = (–6 3 , –6 , –23) .

(r , , z) = (12 , /3 , 8)

(r , , z) = (12 , 5/3 , 0)

(r , , z) = (12 , 7/6 , –23)

Page 2: Example Find the cylindrical coordinates for each of the following:

Example Find the rectangular (Cartesian) coordinates for each ofthe following:

(r , , z) = (20 , /2 , 4)

(r , , z) = (20 , /4 , 4)

(r , , z) = (15 , 2/3 , –16)

(r , , z) = (6 , 4/3 , 0)

(r , , z) = (0 , , –3)

(x , y , z) = (0 , 20 , 4)

(x , y , z) = (–7.5 , 7.53 , –16)

(x , y , z) = (–3 , –33 , 0)

(x , y , z) = (0 , 0 , –3)

(x , y , z) = (102 , 102 , 4)

Page 3: Example Find the cylindrical coordinates for each of the following:

We can generalize the change of variables to integrals involving 3 (or any number of ) variables. If T(u,v,w) = (x(u,v,w), y(u,v,w), z(u,v,w)) is a transformation mapping the region W in R3 described by rectangular uvw coordinates to the region W* in R3 described by rectangular xyz coordinates, then

W*

f(x,y,z) dx dy dz =

W

(x,y,z)f(x(u,v,w),y(u,v,w),z(u,v,w)) ——— du dv dw

(u,v,w)

where, of course,

x x x— — —u v w

(x,y,z) y y y——— = det — — —(u,v,w) u v w

z z z— — —u v w

Page 4: Example Find the cylindrical coordinates for each of the following:

W

f(x,y,z) dx dy dz =

W*

f(r cos , r sin , z) r dr d dz

where W* and W are the same region described respectively in terms of x, y, and z and in terms of r, , and z. (See also page 399 of the text.)

Using what we already know about polar coordinates, we have

Example Integrate the function f(x,y,z) = xyz over the region W where x, y, and z are all positive and between the cone z2 = x2 + y2 and the sphere x2 + y2 + z2 = 100.

The region W can be described by

< , r , z

x

yz

0 /2 50 r 100 – r2

W

xyz dx dy dz = (r cos )(r sin )zr dz dr d =

r

(100 – r2)1/2

0

50

0

/2

Page 5: Example Find the cylindrical coordinates for each of the following:

r

(100 – r2)1/2

0

50

0

/2

r3 z cos sin dz dr d =

0

50

0

/2

r3 z2 cos sin —————— dr d =

2

z = r

(100 – r2)1/2

0

50

0

/2

100r3 – 2r5

————— cos sin dr d = 2

r = 0

50

0

/2

75r4 – r6

———— cos sin d = 6

0

/2

31250——— cos sin d = 3

15625——— 3

Page 6: Example Find the cylindrical coordinates for each of the following:

Example Find the volume inside the sphere of radius a defined byx2 + y2 + z2 = a2 .

Let W be the region inside the sphere which can be described as

< , r , z

W

dx dy dz =

0

2

0

a

–(a2 – r2)1/2

(a2 – r2)1/2

r dz dr d =

0

2

0

a

rz dr d =

z = –(a2 – r2)1/2

(a2 – r2)1/2

0

2

0

a

2r(a2 – r2)1/2 dr d =

0 2 a – a2 – r2 a2 – r2

0

2

– 2(a2 – r2)3/2 ————— d = 3

r = 0

a

0

2

2a3 — d = 3

4a3—— 3

Page 7: Example Find the cylindrical coordinates for each of the following:

For each point (x,y,z) in R3, the spherical coordinates (,,) are defined by

x = sin cos , y = sin sin , z = cos , where

= x2 + y2 + z2 is the length of the vector (x,y,z) ,

We have that 0 ,

= the angle that the vector (x,y,z) makes with the positive z axis,

0 , and 0 < 2 .

= the angle that the vector (x,y,0) makes with the positive x axis .

Also, note that sin = r = x2 + y2 .

Page 8: Example Find the cylindrical coordinates for each of the following:

Example Find the spherical coordinates for each of the following:

(x , y , z) = (3 , –1 , 0)

(x , y , z) = (3 , –1 , 2)

(x , y , z) = (–3 , –1 , –2)

(x , y , z) = (0 , 0 , 10)

(x , y , z) = (0 , 0 , –10)

(x , y , z) = (0 , 0 , 0).

( , , ) = (2 , 11/6 , /2)

( , , ) = (22 , 11/6 , /4)

( , , ) = (22 , 7/6 , 3/4)

( , , ) = (10 , , 0)

( , , ) = (10 , , )

( , , ) = (0 , , )

Page 9: Example Find the cylindrical coordinates for each of the following:

Example Find the rectangular (Cartesian) coordinates for each ofthe following:

( , , ) = (4 , /4 , /4)

( , , ) = (4 , 3/4 , 3/4)

( , , ) = (5 , , )

( , , ) = (2 , , 0) .

(x , y , z) = (2 , 2 , 22)

(x , y , z) = (–2 , 2 , –22)

(x , y , z) = (0 , 0 , –5)

(x , y , z) = (0 , 0 , 2)

Page 10: Example Find the cylindrical coordinates for each of the following:

Example Express each of the following surfaces in R3 in cylindrical coordinates and in spherical coordinates:

xyz = 1

x2 + y2 – z2 = 1

r2z sin cos = 1 3 sin2 cos sin cos = 1

r2 – z2 = 1 2 – 22cos2 = 1

Page 11: Example Find the cylindrical coordinates for each of the following:

Example Express each of the following surfaces in R3 in rectangular (Cartesian) coordinates, and describe the surface:

r = 9

= 1

sin = 0.5

cos = 0.6

x2 + y2 = 81 This is a circular cylinder.

x2 + y2 + z2 = 1This is a sphere of radius 1 centered at the origin.

3x2 + 3y2 – z2 = 0 for z 0This is the “top” half of a cone.

y = 4x/3 or y = – 4x/3 for x 0These are two half-planes.

Page 12: Example Find the cylindrical coordinates for each of the following:

W*

f(x,y,z) dx dy dz =

W

f( sin cos , sin sin , cos ) d d d =

If W* and W are the same region described respectively in terms of x, y, and z and in terms of , , and , then

W

f( sin cos , sin sin , cos ) d d d .

(x,y,z)———(,,)

(x,y,z)——— =(,,)

x = sin cos

y = sin sin

z = cos

We need the Jacobian determinant.

Page 13: Example Find the cylindrical coordinates for each of the following:

(x,y,z)——— =(,,)

x = sin cos

y = sin sin

z = cos

x x x— — —

y y ydet — — — =

z z z— — —

det

sin cos – sin sin cos cos

sin sin sin cos cos sin

cos 0 – sin

=

| – 2 sin | = 2 sin

Page 14: Example Find the cylindrical coordinates for each of the following:

W*

f(x,y,z) dx dy dz =

W

f( sin cos , sin sin , cos ) d d d =

If W* and W are the same region described respectively in terms of x, y, and z and in terms of , , and , then

W

f( sin cos , sin sin , cos ) 2 sin d d d .

(x,y,z)———(,,)

Page 15: Example Find the cylindrical coordinates for each of the following:

Example Find the volume inside the sphere of radius a defined by

x2 + y2 + z2 = a2 .

Let W be the region inside the sphere which can be described as

, < ,

W

dx dy dz =

0

0

2

0

a

2 sin d d d =

0

0

23 sin ——— d d = 3

= 0

a

0

0

2a3 sin ——— d d = 3

a 0 2 0

0

2 a3 sin ————— d 3

4a3—— 3

=

Page 16: Example Find the cylindrical coordinates for each of the following:

Example Integrate the function f(x,y,z) = xyz over the region between the cone z2 = x2 + y2 and the sphere x2 + y2 + z2 = 36 where x, y, and z are all positive and x < y.

Let W be the region of integration which can be described as

, ,

W

xyz dx dy dz =

6 /4 /2 0 /4

0

/4

/4

/2

0

6

(sincos)(sinsin)(cos) 2sin d d d =

Page 17: Example Find the cylindrical coordinates for each of the following:

0

/4

/4

/2

0

6

5 sin3 cos sin cos d d d =

0

/4

/4

/2

7776 sin3 cos sin cos d d =

0

/4

3888 sin3 cos sin2 d =

/2

= /4 0

/4

1944 sin3 cos d =

486 sin4 =

/4

= 0

121.5

Page 18: Example Find the cylindrical coordinates for each of the following:

Example Find the volume of the “ice cream cone” above the xy plane described by the cone 3z2 = x2 + y2 and the sphere x2 + y2 + z2 = 25.

Let W be the region of integration which can be described as

, < ,

W

dx dy dz =

0

/3

0

2

0

5

2 sin d d d =

0

/3

0

2

= 0

5

3 sin ——— d d = 3

5 0 2 0 /3

Page 19: Example Find the cylindrical coordinates for each of the following:

0

/3

0

2

125sin ——— d d = 3

0

/3

250 sin ———— d = 3

– 250 cos ————— = 3

= 0

/3

– 125 250——— + —— = 3 3

125—— 3


Recommended