+ All Categories
Home > Documents > Excess Carriers Optical Absorption - KAISTfand.kaist.ac.kr/Lectures/LEC4p.pdf · 5 Lec. 4 Steady...

Excess Carriers Optical Absorption - KAISTfand.kaist.ac.kr/Lectures/LEC4p.pdf · 5 Lec. 4 Steady...

Date post: 22-May-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
15
Lec. 4 1 Excess Carriers Optical Absorption i) No light, There are thermal generated carriers. ii) Turn Light ON semiconductors We can generate electron-hole pairs (EHPs or excess carriers) depending on the frequency. Excited electrons loses energy to lattice until it reaches the equilibrium with other C.B electrons. Luminescence Photoluminescence: excited by photon Electroluminescence: Cathodoluminescence : cf) fluorescence, phosphorescence ) exp( 0 l I I t : absorption coefficient t I : Transmitted light 0 I : Initial photon beam intensity high energy electron bombardment excited by current Semiconductor device operate by the excess carriers (created by optical excitation, pn forward bias) In chap 4, we study excess carriers’ properties created by optical absorption.
Transcript
Page 1: Excess Carriers Optical Absorption - KAISTfand.kaist.ac.kr/Lectures/LEC4p.pdf · 5 Lec. 4 Steady State Excess Carriers g(T ) g op r np r (n0 n)(p0 p) If a steady light is shone on

Lec. 41

Excess Carriers

• Optical Absorption i) No light,

There are thermal generated carriers.

ii) Turn Light ON semiconductors

We can generate electron-hole pairs (EHPs or excess carriers) depending on the frequency.

Excited electrons loses energy to lattice until it reaches the equilibrium with other C.B electrons.

Luminescence

Photoluminescence: excited by photon

Electroluminescence:

Cathodoluminescence :

cf) fluorescence, phosphorescence

)exp(0 lIIt : absorption coefficient

tI : Transmitted light

0I : Initial photon beam intensity

high energy electron bombardment

excited by current

Semiconductor device operate by the excess carriers (created by optical excitation, pn forward bias) In chap 4, we study excess carriers’ properties created by optical absorption.

Page 2: Excess Carriers Optical Absorption - KAISTfand.kaist.ac.kr/Lectures/LEC4p.pdf · 5 Lec. 4 Steady State Excess Carriers g(T ) g op r np r (n0 n)(p0 p) If a steady light is shone on

Lec. 42

•In thermal equilibrium, generation = recombination

Thermal generation

(constant)Recombination

(n, p can change)

npngr ririi 2

)()()( 2 tptnndt

tdnrir

Excess Carriers

(One time exposure of light at t=0)

n-type Si

If electron is minority carriers (or p-type Si)

)()( concentholeconcenteletron R

Ex) 1017 cm-3 n-type Si has 1014 cm-3 excess carrier

This equation is based on one time exposure.

What if constant light or voltage is applied?

SiS D

G

Page 3: Excess Carriers Optical Absorption - KAISTfand.kaist.ac.kr/Lectures/LEC4p.pdf · 5 Lec. 4 Steady State Excess Carriers g(T ) g op r np r (n0 n)(p0 p) If a steady light is shone on

Lec. 43

)]()()[(

)]()][([)(

200

002

tntnpn

tpptnnndt

tnd

r

rir

)()(0 tnp

dttnd

r

Low level injection

nr ttp nenetn /0)(

:n lifetimeionrecombinat )(1

00 pnrn

Ex) 1017 cm-3 p-type Si has 1014 cm-3 excess carrier

This graph may not be a low level injection. But clearly state n, p decay.

Page 4: Excess Carriers Optical Absorption - KAISTfand.kaist.ac.kr/Lectures/LEC4p.pdf · 5 Lec. 4 Steady State Excess Carriers g(T ) g op r np r (n0 n)(p0 p) If a steady light is shone on

Lec. 44

Quasi-Fermi Level, “ Fn and Fp ”

Ec

EF

Ei

Ev

Ec

Fn

Ei

Ev

Fp

light

(=EF), in case of

low-level injection

under thermal equilibrium nonequilibrium2in0n0 npn

majority carrier

minority carrier

n0nn

2inn

piin

inin

2inn

nnn

injectionlevel-low:npnii)

]kTFEexp[np

]kTEFexp[nn

injectionlevel-high:npni)

]kTFEexp[np pi

in

이면 Fn EF

o Quasi-Fermi Levels

; energy levels used to specify the carrier concentration inside a semiconductor under non-equilibrium conditions.

> n0n

Page 5: Excess Carriers Optical Absorption - KAISTfand.kaist.ac.kr/Lectures/LEC4p.pdf · 5 Lec. 4 Steady State Excess Carriers g(T ) g op r np r (n0 n)(p0 p) If a steady light is shone on

Lec. 45

Steady State Excess Carriers

))(()( 00 ppnnnpgTg rrop

If a steady light is shone on the sample, optical generation rate gop will be added to thermal generation.

Thermal generation

Steady optical generation

Recombination

])[()( 20000 nnpnpngTg rrop

nrop

nnpng )( 00

nopgpn

ex) An p-type Si sample with Na = 3x1016/cm3 is steadily illuminated such that gop= 1021 EHP/cm3-s. If taun= taup =1 µs for the excitation, calculate the separation in the quasi-Fermi levels, (Fn-Fp). Draw a band diagram.

1. n2. Low level injection or high level injection?

3. Fn-Ei=? Ei-Fp=?

4. Fn-Fp=?

Page 6: Excess Carriers Optical Absorption - KAISTfand.kaist.ac.kr/Lectures/LEC4p.pdf · 5 Lec. 4 Steady State Excess Carriers g(T ) g op r np r (n0 n)(p0 p) If a steady light is shone on

Lec. 46

Carrier Transport

• Current Density Equations

Two basic transport mechanisms in semiconductor crystal

( 1 ) Drift

The movement of charge due to electric field

( mobility : collisions with semiconductor atoms and with

ionized dopant atoms. )

(2) Diffusion

The flow of charge due to concentration gradient

( diffusion coefficient )

• Due to thermal energy, e- and h are in constant motion with scattering with lattice. Thus the net movement is “zero” unless there is Drift and Diffusion

velocityThermal :300Kat sec/10 ~

energy) (kinetic 21

04.0 ~ 23 energy Thermal

7

2*

cmv

vm

eVTk

th

thn

B

Page 7: Excess Carriers Optical Absorption - KAISTfand.kaist.ac.kr/Lectures/LEC4p.pdf · 5 Lec. 4 Steady State Excess Carriers g(T ) g op r np r (n0 n)(p0 p) If a steady light is shone on

Lec. 47

Diffusion

Flux of carriers

Different carrier concentration with position (i.e., concentration gradient) generates diffusion of charge carriers. Diffusion current

In practical cases,

Page 8: Excess Carriers Optical Absorption - KAISTfand.kaist.ac.kr/Lectures/LEC4p.pdf · 5 Lec. 4 Steady State Excess Carriers g(T ) g op r np r (n0 n)(p0 p) If a steady light is shone on

Lec. 48

Flux of e- and h

)(

))()(()(

arge).(Flux)x(ch isdiffusion this toduedensity Current

)()( carriers ofFlux

dxxdnqD

qdx

xdnDdiffJ

dxxdnDx

n

nn

nn

Page 9: Excess Carriers Optical Absorption - KAISTfand.kaist.ac.kr/Lectures/LEC4p.pdf · 5 Lec. 4 Steady State Excess Carriers g(T ) g op r np r (n0 n)(p0 p) If a steady light is shone on

Lec. 49

tly.significan contributecan carrier minority current,diffusion for Thus,

.dxdpor

dxdn toalproportion is J(diff) whilepor n toalproportion is J(drift)

)(

)(

pntotal

ppp

nnn

JJJdx

xdpqDpqJ

dxxdnqDnqJ

Diffusion and DriftIf E field is present in addition to carrier gradient, the current densities will be

Electric field

Fig 4-14

+ -

Page 10: Excess Carriers Optical Absorption - KAISTfand.kaist.ac.kr/Lectures/LEC4p.pdf · 5 Lec. 4 Steady State Excess Carriers g(T ) g op r np r (n0 n)(p0 p) If a steady light is shone on

Lec. 410

Current Flow in Non-uniformly Doped Semiconductor under Equilibrium.

Under equilibrium conditions the total current is identically “zero”.The electron and hole current density, and , must also independently “zero”.

“A nonzero electric field is established inside nonuniformly doped semiconductors under equilibrium conditions.”

And “a nonuniform doping” gives rise to carrier concentration gradients,

Jn|drift and Jn|diff have same magnitude but opposite direction.

0dxdpqDpqJJ

0dxdnqDnqJJ

ppdiffpdriftp

nndiffndriftn

εμ

εμ

0J driftn

0J diffn

0)J(J diffndriftn

nJ pJ

n+ ni

Diff

Drift

0dx

dEF

Fermi level at equilibrium must be constant throughout materials. (Chap. 3.5)

(Until Equilibrium)

Page 11: Excess Carriers Optical Absorption - KAISTfand.kaist.ac.kr/Lectures/LEC4p.pdf · 5 Lec. 4 Steady State Excess Carriers g(T ) g op r np r (n0 n)(p0 p) If a steady light is shone on

Lec. 411

Einstein Relationship

Insert (2) into (1)

Same for hole

Einstein Relationship for electrons

Einstein Relationship for holes

ε

ε

εμ

nkTq

dxdE)/kT]Eexp[(EnkT

1dxdn

)/kT]Eexp[(EnndxdE

q1

0dxdnqDnqJJ

iiFi

iFi

i

nndiffndriftn

nn DkTq)(qn)(qn εμε

qkT

μD

n

n

qkT

μD

p

p

------- (1)

------- (2)

= 1014 /cm3, RT

= 0.0259 1358 cm2/V sec

= 35.2 cm2/sec ( in Si )

Nd

DkT

qn n ( )

ex)

Page 12: Excess Carriers Optical Absorption - KAISTfand.kaist.ac.kr/Lectures/LEC4p.pdf · 5 Lec. 4 Steady State Excess Carriers g(T ) g op r np r (n0 n)(p0 p) If a steady light is shone on

Lec. 412

Continuity Equation

The overall rate of hole increase

(1) the number of holes flowing into the slab (+ )

(2) the number of holes flowing out ( - )

(3) the rate at which holes are generated ( + )

(4) the rate at which they recombine ( - )

1

2

3

4

For one dimensional case,

1 2

3 4Jp(x) G R Jp(x+dx)

Assumption of steady state injection,

1. No generation

2. No build-up carriers.

pLxpepxp /0)(

Page 13: Excess Carriers Optical Absorption - KAISTfand.kaist.ac.kr/Lectures/LEC4p.pdf · 5 Lec. 4 Steady State Excess Carriers g(T ) g op r np r (n0 n)(p0 p) If a steady light is shone on

Lec. 413

(Current is carried by diffusion (negligible drift))

No generation

(no build-up)

Negligible drift

Page 14: Excess Carriers Optical Absorption - KAISTfand.kaist.ac.kr/Lectures/LEC4p.pdf · 5 Lec. 4 Steady State Excess Carriers g(T ) g op r np r (n0 n)(p0 p) If a steady light is shone on

Lec. 414

Minority Carrier Diffusion Length

nnn

ppp

DLDLτ

τ

; the average distance minority carriers can diffuse into a sea of majority carriers before being annihilated.

Steady State Carrier Injection

pLxpepxp /0)(

B.C: for x= , 0p

, pp x= 0

= 0

C1=0

C2= p

Page 15: Excess Carriers Optical Absorption - KAISTfand.kaist.ac.kr/Lectures/LEC4p.pdf · 5 Lec. 4 Steady State Excess Carriers g(T ) g op r np r (n0 n)(p0 p) If a steady light is shone on

Lec. 415


Recommended