+ All Categories
Home > Documents > Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

Date post: 21-Oct-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
39
Exchange Bias and Bistable Magneto Resistance States in Amorphous TbFeCo and TbSmFeCo Thin Films Chung Ting (Marco) Ma University of Virginia 4th Year Seminar 1
Transcript
Page 1: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

Exchange  Bias  and  Bi-­‐stable  Magneto-­‐Resistance  States  in  Amorphous  TbFeCo  and  

TbSmFeCo  Thin  Films    

Chung Ting (Marco) Ma University of Virginia

4th  Year  Seminar   1  

Page 2: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

Outline  

•  Background Why are we interested in Tb(Sm)FeCo thin films and exchange bias?

•  Experimental Results Magnetic and structural properties of exchange biased Tb(Sm)FeCo

•  Micromagnetic Simulations Two-sublattice, two-phase model

4th  Year  Seminar   2  

Page 3: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

Background  

Amorphous TbFeCo films

•  Ferrimagnetic (FiM)

•  Tb and FeCo sublattices

•  Compensation Temperature (Tcomp )

4th  Year  Seminar   3  

Page 4: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

Background  

Amorphous TbFeCo films

•  Perpendicular magnetic anisotropy (PMA) •  Structural anisotropy gives rise to PMA in sputtered amorphous

TbFe films Harris, V. G., et al. Phys, Rev. Lett. 69.13 (1992): 1939. Yan, X., et al, Phys. Rev. B 43.11 (1991): 9300

•  Magnetic random access memory (MRAM) Nakayama et al, J. Appl. Phys. 103, 07A710 (2008).

•  Ultrafast switching (picoseconds) Hassdenteufel et al, Adv. Mater. 25, 3122 (2013)

4th  Year  Seminar   4  

Page 5: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

Background  

Exchange bias

•  Ferromagnetic(FM)/Antiferromagnetic(AFM) bilayer act as a pinned layer in spintronics devices Nogués et al. / Phys. Rep. 422 (2005) 65 –117

•  Stabilize the magnetization in FM layer Liu et al. Appl. Phys. Lett. 81, 4434 (2002)

4th  Year  Seminar   5  

Page 6: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

Outline  

•  Background Why are we interested in TbFeCo thin films and exchange bias?

•  Experimental Results Magnetic and structural properties of exchange biased Tb(Sm)FeCo

•  Micromagnetic Simulations Interpenetrating two-phase, two-sublattice model

4th  Year  Seminar   6  

Page 7: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

Experiment  Methods  

•  Si/SiO2 substrates •  Radio frequency (RF) magnetron sputtering at room

temperature

•  Magnetic Properties: Quantum Design Versa Lab system

•  Thickness: Rigaku SmartLab system

4th  Year  Seminar   7  

Page 8: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

ProperIes  of  Amorphous  Tb26Fe64Co10  Films  

•  100 nm thick •  Tcomp ~ 250K.

•  PMA

4th  Year  Seminar   8  

0  

6  

12  

18  

24  

30  

0  

20  

40  

60  

80  

100  

120  

140  

50   150   250   350  

H c  (k

Oe)  

Ms    (emu/cc)  

Temperature  (K)  

Ms   Hc  

Li  et  al,  Appl.  Phys.  LeR.  108,  012401  (2016)  

Page 9: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

0  

6  

12  

18  

24  

30  

0  

20  

40  

60  

80  

100  

120  

140  

50   150   250   350  

H c  (k

Oe)  

Ms    (emu/cc)  

Temperature  (K)  

Ms   Hc  

Exchange  Bias  in  Amorphous  Tb26Fe64Co10  Films  

•  Exchange bias effect is observed near Tcomp

4th  Year  Seminar   9  

Page 10: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

Exchange  Bias  in  Amorphous  Tb26Fe64Co10  Films  

•  At 300K , both positive (P) and negative (N) exchange bias minor loops are observed, with different initialization procedures

4th  Year  Seminar   10  

-­‐50  

-­‐25  

0  

25  

50  

-­‐30   -­‐20   -­‐10   0   10   20   30  

Magne

9za9

on  (e

mu/cc)  

Out-­‐of-­‐plane  Field  (kOe)  

300K  (P)   300K  (N)  

(N) Initialized at 355K and 30kOe

(P) Initialized at 175K and 30kOe

Page 11: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

Origin  of  Exchange  Bias  in  Tb26Fe64Co10  Films  

4th  Year  Seminar   11  

High-angle annular dark field imaging (STEM-HAADF)

•  Non-uniform contrast indicates local compositional fluctuations

Energy-dispersive X-ray spectroscopy (STEM-EDS) •  Non-uniform distribution of all three elements.

•  The regions marked with arrows indicate a local depletion in Tb, which directly coincides with an enrichment in Fe

Page 12: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

Origin  of  Exchange  Bias  in  Tb26Fe64Co10  Films  

4th  Year  Seminar   12  

Atomic probe tomography (APT)

•  Tb (blue), Fe (green) and Co (red) distribution along a slice parallel to the film plane

•  A network-like segregation of all three elements

•  Existence of two compositional phases in amorphous Tb26Fe64Co10 film

Page 13: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

Origin  of  Exchange  Bias  in  Tb26Fe64Co10  Films  

•  Two nanoscale amorphous phases on the length scale of 2-5nm are revealed from STEM and APT.

•  A Tb-enriched phase (Phase I) is nearly compensated and acts as a fixed layer

•  A Tb-depleted phase (Phase II) is far away from compensation and acts as a free layer

•  Exchange bias in Tb26Fe64Co10 film originates from the exchange interaction between these two nanoscale amorphous phases

4th  Year  Seminar   13  

 

Page 14: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

Origin  of  Exchange  Bias  in  Tb26Fe64Co10  Films  

-­‐50  

-­‐25  

0  

25  

50  

-­‐30   -­‐20   -­‐10   0   10   20   30  Magne

9za9

on  (e

mu/cc)  

Out-­‐of-­‐plane  Field  (kOe)  

300K  (N)  

4th  Year  Seminar   14  

 

Moment of Tb

Moment of FeCo

Initialized at 355K and 30kOe

-­‐50  

-­‐25  

0  

25  

50  

-­‐30   -­‐20   -­‐10   0   10   20   30  

Magne

9za9

on  (e

mu/cc)  

Out-­‐of-­‐plane  Field  (kOe)  

300K  (P)  

Initialized at 175K and 30kOe

Phase  I    

Phase  II    

𝑀=𝜙(𝑀↓𝑇𝑏↑𝐼 + 𝑀↓𝐹𝑒𝐶𝑜↑𝐼 )+  (1−𝜙)(𝑀↓𝑇𝑏↑𝐼𝐼 + 𝑀↓𝐹𝑒𝐶𝑜↑𝐼𝐼 )  𝜙  is the volume concentration of Phase I

H

Page 15: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

Exchange  Bias  effect  in  magneto-­‐transport  measurements  

   

4th  Year  Seminar   15  

 Anomalous Hall Effect (AHE) and Magneto-resistance (MR) of Tb26Fe64Co10

Current is injected through A and B

Voltage difference is measured between

EF for AHE

CD for MR

Page 16: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

Exchange  Bias  effect  in  magneto-­‐transport  measurements  

   

4th  Year  Seminar   16  

 Anomalous Hall Effect (AHE) and Magneto-resistance (MR) of Tb26Fe64Co10

Bi-stable MR states are revealed at 300K, corresponds to the exchange bias observed in AHE loops.

  𝑅↓𝐻 ∝𝐶↑𝐼 (𝑅↓𝑇𝑏↑𝐼 𝑀↓𝑇𝑏↑𝐼 + 𝑅↓𝐹𝑒𝐶𝑜↑𝐼 𝑀↓𝐹𝑒𝐶𝑜↑𝐼 )+ 𝐶↑𝐼𝐼 (𝑅↓𝑇𝑏↑𝐼𝐼 𝑀↓𝑇𝑏↑𝐼𝐼 + 𝑅↓𝐹𝑒𝐶𝑜↑𝐼𝐼 𝑀↓𝐹𝑒𝐶𝑜↑𝐼𝐼 )  

Page 17: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

Exchange  Bias  in  Amorphous  Tb20Sm15Fe55Co10  Films  

•  100nm thick

•  Tcomp ~ 250K

•  PMA

4th  Year  Seminar   17  

0  

6  

12  

18  

24  

30  

0  

20  

40  

60  

80  

100  

120  

140  

50   150   250   350  

H c  (k

Oe)  

Ms    (emu/cc)  

Temperature  (K)  

Ms   Hc  

Page 18: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

Exchange  Bias  in  Amorphous  Tb20Sm15Fe55Co10  Films  

•  Exchange bias at 275K •  Bistable MR states

4th  Year  Seminar   18  

-­‐25  

0  

25  

-­‐30   -­‐20   -­‐10   0   10   20   30  

Magne

9za9

on  (e

mu/cc)  

Out-­‐of-­‐plane  Field  (kOe)  

275K  (P)  

275K  (N)  

-30000 -15000 0 15000 30000

65.25

65.30

65.35

65.40

Out-of-plane Field (Oe)

MR

(Ω)

64.7

64.8

64.9

65.0

Page 19: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

Experimental  Summary  

•  Exchange bias and bi-stable magneto-resistance states are uncovered in amorphous TbFeCo and TbSmFeCo films with perpendicular magnetic anisotropy

•  Structural analysis revealed two nanoscale amorphous phases

with different Tb atomic percentages distributed within the films.

•  Exchange anisotropy originates from the exchange interaction between the two amorphous phases

4th  Year  Seminar   19  

Page 20: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

Outline  

•  Background Why are we interested in TbFeCo thin films and exchange bias?

•  Experimental Results Magnetic and structural properties of exchange biased TbFeCo

•  Micromagnetic Simulations Two-sublattice, two-phase model.

4th  Year  Seminar   20  

Page 21: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

Landau-­‐Lifshitz-­‐Gilbert  EquaIon  

Dynamic of Magnetization 𝑀  Landau-Lifshitz-Gilbert (LLG) Equation

𝑑𝑀 /𝑑𝑡 =−𝛾(𝑀 × 𝐻↓𝑒𝑓𝑓   )+ 𝛼/𝑀↓𝑠   ( 𝑀 × 𝑑𝑀/𝑑𝑡 )  Where γ is the gyromagnetic ratio, and α is the damping factor

4th  Year  Seminar   21  

Page 22: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

Landau-­‐Lifshitz-­‐Gilbert  EquaIon  

The Effective Field

𝐻↓𝑒𝑓𝑓↑  = 𝐻↓𝐸𝑥𝑡↑  + 𝐻↓𝐷𝑒𝑚𝑎𝑔↑  + 𝐻↓𝐴𝑛𝑖↑  + 𝐻↓𝐸𝑥𝑐ℎ↑   •  External field •  Demagnetization field •  Anisotropy field •  Exchange field Methods •  Atomistic model •  Micromagnetic model

4th  Year  Seminar   22  

Page 23: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

The  MicromagneIc  Model  

The Continuum Approximation

Multiple spins are grouped together to form a single cell of magnetization.

4th  Year  Seminar   23  

𝑀   

Page 24: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

The  Two-­‐Subla_ce  Model  

•  Ferrimagnetic

•  Tb and FeCo Sublattices

•  Two LLG equations for each sublattice

𝑑𝑀↓𝑇𝑏  /𝑑𝑡 =−𝛾(𝑀↓𝑇𝑏  × 𝐻↓𝑒𝑓𝑓↓𝑇𝑏   )+ 𝛼/𝑀↓𝑠↓𝑇𝑏   ( 𝑀↓𝑇𝑏  × 𝑑𝑀↓𝑇𝑏 /𝑑𝑡 )  𝑑𝑀↓𝐹𝑒  /𝑑𝑡 =−𝛾(𝑀↓𝐹𝑒  × 𝐻↓𝑒𝑓𝑓↓𝐹𝑒   )+ 𝛼/𝑀↓𝑠↓𝐹𝑒   ( 𝑀↓𝐹𝑒  × 𝑑𝑀↓𝐹𝑒 /𝑑𝑡 ) 

4th  Year  Seminar   24  

Page 25: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

The  Two-­‐Subla_ce  Model  

The effective field due to the exchange interaction  ( 𝐻↓𝑒𝑥𝑐ℎ↑  ) 𝑯↓exch↓Tb   = 2𝐴↓Tb−Tb   /𝜇↓0 𝑀↓Tb     𝛻↑2 𝒎↓Tb  + 2𝐴↓Tb−Fe   /𝜇↓0 𝑀↓Tb     𝛻↑2 𝒎↓Fe  + 𝐵↓Tb−Fe /𝜇↓0 𝑀↓Tb  𝒎↓Fe    𝑯↓exch↓Fe   = 2𝐴↓Fe−Fe   /𝜇↓0 𝑀↓Fe     𝛻↑2 𝒎↓Fe  + 2𝐴↓Fe−Tb   /𝜇↓0 𝑀↓Fe     𝛻↑2 𝒎↓Tb  + 𝐵↓Fe−Tb /𝜇↓0 𝑀↓Fe  𝒎↓Tb    

 •  Neighbor cells from both sublattice

•  Same cell from the other sublattice

4th  Year  Seminar   25  

Page 26: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

The  Two-­‐Subla_ce  Model  

The effective field due to the exchange interaction  ( 𝐻↓𝑒𝑥𝑐ℎ↑  )

𝐴↓𝑇𝑏−𝑇𝑏 = 1/4 𝐽↓𝑇𝑏−𝑇𝑏 𝑆↓𝑇𝑏↑2 𝑧↓𝑇𝑏−𝑇𝑏 𝑟↓𝑛𝑛↑2 𝑐↓𝑇𝑏 / 𝑎↑3     𝐴↓𝐹𝑒−𝐹𝑒 = 1/4 𝐽↓𝐹𝑒−𝐹𝑒 𝑆↓𝐹𝑒↑2 𝑧↓𝐹𝑒−𝐹𝑒 𝑟↓𝑛𝑛↑2 𝑐↓𝐹𝑒 / 𝑎↑3   𝐴↓𝑇𝑏−𝐹𝑒 = 1/4 𝐽↓𝑇𝑏−𝐹𝑒 𝑆↓𝑇𝑏 𝑆↓𝐹𝑒 𝑧↓𝑇𝑏−𝐹𝑒 𝑟↓𝑛𝑛↑2 𝑐↓𝑇𝑏 / 𝑎↑3     𝐴↓𝐹𝑒−𝑇𝑏 = 1/4 𝐽↓𝑇𝑏−𝐹𝑒 𝑆↓𝑇𝑏 𝑆↓𝐹𝑒 𝑧↓𝐹𝑒−𝑇𝑏 𝑟↓𝑛𝑛↑2 𝑐↓𝐹𝑒 / 𝑎↑3      𝐵↓𝑇𝑏−𝐹𝑒 = 𝐵↓𝐹𝑒−𝑇𝑏   = 𝐽↓𝑇𝑏−𝐹𝑒 𝑆↓𝑇𝑏 𝑆↓𝐹𝑒 𝑐↓𝑇𝑏 𝑧↓𝑇𝑏−𝐹𝑒 / 𝑎↑3   

 

4th  Year  Seminar   26  

Phase  I   Phase  II  

𝐾↓Tb (J/ m↑3 )  

3.4x105   1.9x105  

𝐴↓Tb−Tb   (J/m)  

1.90x10-­‐12   1.21x10-­‐12  

𝐴↓Tb−Fe   (J/m)  

-­‐2.43x10-­‐12   -­‐1.87x10-­‐12  

𝐴↓Fe−Fe   (J/m)  

1.40x10-­‐11   1.68x10-­‐11  

𝐵↓Tb−Fe   (J/ m↑3 )  

-­‐1.43x107   -­‐1.09x107  

Page 27: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

The  Two-­‐Phase  Model  

•  Two interpenetrating phase

•  Phase I (Red) and Phase II (Green) blocks

•  6x6x6 cells in each block

•  Distributed throughout the modeling space

4th  Year  Seminar   27  

Page 28: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

The  Two-­‐Phase  Model  

•  Each cell is 0.5nm x 0.5nm x 0.5nm

•  Each Phase I and Phase II block is 3nm x 3nm x 3nm

•  Each block has 6x6x6 cells (Total 18x18x18 = 5832 cells)

•  27 blocks, 13 Phase I and 14 Phase II blocks

•  Finite distance methods based on OOMMF M. J. Donahue and D. G. Porter, OOMMF User’s Guide, version 1.0, Interagency Report No. NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MD, 1999 (http://math.nist.gov/oommf/).

4th  Year  Seminar   28  

Page 29: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

SimulaIon  Result  of  TbFeCo  

•  Positive and negative exchange bias minor loops near Tcomp

•  Positive shift in magnetization accompanied by negative exchange bias

•  Negative shift in magnetization accompanied by positive exchange bias

4th  Year  Seminar   29  

-­‐1.5  

-­‐1  

-­‐0.5  

0  

0.5  

1  

1.5  

-­‐30   -­‐20   -­‐10   0   10   20   30  

M/M

s  

Out-­‐of-­‐plane  Field  (kOe)  

300K  (N)  

300K  (P)  

Page 30: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

AtomisIc  SimulaIons  

Courtesy of Xiaopu Li •  Frustrated TbFe region

•  Fe-Fe antiferromagnetic coupling

4th  Year  Seminar   30  

Page 31: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

SimulaIons  Summary  

Micromagnetic model is employed to study exchange bias in a two-phase magnetic material with ferrimagnets. Positive and negative exchange bias minor loops are obtained near Tcomp

This model provides a platform for developing exchange bias materials using ferrimagnets

4th  Year  Seminar   31  

Page 32: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

Summary  

Exchange bias and bi-stable magneto-resistance states are revealed in two phase amorphous TbFeCo and TbSmFeCo thin films A two-phase, two-sublattice micromagnetic model is employed to simulate exchange bias effect in TbFeCo films Using this study, we can explore various FiM/FM and FiM/FM systems by tuning the composition of FiM phase, and develop desirable EB properties for applications at various temperature

4th  Year  Seminar   32  

Page 33: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

Acknowledgement    

University of Virginia Professor Jiwei Lu Professor S. Joseph Poon Xiaopu Li Chung Ting (Marco) Ma Pacific Northwest National Laboratory Dr. Ryan Comes Dr. Arun Devaraj Dr. Steven Spurgeon

4th  Year  Seminar   33  

Page 34: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

Acknowledgement  

4th  Year  Seminar   34  

This work was supported by the Defense Threat Reduction Agency (DTRA) grant and the U.S. Department of Energy (DOE).

Page 35: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

Supplementary  

4th  Year  Seminar   35  

The  HRTEM  image  of  the  amorphous  Tb26Fe64Co10  thin  film  by  Titan  300  kV  

Page 36: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

Supplementary  

4th  Year  Seminar   36  

Reduced  FFT  of  the  HRTEM    

Page 37: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

DerivaIon  of  effecIve  field  due  to  exchange  interacIon  

ℋ↓𝐴 =− 1/2 ∑<𝑖,  𝑗>↑▒𝐽↓𝑖𝑗  𝑺↓𝑖 ∙ 𝑺↓𝑗 =− 1/2 ∑<𝑇𝑏↓𝑖 ,  𝑇𝑏↓𝑗 >↑▒𝐽↓𝑇𝑏−𝑇𝑏 𝑺↓𝑇𝑏↓𝑖  ∙ 𝑺↓𝑇𝑏↓𝑗   − 1/2 ∑<𝐹𝑒↓𝑖 ,  𝐹𝑒↓𝑗 >↑▒𝐽↓𝐹𝑒−𝐹𝑒 𝑺↓𝐹𝑒↓𝑖  ∙ 𝑺↓𝐹𝑒↓𝑖   −∑<𝑇𝑏↓𝑖 ,  𝐹𝑒↓𝑗 >↑▒𝐽↓𝑇𝑏−𝐹𝑒 𝑺↓𝑇𝑏↓𝑖  ∙ 𝑺↓𝐹𝑒↓𝑗     We  can  rewrite  Tb-­‐Tb  and  Fe-­‐Fe  terms  as  follow  

ℋ↓𝑇𝑏−𝑇𝑏 =− 1/2 𝐽↓𝑇𝑏−𝑇𝑏 𝑆↓𝑇𝑏↑2 ∑<𝑇𝑏↓𝑖 ,  𝑇𝑏↓𝑗 >↑▒𝒎↓𝑇𝑏↓𝑖  ∙ 𝒎↓𝑇𝑏↓𝑗     =𝑐𝑜𝑛𝑠𝑡.  + 1/4 𝐽↓𝑇𝑏−𝑇𝑏 𝑆↓𝑇𝑏↑2 ∑<𝑇𝑏↓𝑖 ,  𝑇𝑏↓𝑗 >↑▒(𝒎↓𝑇𝑏↓𝑖  − 𝒎↓𝑇𝑏↓𝑗  )↑2    Using  the  conInuous  assumpIon  

𝒎↓𝑇𝑏↓𝑗  ≈𝒎↓𝑇𝑏↓𝑖  + 𝒓↓𝑖𝑗 ∙𝛻𝒎↓𝑇𝑏↓𝑖    ℋ↓𝑇𝑏−𝑇𝑏 ≈1/4 𝐽↓𝑇𝑏−𝑇𝑏 𝑆↓𝑇𝑏↑2 𝑧↓𝑇𝑏−𝑇𝑏 𝑟↓𝑛𝑛↑2 ∑𝑇𝑏↓𝑖 ↑▒(𝛻𝒎↓𝑇𝑏↓𝑖  )↑2  = 𝐴↓𝑇𝑏−𝑇𝑏 ∫↑▒(𝛻𝒎↓𝑇𝑏 )↑2 𝑑↑3 𝑥   Similarly,  

ℋ↓𝐹𝑒−𝐹𝑒 ≈1/4 𝐽↓𝐹𝑒−𝐹𝑒 𝑆↓𝐹𝑒↑2 𝑧↓𝐹𝑒−𝐹𝑒 𝑟↓𝑛𝑛↑2 ∑𝐹𝑒↓𝑖 ↑▒(𝛻𝒎↓𝐹𝑒↓𝑖  )↑2  = 𝐴↓𝐹𝑒−𝐹𝑒 ∫↑▒(𝛻𝒎↓𝐹𝑒 )↑2 𝑑↑3 𝑥     

4th  Year  Seminar   37  

Page 38: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

DerivaIon  of  effecIve  field  due  to  exchange  interacIon  

The  ferrimagneIc  (Tb-­‐Fe)  term  

ℋ↓𝑇𝑏−𝐹𝑒 =−∑<𝑇𝑏↓𝑖 ,  𝐹𝑒↓𝑗 >↑▒𝐽↓𝑇𝑏−𝐹𝑒 𝑺↓𝑇𝑏↓𝑖  ∙ 𝑺↓𝐹𝑒↓𝑗   = 1/2 𝐽↓𝑇𝑏−𝐹𝑒 𝑆↓𝑇𝑏 𝑆↓𝐹𝑒 ∑<𝑇𝑏↓𝑖 ,  𝐹𝑒↓𝑗 >↑▒(𝒎↓𝑇𝑏↓𝑖  − 𝒎↓𝐹𝑒↓𝑗  )↑2    Using  the  conInuous  assumpIon  to  expand  𝒎↓𝐹𝑒↓𝑗    ℋ↓𝑇𝑏−𝐹𝑒 ≈1/2 𝐽↓𝑇𝑏−𝐹𝑒 𝑆↓𝑇𝑏 𝑆↓𝐹𝑒 ∑<𝑇𝑏↓𝑖 ,  𝐹𝑒↓𝑗 >↑▒(𝒎↓𝑇𝑏↓𝑖  − 𝒎↓𝐹𝑒↓𝑖  − 𝒓↓𝑖𝑗 ∙𝛻𝒎↓𝐹𝑒↓𝑖  − 1/2 𝒓↓𝑖𝑗↑2 𝛻↑2 𝒎↓𝐹𝑒↓𝑖  )↑2    ≈1/2 𝐽↓𝑇𝑏−𝐹𝑒 𝑆↓𝑇𝑏 𝑆↓𝐹𝑒 ∑<𝑇𝑏↓𝑖 ,  𝐹𝑒↓𝑗 >↑▒((𝒎↓𝑇𝑏↓𝑖  − 𝒎↓𝐹𝑒↓𝑖  )↑2 −2(𝒎↓𝑇𝑏↓𝑖  − 𝒎↓𝐹𝑒↓𝑖  )∙(𝒓↓𝑖𝑗 ∙𝛻𝒎↓𝐹𝑒↓𝑖  )−(𝒎↓𝑇𝑏↓𝑖  − 𝒎↓𝐹𝑒↓𝑖  )𝒓↓𝑖𝑗↑2 ∙ 𝛻↑2 𝒎↓𝐹𝑒↓𝑖  + (𝒓↓𝑖𝑗 ∙𝛻𝒎↓𝐹𝑒↓𝑖  )↑2 )   The  second  term  ∑<𝑇𝑏↓𝑖 ,  𝐹𝑒↓𝑗 >↑▒(−2(𝒎↓𝑇𝑏↓𝑖  − 𝒎↓𝐹𝑒↓𝑖  )∙(𝒓↓𝑖𝑗 ∙𝛻𝒎↓𝐹𝑒↓𝑖  ))   vanishes  with  the  assumpIon  of  center  symmetry  

ℋ↓𝑇𝑏−𝐹𝑒 ≈1/2 𝐽↓𝑇𝑏−𝐹𝑒 𝑆↓𝑇𝑏 𝑆↓𝐹𝑒 𝑧↓𝑇𝑏−𝐹𝑒 ∑𝑇𝑏↓𝑖 ↑▒((𝒎↓𝑇𝑏↓𝑖  − 𝒎↓𝐹𝑒↓𝑖  )↑2 − 𝑟↓𝑛𝑛↑2 𝒎↓𝑇𝑏↓𝑖  ∙ 𝛻↑2 𝒎↓𝐹𝑒↓𝑖  + 𝑟↓𝑛𝑛↑2 𝛻∙(𝒎↓𝐹𝑒↓𝑖  ∙𝛻𝒎↓𝐹𝑒↓𝑖  ))     = −𝐵↓𝑇𝑏−𝐹𝑒 ∫↑▒𝒎↓𝑇𝑏 ∙ 𝒎↓𝐹𝑒 𝑑↑3 𝑥 − 2𝐴↓𝑇𝑏−𝐹𝑒 ∫↑▒𝒎↓𝑇𝑏 ∙ 𝛻↑2 𝒎↓𝐹𝑒 𝑑↑3 𝑥 +2𝐴↓𝑇𝑏−𝐹𝑒 ∮↑▒𝒎↓𝐹𝑒 ∙𝛻𝒎↓𝐹𝑒 ∙𝒏𝑑𝑆     

4th  Year  Seminar   38  

Page 39: Exchange)Bias)and)Bi.stable)Magneto. Resistance)States)in ...

DerivaIon  of  effecIve  field  due  to  exchange  interacIon  

ℋ↓𝐴 =∫↑▒(𝐴↓𝐹𝑒−𝐹𝑒 (𝛻𝒎↓𝐹𝑒 )↑2 + 𝐴↓𝑇𝑏−𝑇𝑏 (𝛻𝒎↓𝑇𝑏 )↑2 − 2𝐴↓𝑇𝑏−𝐹𝑒 𝒎↓𝑇𝑏 ∙ 𝛻↑2 𝒎↓𝐹𝑒 −𝐵↓𝑇𝑏−𝐹𝑒 (𝒎↓𝑇𝑏 ∙ 𝒎↓𝐹𝑒 ))𝑑↑3 𝑥 +2𝐴↓𝑇𝑏−𝐹𝑒 ∮↑▒𝒎↓𝐹𝑒 𝛻𝒎↓𝐹𝑒 ∙𝒏𝑑𝑆   The  last  term  is  integrated  on  the  boundary,  so  the  energy  density  is  

ℰ↓𝐴 = 𝐴↓𝐹𝑒−𝐹𝑒 (𝛻𝒎↓𝐹𝑒 )↑2 + 𝐴↓𝑇𝑏−𝑇𝑏 (𝛻𝒎↓𝑇𝑏 )↑2 − 2𝐴↓𝑇𝑏−𝐹𝑒 𝒎↓𝑇𝑏 𝛻↑2 𝒎↓𝐹𝑒 −𝐵↓𝑇𝑏−𝐹𝑒 (𝒎↓𝑇𝑏 ∙ 𝒎↓𝐹𝑒 )  The  effecIve  field  due  to  exchange  interacIon  

𝑯↓𝑒𝑓𝑓,  𝑇𝑏 =− 𝛿ℰ↓𝐴 /𝜇↓0 𝑀↓𝑠,  𝑇𝑏 𝛿𝒎↓𝑇𝑏    = 2/𝜇↓0 𝑀↓𝑠,  𝑇𝑏  𝐴↓𝑇𝑏−𝑇𝑏 𝛻↑2 𝒎↓𝑇𝑏 + 2/𝜇↓0 𝑀↓𝑠,  𝑇𝑏  𝐴↓𝑇𝑏−𝐹𝑒 𝛻↑2 𝒎↓𝐹𝑒 + 1/𝜇↓0 𝑀↓𝑠,𝑇𝑏  𝐵↓𝑇𝑏−𝐹𝑒 𝒎↓𝐹𝑒   Similarly,  

𝑯↓𝑒𝑓𝑓,  𝐹𝑒 =− 𝛿ℰ↓𝐴 /𝜇↓0 𝑀↓𝑠,  𝐹𝑒 𝛿𝒎↓𝐹𝑒    = 2/𝜇↓0 𝑀↓𝑠,  𝐹𝑒  𝐴↓𝐹𝑒−𝐹𝑒 𝛻↑2 𝒎↓𝐹𝑒 + 2/𝜇↓0 𝑀↓𝑠,  𝐹𝑒  𝐴↓𝐹𝑒−𝑇𝑏 𝛻↑2 𝒎↓𝑇𝑏 + 1/𝜇↓0 𝑀↓𝑠,𝐹𝑒  𝐵↓𝐹𝑒−𝑇𝑏 𝒎↓𝑇𝑏           

4th  Year  Seminar   39  


Recommended