+ All Categories
Home > Documents > EXCITON ENTANGLED-TWO-PHOTON ABSORPTION BY...

EXCITON ENTANGLED-TWO-PHOTON ABSORPTION BY...

Date post: 12-Jul-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
20
EXCITON ENTANGLED-TWO-PHOTON ABSORPTION BY SEMICONDUCTOR QUANTUM WELLS L. J. Salazar 1 ., D. Guzmán 1,2 , F.J. Rodriguez 1 y L. Quiroga 1 Condensed Matter Physics Group. http://fimaco.uniandes.edu.co Quantum Optics Lab. http://opticacuantica.uniandes.edu.co International Workshop on Quantum Coherence and Decoherence (IWQCD-Cali 24-28 Sept. 2012) 1 Departamento de Física Universidad de los Andes. 2 Laboratorio de Óptica Cuántica Universidad de los Andes
Transcript
Page 1: EXCITON ENTANGLED-TWO-PHOTON ABSORPTION BY …quantic.univalle.edu.co/IWQC1/Participantes_files/FerneyRodrigue.pdf · 1.1. Transici´on de dos fotones en un sistema de varios niveles

EXCITON ENTANGLED-TWO-PHOTON ABSORPTION BY SEMICONDUCTOR QUANTUM

WELLS L. J. Salazar1., D. Guzmán1,2, F.J. Rodriguez1 y L. Quiroga1

Condensed Matter Physics Group. http://fimaco.uniandes.edu.co

Quantum Optics Lab. http://opticacuantica.uniandes.edu.co

International Workshop on Quantum Coherence and Decoherence (IWQCD-Cali 24-28 Sept. 2012)

1 Departamento de Física Universidad de los Andes. 2 Laboratorio de Óptica Cuántica Universidad de los Andes

Page 2: EXCITON ENTANGLED-TWO-PHOTON ABSORPTION BY …quantic.univalle.edu.co/IWQC1/Participantes_files/FerneyRodrigue.pdf · 1.1. Transici´on de dos fotones en un sistema de varios niveles

arXiv:1109.6895

Page 3: EXCITON ENTANGLED-TWO-PHOTON ABSORPTION BY …quantic.univalle.edu.co/IWQC1/Participantes_files/FerneyRodrigue.pdf · 1.1. Transici´on de dos fotones en un sistema de varios niveles

Outline

•  Motivation. •  Theoretical model to calculate absorption of Entangled photons -Biphoton wave function. - Continuos transitions. - Continuos and excitonic transitions •  Results. •  Conclusions.

Page 4: EXCITON ENTANGLED-TWO-PHOTON ABSORPTION BY …quantic.univalle.edu.co/IWQC1/Participantes_files/FerneyRodrigue.pdf · 1.1. Transici´on de dos fotones en un sistema de varios niveles

SPDC(Spontaneous Parametric Down Conversion) Birth of entangled photons

- You shine with a blue laser on a BBO (Beta Barium Borate) crystal. In the crystal, one blue photon (about 400nm wavelength) is split up into two red photons (800nm wavelength). This process is called "parametric down conversion" -Orthogonally polarized photons leave two wavelengths which satisf ies conservation of momentum and energy. -Birefringent nonlinear crystal to produce specific type SPDC type II.

MOTIVATION

Page 5: EXCITON ENTANGLED-TWO-PHOTON ABSORPTION BY …quantic.univalle.edu.co/IWQC1/Participantes_files/FerneyRodrigue.pdf · 1.1. Transici´on de dos fotones en un sistema de varios niveles

Type I

In SPDC type-I the pump photon has an orthogonal polarization with respect to idler and signal photons which are equally polarized (non-collinear case). Due to the fact that the two photons have the same polarization they will have the same refractive index and thus lie on the same cone.

Nonlinear crystal

Signal

Idler

Type II

In SPDC type-II the idler and signal have orthogonal polarizations. Due to the fact that the refractive indices of the two created photons are different the cones are not coaxial.

Nonlinear crystal

Signal

Idler

Degenerate case: The wavelength of both idler and signal are double the pump wavelength. By changing the angle of the pump with respect to the crystal the emission cone changes its size.

Again the size of the cones depends on the angle between pump beam and the optical axis of the crystal. Here the collinear case is, when the two emission cones are tangential. Thus idler and signal can be emitted in pump beam direction

Spontaneous Parametric Down Conversion

Page 6: EXCITON ENTANGLED-TWO-PHOTON ABSORPTION BY …quantic.univalle.edu.co/IWQC1/Participantes_files/FerneyRodrigue.pdf · 1.1. Transici´on de dos fotones en un sistema de varios niveles

Entangled Photons Type-I and Type II, produced in Quantum Optics Lab. at Uniandes

Entangled Photons In the intersection between the two rings the photons cannot be distiguished, althought each photon pair must be orthogonal, also cannot be distinguished by momentum, therefore we get entangled photons in polarization

Blue-Laser

Photon pairs

no-linear crystal. Tipo II

MOTIVATION

Page 7: EXCITON ENTANGLED-TWO-PHOTON ABSORPTION BY …quantic.univalle.edu.co/IWQC1/Participantes_files/FerneyRodrigue.pdf · 1.1. Transici´on de dos fotones en un sistema de varios niveles

Entangled Two Photon Absorption

13 de abril de 2011

1. Desarrollo teorico Nakanishi extendido a varios niveles

El campo electromagnetico propagandose en una dimension, con polarizacion !, se define en modoscontinuos mediante la expresion:

"E(z, t) =! !

"!d#

"h#

4$!0cAa(#)e"i!(t"z/c)! + H.C. (1)

En donde el operador de aniquilacion satisface la siguiente relacion de conmutacion:

[a(#), a†(##)] = %(# ! ##) (2)

El campo electrico se relaciona con el potencial vector "A:

"E = !& "A

&t(3)

"A(z, t) = i

! !

"!d#

"h

4$!0cA#a(#)e"i!(t"z/c)! + H.C. (4)

Si se asume que el ancho de banda del campo es menor a la frecuencia de la portadora #, el termino conla raız cuadrada puede tomarse como constante. De este modo el potencial vector puede escribirse:

"A(z, t) = i

"h

4$!0cA#

! !

"!d# a(#)e"i!(t"z/c)! + H.C. (5)

Definiendo el operador a(t) como:

a(t) " 1#2$

! !

"!d# a(#)e"i!t, (6)

se puede reescribir el potencial vector una manera mas sencilla:

"A(z, t) = i

"h

2!0cA#a(t! z/c)! + H.C (7)

1.1. Transicion de dos fotones en un sistema de varios niveles

El Hamiltoniano del sistema en imagen de interaccion esta dado por la expresion:

HI(t) = !#

"

q"

m"

"P"(t) · "A(t) (8)

Usando teorıa de perturbacion a segundo orden:

1

Entangled Two Photon Absorption

13 de abril de 2011

1. Desarrollo teorico Nakanishi extendido a varios niveles

El campo electromagnetico propagandose en una dimension, con polarizacion !, se define en modoscontinuos mediante la expresion:

"E(z, t) =! !

"!d#

"h#

4$!0cAa(#)e"i!(t"z/c)! + H.C. (1)

En donde el operador de aniquilacion satisface la siguiente relacion de conmutacion:

[a(#), a†(##)] = %(# ! ##) (2)

El campo electrico se relaciona con el potencial vector "A:

"E = !& "A

&t(3)

"A(z, t) = i

! !

"!d#

"h

4$!0cA#a(#)e"i!(t"z/c)! + H.C. (4)

Si se asume que el ancho de banda del campo es menor a la frecuencia de la portadora #, el termino conla raız cuadrada puede tomarse como constante. De este modo el potencial vector puede escribirse:

"A(z, t) = i

"h

4$!0cA#

! !

"!d# a(#)e"i!(t"z/c)! + H.C. (5)

Definiendo el operador a(t) como:

a(t) " 1#2$

! !

"!d# a(#)e"i!t, (6)

se puede reescribir el potencial vector una manera mas sencilla:

"A(z, t) = i

"h

2!0cA#a(t! z/c)! + H.C (7)

1.1. Transicion de dos fotones en un sistema de varios niveles

El Hamiltoniano del sistema en imagen de interaccion esta dado por la expresion:

HI(t) = !#

"

q"

m"

"P"(t) · "A(t) (8)

Usando teorıa de perturbacion a segundo orden:

1U (2)

I (t) = ! 1h2

! !

"!

! !

"!dt2 dt1 HI(t2)HI(t1)!(t2 ! t1) (9)

en donde !(t) corresponde a la funcion escalon de Heaviside definida por:

!(t) ="

1 si t " 00 si t < 0

El estado del sistema en un instante t esta dado por:

|"(t)# = U (2)I (t)|Ri# $ |Mg# (10)

en donde la materia se encuentra inicialmente en el estado |Mg# y el campo en el estado |Ri#.La probabilidad de transicion de un estado inicial |Ri#$ |Mg# a uno final |Rf #$ |Mf # esta dada en general

por:

Pf,i(t) = |%Rf |$%Mf |U (2)I (t)|Ri# $ |Mg#|2 (11)

La expresion anterior se puede partir en dos partes: materia y radiacion:

Pf,i(t) =###$ e

hm

%2! !

"!

! !

"!dt2 dt1 %Rf |A!(t1)Aµ(t2)|Ri# & . . .

&

n

%f |P ! |n#%n|Pµ|g#e"i("n""f )t1"i("g""n)t2!(t2 ! t1)###2

en donde {#n, |n#} son valores y vectores propios del Hamiltoniano de la materia H0 (se sobreentientesuma entre ındices repetidos segun la convencion de Einstein).

Reemplazando los operadores $A en terminos de los operadores de aniquilacion a(t), se obtiene:

%Rf |A!(t1)Aµ(t2)|Ri# =$ h

2%0A#

%%Rf |a1(t1)a2(t2)|Ri# (12)

El campo |"# contiene un par de fotones enredados. El par es absorbido (|"# ' |0#) por la materia(|Ri# ' |Rf #). Se define entonces la funcion del bifoton:

%0|a1(t1)a2(t2)|"# = "(t1, t2) (13)

Por otro lado, los operadores correspondientes a la materia se denotan por:

%f |P ! |n# = P !f,n (14)

%n|Pµ|g# = Pµn,g (15)

Reemplazando las contribuciones de radiacion y materia se obtiene:

Pf,i(t) =###$ e

hm

%2$ h

2%0A#

% &

n

P !f,n Pµ

n,g

! !

"!

! !

"!dt2 dt1 "(t1, t2)!(t2 ! t1)e"i("n""f )t1"i("g""n)t2

###2

(16)

La funcion escalon de Heaviside !(t2 ! t1) define un orden: se absorbe primero el foton que correspondea la transicion interbanda y posteriormente el foton que genera la transicion intrabanda (figura 1).

La expresion anterior puede escribirse de forma mas simple si se define la siguiente transformada deFourier (Nakanishi):

2

U (2)I (t) = ! 1

h2

! !

"!

! !

"!dt2 dt1 HI(t2)HI(t1)!(t2 ! t1) (9)

en donde !(t) corresponde a la funcion escalon de Heaviside definida por:

!(t) ="

1 si t " 00 si t < 0

El estado del sistema en un instante t esta dado por:

|"(t)# = U (2)I (t)|Ri# $ |Mg# (10)

en donde la materia se encuentra inicialmente en el estado |Mg# y el campo en el estado |Ri#.La probabilidad de transicion de un estado inicial |Ri#$ |Mg# a uno final |Rf #$ |Mf # esta dada en general

por:

Pf,i(t) = |%Rf |$%Mf |U (2)I (t)|Ri# $ |Mg#|2 (11)

La expresion anterior se puede partir en dos partes: materia y radiacion:

Pf,i(t) =###$ e

hm

%2! !

"!

! !

"!dt2 dt1 %Rf |A!(t1)Aµ(t2)|Ri# & . . .

&

n

%f |P ! |n#%n|Pµ|g#e"i("n""f )t1"i("g""n)t2!(t2 ! t1)###2

en donde {#n, |n#} son valores y vectores propios del Hamiltoniano de la materia H0 (se sobreentientesuma entre ındices repetidos segun la convencion de Einstein).

Reemplazando los operadores $A en terminos de los operadores de aniquilacion a(t), se obtiene:

%Rf |A!(t1)Aµ(t2)|Ri# =$ h

2%0A#

%%Rf |a1(t1)a2(t2)|Ri# (12)

El campo |"# contiene un par de fotones enredados. El par es absorbido (|"# ' |0#) por la materia(|Ri# ' |Rf #). Se define entonces la funcion del bifoton:

%0|a1(t1)a2(t2)|"# = "(t1, t2) (13)

Por otro lado, los operadores correspondientes a la materia se denotan por:

%f |P ! |n# = P !f,n (14)

%n|Pµ|g# = Pµn,g (15)

Reemplazando las contribuciones de radiacion y materia se obtiene:

Pf,i(t) =###$ e

hm

%2$ h

2%0A#

% &

n

P !f,n Pµ

n,g

! !

"!

! !

"!dt2 dt1 "(t1, t2)!(t2 ! t1)e"i("n""f )t1"i("g""n)t2

###2

(16)

La funcion escalon de Heaviside !(t2 ! t1) define un orden: se absorbe primero el foton que correspondea la transicion interbanda y posteriormente el foton que genera la transicion intrabanda (figura 1).

La expresion anterior puede escribirse de forma mas simple si se define la siguiente transformada deFourier (Nakanishi):

2

U (2)I (t) = ! 1

h2

! !

"!

! !

"!dt2 dt1 HI(t2)HI(t1)!(t2 ! t1) (9)

en donde !(t) corresponde a la funcion escalon de Heaviside definida por:

!(t) ="

1 si t " 00 si t < 0

El estado del sistema en un instante t esta dado por:

|"(t)# = U (2)I (t)|Ri# $ |Mg# (10)

en donde la materia se encuentra inicialmente en el estado |Mg# y el campo en el estado |Ri#.La probabilidad de transicion de un estado inicial |Ri#$ |Mg# a uno final |Rf #$ |Mf # esta dada en general

por:

Pf,i(t) = |%Rf |$%Mf |U (2)I (t)|Ri# $ |Mg#|2 (11)

La expresion anterior se puede partir en dos partes: materia y radiacion:

Pf,i(t) =###$ e

hm

%2! !

"!

! !

"!dt2 dt1 %Rf |A!(t1)Aµ(t2)|Ri# & . . .

&

n

%f |P ! |n#%n|Pµ|g#e"i("n""f )t1"i("g""n)t2!(t2 ! t1)###2

en donde {#n, |n#} son valores y vectores propios del Hamiltoniano de la materia H0 (se sobreentientesuma entre ındices repetidos segun la convencion de Einstein).

Reemplazando los operadores $A en terminos de los operadores de aniquilacion a(t), se obtiene:

%Rf |A!(t1)Aµ(t2)|Ri# =$ h

2%0A#

%%Rf |a1(t1)a2(t2)|Ri# (12)

El campo |"# contiene un par de fotones enredados. El par es absorbido (|"# ' |0#) por la materia(|Ri# ' |Rf #). Se define entonces la funcion del bifoton:

%0|a1(t1)a2(t2)|"# = "(t1, t2) (13)

Por otro lado, los operadores correspondientes a la materia se denotan por:

%f |P ! |n# = P !f,n (14)

%n|Pµ|g# = Pµn,g (15)

Reemplazando las contribuciones de radiacion y materia se obtiene:

Pf,i(t) =###$ e

hm

%2$ h

2%0A#

% &

n

P !f,n Pµ

n,g

! !

"!

! !

"!dt2 dt1 "(t1, t2)!(t2 ! t1)e"i("n""f )t1"i("g""n)t2

###2

(16)

La funcion escalon de Heaviside !(t2 ! t1) define un orden: se absorbe primero el foton que correspondea la transicion interbanda y posteriormente el foton que genera la transicion intrabanda (figura 1).

La expresion anterior puede escribirse de forma mas simple si se define la siguiente transformada deFourier (Nakanishi):

2

U (2)I (t) = ! 1

h2

! !

"!

! !

"!dt2 dt1 HI(t2)HI(t1)!(t2 ! t1) (9)

en donde !(t) corresponde a la funcion escalon de Heaviside definida por:

!(t) ="

1 si t " 00 si t < 0

El estado del sistema en un instante t esta dado por:

|"(t)# = U (2)I (t)|Ri# $ |Mg# (10)

en donde la materia se encuentra inicialmente en el estado |Mg# y el campo en el estado |Ri#.La probabilidad de transicion de un estado inicial |Ri#$ |Mg# a uno final |Rf #$ |Mf # esta dada en general

por:

Pf,i(t) = |%Rf |$%Mf |U (2)I (t)|Ri# $ |Mg#|2 (11)

La expresion anterior se puede partir en dos partes: materia y radiacion:

Pf,i(t) =###$ e

hm

%2! !

"!

! !

"!dt2 dt1 %Rf |A!(t1)Aµ(t2)|Ri# & . . .

&

n

%f |P ! |n#%n|Pµ|g#e"i("n""f )t1"i("g""n)t2!(t2 ! t1)###2

en donde {#n, |n#} son valores y vectores propios del Hamiltoniano de la materia H0 (se sobreentientesuma entre ındices repetidos segun la convencion de Einstein).

Reemplazando los operadores $A en terminos de los operadores de aniquilacion a(t), se obtiene:

%Rf |A!(t1)Aµ(t2)|Ri# =$ h

2%0A#

%%Rf |a1(t1)a2(t2)|Ri# (12)

El campo |"# contiene un par de fotones enredados. El par es absorbido (|"# ' |0#) por la materia(|Ri# ' |Rf #). Se define entonces la funcion del bifoton:

%0|a1(t1)a2(t2)|"# = "(t1, t2) (13)

Por otro lado, los operadores correspondientes a la materia se denotan por:

%f |P ! |n# = P !f,n (14)

%n|Pµ|g# = Pµn,g (15)

Reemplazando las contribuciones de radiacion y materia se obtiene:

Pf,i(t) =###$ e

hm

%2$ h

2%0A#

% &

n

P !f,n Pµ

n,g

! !

"!

! !

"!dt2 dt1 "(t1, t2)!(t2 ! t1)e"i("n""f )t1"i("g""n)t2

###2

(16)

La funcion escalon de Heaviside !(t2 ! t1) define un orden: se absorbe primero el foton que correspondea la transicion interbanda y posteriormente el foton que genera la transicion intrabanda (figura 1).

La expresion anterior puede escribirse de forma mas simple si se define la siguiente transformada deFourier (Nakanishi):

2

U (2)I (t) = ! 1

h2

! !

"!

! !

"!dt2 dt1 HI(t2)HI(t1)!(t2 ! t1) (9)

en donde !(t) corresponde a la funcion escalon de Heaviside definida por:

!(t) ="

1 si t " 00 si t < 0

El estado del sistema en un instante t esta dado por:

|"(t)# = U (2)I (t)|Ri# $ |Mg# (10)

en donde la materia se encuentra inicialmente en el estado |Mg# y el campo en el estado |Ri#.La probabilidad de transicion de un estado inicial |Ri#$ |Mg# a uno final |Rf #$ |Mf # esta dada en general

por:

Pf,i(t) = |%Rf |$%Mf |U (2)I (t)|Ri# $ |Mg#|2 (11)

La expresion anterior se puede partir en dos partes: materia y radiacion:

Pf,i(t) =###$ e

hm

%2! !

"!

! !

"!dt2 dt1 %Rf |A!(t1)Aµ(t2)|Ri# & . . .

&

n

%f |P ! |n#%n|Pµ|g#e"i("n""f )t1"i("g""n)t2!(t2 ! t1)###2

en donde {#n, |n#} son valores y vectores propios del Hamiltoniano de la materia H0 (se sobreentientesuma entre ındices repetidos segun la convencion de Einstein).

Reemplazando los operadores $A en terminos de los operadores de aniquilacion a(t), se obtiene:

%Rf |A!(t1)Aµ(t2)|Ri# =$ h

2%0A#

%%Rf |a1(t1)a2(t2)|Ri# (12)

El campo |"# contiene un par de fotones enredados. El par es absorbido (|"# ' |0#) por la materia(|Ri# ' |Rf #). Se define entonces la funcion del bifoton:

%0|a1(t1)a2(t2)|"# = "(t1, t2) (13)

Por otro lado, los operadores correspondientes a la materia se denotan por:

%f |P ! |n# = P !f,n (14)

%n|Pµ|g# = Pµn,g (15)

Reemplazando las contribuciones de radiacion y materia se obtiene:

Pf,i(t) =###$ e

hm

%2$ h

2%0A#

% &

n

P !f,n Pµ

n,g

! !

"!

! !

"!dt2 dt1 "(t1, t2)!(t2 ! t1)e"i("n""f )t1"i("g""n)t2

###2

(16)

La funcion escalon de Heaviside !(t2 ! t1) define un orden: se absorbe primero el foton que correspondea la transicion interbanda y posteriormente el foton que genera la transicion intrabanda (figura 1).

La expresion anterior puede escribirse de forma mas simple si se define la siguiente transformada deFourier (Nakanishi):

2

2

ture showing new features associated to a transformeddensity of available states as well as to inter-particle inter-action e!ects. As additional facts, it should be mentionedthat since TPA process provides information about cor-relation functions of the radiation field, QWs nanostruc-tures may be useful for the in-situ detection of photonentanglement produced by other on-chip semiconductorsources.

Spectral filters introduced in the paths of the signaland idler photons allow for the production of narrow-band temporally entangled photons. These kind of en-tangled photons are the ones to be considered in thiswork. Additional control mechanisms on the biphotonwavefunction shape, including the engineering of the spa-tial profile of the pump laser and selecting the geometryof the nonlinear crystal, provide useful tools to manipu-late the two-photon absorption profile of semiconductornanostructures18–20.

In the present work we perform a comparative studyof TPA by semiconductor nanostructures, for light withwave-like classical properties (laser light) and a new kindof quantum entangled light. We limit ourselves to thecase when one-photon absorption is excluded. The pa-per is organized as follows: In Section II we briefly re-view the general theory for the TPA for laser light andextend it to the case of entangled photons. In Sec-tion III we study the entangled-photon absorption fornon-interacting electron-hole pairs QWs, and finally weconsider the Coulomb interaction between electrons andholes (exciton e!ects). In Section IV, the main conclu-sions of the present work are summarized.

II. THEORETICAL BACKGROUND

The interaction of light with matter systems has beenstudied since the first days of the modern quantum the-ory. A semiclassical (or semi-quantum) approach inwhich the light is treated classically but the matter isquantum-mechanically described, has been mostly used.With the development of new sources of radiation, someof them producing light which cannot be considered interms of classical wave models, new theories for the un-derstanding of the interaction of these new forms of lightwith matter are under development. We begin by brieflyreviewing the standard Born approximation for light-matter interaction.

The radiation-matter Hamiltonian is given by

H =!

!

"!P! ! q!

!A(!r!, t)#2

2m!+

!

"k

!""k(a†"ka"k +12) (1)

where # denotes particle indexes, a†"k and a"k describe cre-ation and annihilation photon operators in mode !k, re-spectively. In the dipolar approximation the potentialvector becomes

!A(!r!, t) = !A(t) = !A(+)(t) + !A(!)(t) (2)

with

!A(+)(t) =$

!2V

!

"k

!$"k""k

a"ke!i#!kt (3)

where V is the radiation quantization volume and !$"k theunitary vector indicating the polarization of mode !k. Ad-

ditionally, !A(!)(t) =%!A(+)(t)

&†. Neglecting quadratic

terms in the potential vector, the Hamiltonian in Eq.(1)can be written as

H = H0 + HI (4)

where H0 denotes the matter Hamiltonian and theradiation-matter interaction term, in the interaction pic-ture, is given by

HI(t) = !!

!

q!

m!c!P!(t) · !A(t) (5)

By invoking the standard second-order time-dependentperturbation theory, the evolution operator turns out tobe

U (2)I (t) = ! 1

!2

' t

0dt1

' t

0dt2"(t1 ! t2)HI(t1)HI(t2) (6)

with "(t) representing the Heaviside step function. Westart by considering the evolution from an initial sepa-rate state where the radiation is in state |Ri > whilethe matter system is initially in its ground state |Mg >.Therefore, the whole system starts in state |#(0) >=|Ri > "|Mg >. At time t the system has evolved to thestate

|#(t) >= U (2)I (t)|Ri > "|Mg > (7)

We are interested in the transition probability from thegiven initial state to a final state denoted by |Rf >"|Mf >

Pf,i(t) =(((< Mf |" < Rf |U (2)

I (t)|Ri > "|Mg >(((2

(8)

which can also be written as7

P (2)f,i (t) =

((((' t

0dt1

' t

0dt2 < Rf |A†

$(t1)A†µ(t2)|Ri > M$,µ(t1, t2)

((((2

(9)

Where α denotes particle indexes a+k (ak) describe creation and (annihilation)

photon operators in mode k

Theoretical approach

Page 8: EXCITON ENTANGLED-TWO-PHOTON ABSORPTION BY …quantic.univalle.edu.co/IWQC1/Participantes_files/FerneyRodrigue.pdf · 1.1. Transici´on de dos fotones en un sistema de varios niveles

Matter-Radiation interaction

!!"!#$

!!$!#"

%&'&()*+,-

%('(.,/0-

%1'1231-

45*!,(*/+06!!"#6708&9+,6

"$&

6

The role played by the entanglement time is to mod-ulate the oscillator strength for a given transition. Insome cases this e!ect can be as drastic as to eliminatean allowed two-photon transition. In other words, selec-

tion rules for transitions between electronic states can bemanipulated as a consequence of the entanglement time.

Now we calculate the entangled two photon absoprtionfor SPDC-I and II. Starting from the general formula (9)

P (2)f,i (t) =

!!!!" t

0dt1

" t

0dt2 < Rf |A†

!(t1)A†µ(t2)|Ri > M!,µ(t1, t2)

!!!!2

=!!!!!

" t

0dt1

" t

0dt2 < Rf |A†

!(t1)A†µ(t2)|Ri > "(t1 ! t2)

# e

!mc

$2 %

n

P !f,nPµ

n,ge!i("n!"f )t1!i("g!"n)t2

!!!!!

2

(27)

The terms in the integral can be arranged as a new vari-able Sf,i(t), with P (2)

f,i (t) = |Sf,i(t)|2

S(2)f,i (t) =

# e

!mc

$2 %

n

P !f,nPµ

n,g

" t

0dt1

" t1

0dt2 < Rf |A†

!(t1)A†µ(t2)|Ri > e!i("n!"f )t1!i("g!"n)t2 (28)

Acording to (12), the vector potential operator con-tibutes with the a(!2,"#2)a(!1,"#1)|# >, where |# > is thebiphoton wave function. This function can be changedif Type I or Type II are considered. For SPDC-II thetime wave function is well known2 and it contributes to

the the terms corresponding to light in expresion (28)< Rf |A†

!(t1)A†µ(t2)|Ri >. If we consider now a biphoton

instead a coherent state, the matrix element for light arewritten as

"Rf |A†!(t1)A†

µ(t2)|Ri# = A1A2

&"0, 0|a(t1)a(t2)|##e!i("1t1+"2t2)#1,!#2,µ + "0, 0|a(t2)a(t1)|##e!i("2t1+"1t2)#2,!#1,µ

'(29)

The terms corresponding to "0, 0|a(t1)a(t2)|## and"0, 0|a(t2)a(t1)|##, are the time-corelted biphoton wave

functions. Introducing the expresion for time correlatedlight operators in (28)

S(2)f,i (t) =

# e

!mc

$2 %

n

P !f,nPµ

n,g

" t

0dt1

" t1

0dt2A1A2

&"0, 0|a(t1)a(t2)|###1,!#2,µe!i("1t1+"2t2)e!i("n!"f )t1!i("g!"n)t2+

"0, 0|a(t2)a(t1)|###2,!#1,µe!i("2t1+"1t2)e!i("n!"f )t1!i("g!"n)t2'

=# e

!mc

$2 %

n

P !f,nPµ

n,g

" t

0dt1

" t1

0dt2A1A2

&"0, 0|a(t1)a(t2)|###1,!#2,µe!i("n!"f +"1)t1!i("g!"n+"2)t2

"0, 0|a(t2)a(t1)|###2,!#1,µe!i("n!"f +"2)t1!i("g!"n+"1)t2'(30)

In the last equation we take into account for the CWbiphoton wave function2. It is important to remark that

for any biphoton function the wave plane terms have been

Theoretical model for entangled photpn absorption: Biphoton wave function. Continuos transitions. excitons and continuous transitions

E(k)

k

Matter

Incident entangled photons

2.3. Reglas de seleccion

Por convencion se dice que el campo tiene polarizacion paralela cuando esta es paralela al planoen donde no hay confinamiento. Por otro lado, el campo tiene polarizacion perpendicular cuando lapolarizacion es perpendicular al plano en donde no hay confinamiento. En la figura (2) se presenta comoejemplo un esquema para el caso de la polarizacion paralela.

Es importante hacer tal diferenciacion porque los elementos P !f,n y Pµ

n,g tienen diferentes expresionessegun la polarizacion del campo.

Figura 2: Convencion polarizacion haz de luz incidente. Se muestra el caso de polarizacion paralela.

2.3.1. CASO: polarizacion perpendicular

Se supone polarizacion en la direccion z.

P zn,g = !"k,"k!!n,n!P (34)

P zf,n = !n,n!f

memc

2ihL [1! (!1)n+nf ] n nf

n2"n2f[1! !n,nf ] (35)

2.3.2. CASO: polarizacion paralela

P zn,g = !"k,"k!!n,n!P (36)

P xf,n = m0

mch|"k| (37)

3. Algoritmo en MATLAB

El algoritmo debe evaluar la expresion (33) con las reglas de seleccion correspondientes a la polarizacionque se seleccione.

El programa calcula la probabilidad de absorcion de dos fotones P2 para diferentes valores de las frecuen-cias de los fotones signal y idler. El resultado se desplega en una matriz de 10" 10 con ejes #1 (signal) y #2

(idler). Un ejemplo de tal resultado se presenta en la figura (3).

5

Page 9: EXCITON ENTANGLED-TWO-PHOTON ABSORPTION BY …quantic.univalle.edu.co/IWQC1/Participantes_files/FerneyRodrigue.pdf · 1.1. Transici´on de dos fotones en un sistema de varios niveles

Entangled light interacting with semiconductor nanostructures: quantum wells

•  Interaction between biphotons and semiconductor quantum well

•  Probability of two-photon absorption –  Does the absorption depend on quantum correlations? –  Can it be controlled?

Page 10: EXCITON ENTANGLED-TWO-PHOTON ABSORPTION BY …quantic.univalle.edu.co/IWQC1/Participantes_files/FerneyRodrigue.pdf · 1.1. Transici´on de dos fotones en un sistema de varios niveles

Radiation wavefunction

Biphoton wave function

Fourier transform for SPDC-II

where

–  –  –  T : Pump coherence time (inverse of pump bandwidth) –  τ : Quantum correlation time (depends on the crystal lenght and propagation velocities)

Tailoring Quantum-Correlated Two-Photon

Page 11: EXCITON ENTANGLED-TWO-PHOTON ABSORPTION BY …quantic.univalle.edu.co/IWQC1/Participantes_files/FerneyRodrigue.pdf · 1.1. Transici´on de dos fotones en un sistema de varios niveles

Matter and light parameters (experimental)

•  Light Type-II SPDC bifoton _

–  –  Degenerate case:

•  Matter GaAs semiconductor quantum well –  Exciton Bohr Radius 3D. –  Energy Gap: –  Quantum well width:

Page 12: EXCITON ENTANGLED-TWO-PHOTON ABSORPTION BY …quantic.univalle.edu.co/IWQC1/Participantes_files/FerneyRodrigue.pdf · 1.1. Transici´on de dos fotones en un sistema de varios niveles

SPDC biphotons type II

•  Schmidt Number (amount of entanglement)

Biphoton joint intensity

ωs /ωp

ωi /ωp

Frequency anticorrelated (FAC) Non-entangled (K=1)

Frequency correlated(FC)

Page 13: EXCITON ENTANGLED-TWO-PHOTON ABSORPTION BY …quantic.univalle.edu.co/IWQC1/Participantes_files/FerneyRodrigue.pdf · 1.1. Transici´on de dos fotones en un sistema de varios niveles

Two photon transition in quantum wells

Non-excitonic 2 photon absorption

Excitonic 2 photon absorption

Ci Conduc'onsubband

HHi Heavyholesubband

Xi Discreteexcitonicstate

Page 14: EXCITON ENTANGLED-TWO-PHOTON ABSORPTION BY …quantic.univalle.edu.co/IWQC1/Participantes_files/FerneyRodrigue.pdf · 1.1. Transici´on de dos fotones en un sistema de varios niveles

Continuos transitions

Discrete and Continuos transitions

Page 15: EXCITON ENTANGLED-TWO-PHOTON ABSORPTION BY …quantic.univalle.edu.co/IWQC1/Participantes_files/FerneyRodrigue.pdf · 1.1. Transici´on de dos fotones en un sistema de varios niveles

(a)

0 2 4 6 8 100

1

2

3

4

5

!!T

K

6

The role played by the entanglement time is to mod-ulate the oscillator strength for a given transition. Insome cases this e!ect can be as drastic as to eliminatean allowed two-photon transition. In other words, selec-

tion rules for transitions between electronic states can bemanipulated as a consequence of the entanglement time.

Now we calculate the entangled two photon absoprtionfor SPDC-I and II. Starting from the general formula (9)

P (2)f,i (t) =

!!!!" t

0dt1

" t

0dt2 < Rf |A†

!(t1)A†µ(t2)|Ri > M!,µ(t1, t2)

!!!!2

=!!!!!

" t

0dt1

" t

0dt2 < Rf |A†

!(t1)A†µ(t2)|Ri > "(t1 ! t2)

# e

!mc

$2 %

n

P !f,nPµ

n,ge!i("n!"f )t1!i("g!"n)t2

!!!!!

2

(27)

The terms in the integral can be arranged as a new vari-able Sf,i(t), with P (2)

f,i (t) = |Sf,i(t)|2

S(2)f,i (t) =

# e

!mc

$2 %

n

P !f,nPµ

n,g

" t

0dt1

" t1

0dt2 < Rf |A†

!(t1)A†µ(t2)|Ri > e!i("n!"f )t1!i("g!"n)t2 (28)

Acording to (12), the vector potential operator con-tibutes with the a(!2,"#2)a(!1,"#1)|# >, where |# > is thebiphoton wave function. This function can be changedif Type I or Type II are considered. For SPDC-II thetime wave function is well known2 and it contributes to

the the terms corresponding to light in expresion (28)< Rf |A†

!(t1)A†µ(t2)|Ri >. If we consider now a biphoton

instead a coherent state, the matrix element for light arewritten as

"Rf |A†!(t1)A†

µ(t2)|Ri# = A1A2

&"0, 0|a(t1)a(t2)|##e!i("1t1+"2t2)#1,!#2,µ + "0, 0|a(t2)a(t1)|##e!i("2t1+"1t2)#2,!#1,µ

'(29)

The terms corresponding to "0, 0|a(t1)a(t2)|## and"0, 0|a(t2)a(t1)|##, are the time-corelted biphoton wave

functions. Introducing the expresion for time correlatedlight operators in (28)

S(2)f,i (t) =

# e

!mc

$2 %

n

P !f,nPµ

n,g

" t

0dt1

" t1

0dt2A1A2

&"0, 0|a(t1)a(t2)|###1,!#2,µe!i("1t1+"2t2)e!i("n!"f )t1!i("g!"n)t2+

"0, 0|a(t2)a(t1)|###2,!#1,µe!i("2t1+"1t2)e!i("n!"f )t1!i("g!"n)t2'

=# e

!mc

$2 %

n

P !f,nPµ

n,g

" t

0dt1

" t1

0dt2A1A2

&"0, 0|a(t1)a(t2)|###1,!#2,µe!i("n!"f +"1)t1!i("g!"n+"2)t2

"0, 0|a(t2)a(t1)|###2,!#1,µe!i("n!"f +"2)t1!i("g!"n+"1)t2'(30)

In the last equation we take into account for the CWbiphoton wave function2. It is important to remark that

for any biphoton function the wave plane terms have been

Ψ(ω1,ω2) = 2 τTπe−(ω1−ω2−ω p

0 )T 2 e−(ω1−ω2−δω p )

τ 2

4 +2iπD(ω1 −ω2 −δω p )

τ2)

δω p =ωsignal −ω idler ; ω p0 =ωsignal +ω idler

K =12τT

+Tτ

K: Schmidt number T : Pump coherence time (inverse of pump bandwidth) t : Quantum correlation time

Ψ(ω1,ω2)

RESULTS

Page 16: EXCITON ENTANGLED-TWO-PHOTON ABSORPTION BY …quantic.univalle.edu.co/IWQC1/Participantes_files/FerneyRodrigue.pdf · 1.1. Transici´on de dos fotones en un sistema de varios niveles

Biphoton joint density

(a)

0 2 4 6 8 100

1

2

3

4

5

!!TK

Ψ(ω1,ω2)2 RESULTS

6x105

3x105

3x105

1x105

1.5x105

1x104

Page 17: EXCITON ENTANGLED-TWO-PHOTON ABSORPTION BY …quantic.univalle.edu.co/IWQC1/Participantes_files/FerneyRodrigue.pdf · 1.1. Transici´on de dos fotones en un sistema de varios niveles

Non-excitonic effects

!"# !"$ !"% !"& !"' (

!!!)

!

*+(!!!

#+(!!!

,-./

!"# !"$ !"% !"& !"'

!#+(!!0

#+(!!"

1!,-./

!"$ !"% !"& !"' (!

0+(!!"

!g"2#!

33(!45

335!4(

33*!45

!g"2#!!

(a)

0 2 4 6 8 100

1

2

3

4

5

!!T

K

K =12τT

+Tτ

RESULTS

Page 18: EXCITON ENTANGLED-TWO-PHOTON ABSORPTION BY …quantic.univalle.edu.co/IWQC1/Participantes_files/FerneyRodrigue.pdf · 1.1. Transici´on de dos fotones en un sistema de varios niveles

0

3x10!!

6x10!!

0

7.5x10!"

1.5x10!#

0

2x10!#

4x10!#

ETPA

0

5x10!#

0.48 0.6 0.72

!!!g

0

3x10!"

6x10!"

0.48 0.6 0.72

!!!g

0

3.5x10!!

L=aB/2

L=aB

L=2aB

WITH excitonic effects

(a)

0 2 4 6 8 100

1

2

3

4

5

!!T

K

RESULTS

Page 19: EXCITON ENTANGLED-TWO-PHOTON ABSORPTION BY …quantic.univalle.edu.co/IWQC1/Participantes_files/FerneyRodrigue.pdf · 1.1. Transici´on de dos fotones en un sistema de varios niveles

0

0.05

0

0.05

ETPA

0.5 0.6 0.7

!!!g

0

0.05

0.5 0.6 0.7

!!!g

K=1 K=1.1

K=1.2 K=1.3

K=1.4 K=1.5

(a)

0 2 4 6 8 100

1

2

3

4

5

!!T

K

With excitonic effects: Complete spectra

RESULTS

Page 20: EXCITON ENTANGLED-TWO-PHOTON ABSORPTION BY …quantic.univalle.edu.co/IWQC1/Participantes_files/FerneyRodrigue.pdf · 1.1. Transici´on de dos fotones en un sistema de varios niveles

CONCLUSIONS

•  Two photon transitions to excitons in semiconductors QWs by absorbing an entangled biphoton have been addressed

•  Analytical expresions for the ETPA rate including proper second-order correlation functions.

•  We have demonstrated that optical non-linear effects at the level of single couple of photons can be observed by playing with the correlation time window of cross polarized photons emitted by a type-II SPDC process.

•  We found that a high ETPA rate occurs when the sum of frequencies of the signal/idler photon pair is on resonance with the discrete QW transitions.

•  Semiconductor nanostructures like QWs provide new large-bandwidth multiple-photon detectors where both discrete and continuous carrier states play important roles in discriminating the degree of photon entanglement.

•  Is possible to explore new transitions that ususally are violated in traditional optical experiments.

•  Solid state system can be used as a controllable single photon sources.

CONCLUSIONS


Recommended