+ All Categories
Home > Documents > EXPERIMENTAL AND THEORETICAL STUDY OF FINES DESTRUCTION...

EXPERIMENTAL AND THEORETICAL STUDY OF FINES DESTRUCTION...

Date post: 15-May-2018
Category:
Upload: truongminh
View: 224 times
Download: 4 times
Share this document with a friend
95
Experimental and theoretical study of fines destruction in a mixed suspension crystallizer Item Type text; Thesis-Reproduction (electronic) Authors Kraljevich, Zlatica Idalia Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 23/06/2018 04:35:31 Link to Item http://hdl.handle.net/10150/348141
Transcript

Experimental and theoretical study of finesdestruction in a mixed suspension crystallizer

Item Type text; Thesis-Reproduction (electronic)

Authors Kraljevich, Zlatica Idalia

Publisher The University of Arizona.

Rights Copyright © is held by the author. Digital access to this materialis made possible by the University Libraries, University of Arizona.Further transmission, reproduction or presentation (such aspublic display or performance) of protected items is prohibitedexcept with permission of the author.

Download date 23/06/2018 04:35:31

Link to Item http://hdl.handle.net/10150/348141

EXPERIMENTAL AND THEORETICAL STUDY OF FINES DESTRUCTION

IN A MIXED SUSPENSION CRYSTALLIZER

by

Z l a t i c a I dal l a K r a i j e v i c h

A Th es is Submi t ted t o t h e F a c u l t y o f the

DEPARTMENT OF CHEMICAL ENGINEERING

In P a r t i a l F u l f i l l m e n t o f the Requirements For t h e Degree o f

MASTER OF SCIENCE

In the Graduate C o l le g e

THE UNIVERSITY OF ARIZONAi

1 .9 7 7

STATEMENT BY AUTHOR

T h is t h e s i s has been s u b m i t te d in p a r t i a l f u l f i l l m e n t o f r e q u i r e ­ments f o r an advanced degree a t The U n i v e r s i t y o f A r i z o n a and is depos­i t e d in the U n i v e r s i t y L i b r a r y t o be made a v a i l a b l e t o bo r ro w ers under r u l e s o f the L i b r a r y .

B r i e f q u o t a t i o n s f rom t h i s t h e s i s are a l l o w a b l e w i t h o u t s p e c i a l p e r m is s i o n , p ro v id e d t h a t a c c u r a te acknowledgment o f source i s made. Requests f o r p e r m is s io n f o r ex tended q u o t a t i o n f rom o r r e p r o d u c t i o n o f t h i s m a n u s c r ip t in whole o r in p a r t may be g ra n te d by th e head o f the ma jo r depar tment o r the Dean o f the Graduate C o l le g e when in h i s judgment the proposed use o f the m a t e r i a l i s in th e i n t e r e s t s o f s c h o l a r s h i p . In a l l o t h e r i n s t a n c e s , however, p e r m is s io n must be o b t a i n e d f rom the a u t h o r .

APPROVAL BY THESIS DIRECTOR

T h is t h e s i s has been approved on the da te shown below:

A ___________A. D. RANDOLPH

P r o fe s s o r o f Chemical E n g in e e r in g17 Date

Ded ic a ted t o

Werner and The Small Great Fam i ly

ACKNOWLEDGMENTS

The a u t h o r w ishes t o express h e r s i nee r e s t thanks t o Dr. A lan D.

Randolph f o r h i s encouragement, p a t i e n c e , and i n v a l u a b l e a s s i s t a n c e

d u r i n g t h i s p r o j e c t . She a l s o acknowledges th e Department o f Chemical

E n g in e e r in g f o r p r o v i d i n g a s s i s t a n c e and p h y s i c a l f a c i l i t i e s f o r th e

p r o j e c t .

The a u t h o r is g r a t e f u l t o the N a t io n a l Sc ience Founda t ion f o r

f i n a n c i a l s u p p o r t th roug h Grant ENG75-04348.

The a u t h o r a l s o thanks Dr. James R. Beckman, who f r e e l y shared

h i s e x p e r ie n c e on the e x p e r im e n ta l equ ipment .

The a u t h o r w ishes t o express h e r g r a t i t u d e t o h e r f a m i l y f o r i t s

en thus iasm ac ross th e d i s t a n c e . And l a s t bu t n o t l e a s t , she g i v e s

s p e c i a l thanks t o her husband, Werner, whose u n s e l f i s h a d v i c e , encourage

m e n t , and s u p p o r t , d e s p i t e h i s own needs, were w i t h her a l l the t im e .

TABLE OF CONTENTS

Page.

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . v i ?

LIST OF TABLES . ................................. i x

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . V . . . x

INTRODUCTION . . . . . . . . . . . . . , . . . . . . . . . . . . . . 1

THEORY . . . . . . . ................... .... . . . ....................... 6

Ki n e t i c s . ........................................... .... ................................................... . 6S ize I m p r o v e m e n t .......................................... 12

EXPERIMENTAL EQUIPMENT

Feed Tank . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Feed -L in e Hea te r . .. . . . . . . . . . . . . . . . . . . . . . 20C r y s t a l l i z e r and F ines Trap . . . . . . . ........................ 21Fines D e s t r u c t i o n System . . . . . . ....................... 23C r y s t a l l i z e r C o o l in g System . . . . . ................... .... . . . . . . 23A n a l y s i s Equipment . ....................... 23

EXPERIMENTAL PROCEDURE ....................... 25

S t a r t - Up ............................ 25O p e ra t io n . . . . . . . 26Shutdown . . . . . . . . . . . ............................ . . . . . . . . 28

RESULTS . . . . . . . ................... . ................................. . . . . . . .. 30

K i n e t i c s Model .......................................... 30S e t t l i n g V e l o c i t y E f f e c t . . . .................................................................... 50Design o f a Fines D e s t r u c t i o n System .......................................................... 55Inc rem en ta l O p e ra t in g Cost w i t h FDS ............................ 62Fines D e s t r u c t i o n by H ea t ing . . . . . . . . . . . . . . . . . 65Fines D e s t r u c t i o n by D i l u t i o n . . . . .................... . . . . . . . 66

Water in Feed S o l u t i o n . . . . . . . . . . . . . . . . . . . 68• Water Requi red t o D is s o l v e the Fines . . . . . . . . . . . . . 68

SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . 12

v

T ABLE OF C O N T E N T S - “ C o n t I n u e d

Page

APPENDIX A: SIZE IMPROVEMENT WITH FDS . . . . . . . . . . . . . . . 75

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

REFERENCES ....................... 82

L IS T OF ILLUSTRATIONS

F i g u r e

1.

2 .

3.

4.

5.

6 .

7-

8 .

9.

10.

11.

12.

13.

14.

15.

1 6 .

17.

18.

Page

I n t e r r e l a t i o n s h i p o f C r y s t a l Growth Rate, N u c le a t i o n R a te ,and CSD . . . . . . . . ........................ . . . . . . . . . . . 2

S te a d y - S ta te Compar ison o f MSMPR and FDS C r y s t a l - S i z eD i s t r i b u t i o n . . . ........................................................ 9

Schemat ic o f C r y s t a l l i z e r w i t h Fines D e s t r u c t i o n System . . 19

Schemat ic o f F ines Trap Device . . . . . . . . . . . . . . . 22

V a r i a t i o n o f S o l i d s C o n c e n t r a t i o n w i t h Time .......................... 31

C r y s t a l - S i z e D i s t r i b u t i o n , MSMPR Run 62176 ...................................... 34

C r y s t a l - S i z e D i s t r i b u t i o n , FDS Run 70176 . . . . . . . . . . . 35

C r y s t a l - S i z e D i s t r i b u t i o n , FDS Run 80476 . . . . . . . . . . 36

C r y s t a l - S i z e D i s t r i b u t i o n , FDS Run 31677 Using F r a c t i o n a l .F ines Trap Area . . . . . . . . . . . . . . . . . . . . . 37

C r y s t a l - S i z e D i s t r i b u t i o n , FDS Run 72876 . . . . . . . . . . 38

C r y s t a l - S i z e D i s t r i b u t i o n , FDS Run 111176 . ............................. 39

C r y s t a l - S i z e D i s t r i b u t i o n , FDS Run 60776 . . . . . . . . . . 40

C r y s t a l - S i z e D i s t r i b u t i o n , FDS Run 20377 . . . • ......... 41

C r y s t a l - S i z e D i s t r i b u t i o n , FDS Run .70676 . . . . . . . . . . 42

Compar ison o f C o u l t e r Counter Data Obta ined f rom D i f f e r e n tA p e r t u r e s , Run 70176 , ................... . . . . . . . . . . . . 45

C r y s t a l -S i ze Di s t r i b u t i o n , Run 70676 . .. . . . . . . . . . . . 46

Fines D i s t r i b u t i o n in C r y s t a l l i z e r P roduc t and Compar ison o f Computer S im u la t i o n and Expe r im en ta l R e s u l t s f o r Run 71576 . . . . . . . . . . . . . . . . . . ................... 48

F ines D i s t r i b u t i o n in C r y s t a l l i z e r P roduc t f rom S ieve andC o u l t e r Counter Techn iques ....................... 49

v i i

v i i i

L IST OF ILLUSTRATIONS — Cont inued .

F ig u re Page

19- N u c le a t ion -G row th Rate K i n e t i c s C o r r e l a t i o n f o r the KCTS y s t e m ....................... 51

20. T h e o r e t i c a l and Expe r im en ta l C o r r e l a t i o n s between th eC r i t i c a l S iz e , Lp, and the S e t t l i n g V e l o c i t y I n s i d ethe Fines Trap , . . . . . . . . . . . .• . . . . . . . 53

21. Design C o r r e l a t i o n s f o r S iz e Improvement w i t h FDS . . . . . 57

22. F r a c t i o n o f F ines D is s o lv e d versus. E x p o n e n t ia l DecayR a t i o , X . . . . . . . . . . . . . . . . . . . . . . . . 59

23. D e c is io n Flow Diagram f o r S ize Improvement A n a l y s i s . . . . 61

LIST OF TABLES

Tab le Page

1. Summary o f MSMPR and FDS E x pe r im en ta l R esu l ts ........................ J2

2. E xp e r im e n ta l and P r e d i c t e d S ize Improvement . . . . . . . . . 63

3- Cost E s t im a t i o n f o r F ines D e s t r u c t i o n by H e a t ing . . . . . . 67

4. Water Requirement f o r F ines D e s t r u c t i o n by D i l u t i o n . . . . . 69

5. F ines D e s t r u c t i o n by D i l u t i o n v e rsu s H ea t ing Techn ique . . . 71

ABSTRACT

A n u c l e a t i o n - g r o w th r a t e k i n e t i c s model f o r p o tass iu m c h l o r i d e in

t h e KCT-NaCi-h^O system was e x p e r i m e n t a l l y d e te rm ined in a mixed suspen­

s io n mixed p ro d u c t removal (MSMPR) c r y s t a l 1?z e r , equ ipped w i t h a f i n e s

d e s t r u c t i o n system (FDS) . Data o b t a in e d f rom both s t e a d y - s t a t e and

dynamic runs w e re ,u s e d . A c r y s t a l - s i z e d i s t r i b u t i o n (CSD) model was used

In the t r a d i t i o n o f Randolph and Larson and proved t o be adequate t o p r e ­

d i c t observed d a t a . P a r t i c l e s le s s than 150 pm in s i z e were removed f rom

t h e system u s ing a f i n e s t r a p l o c a te d i n s i d e t h e c r y s t a l l i z e r . D i f f e r e n t

c a l c u l a t e d t e r m in a l v e l o c i t i e s in t h e t r a p were c o r r e l a t e d w i t h the

l a r g e s t s i z e o f p a r t i c l e s b e in g d i s s o l ved as c a l c u l a t e d f rom semi lo g

p o p u l a t i o n d e n s i t y p l o t s . The a p p r o p r i a t e mass and p o p u l a t i o n b a la n c e s ,

t o g e t h e r w i t h the n u c l e a t ion k i ne t i cs o f the system, were combined t o

o b t a i n d es ign e q u a t i o n s and c o r r e l a t i o n s wh ich a c c u r a t e l y d e s c r i b e the

b e h a v io r o f the f i n e s d e s t r u c t i o n sys tem. The " p o i n t " f i n e s t r a p

a n a l y s i s ( i . e . , n e g l i g i b l e f i n e s mass) was extended t o t he genera l case

o f d i s s o l v i n g l a r g e r p a r t i c l e s and r e s u l t s were d is c u s s e d . C a l c u l a t i o n s

were p re s e n te d wh ich a l l o w e s t i m a t i o n o f t he in c re m e n ta l o p e r a t i n g c o s t

o f a c r y s t a l l i z e r t o produce c r y s t a l s o f an in c rease d s i z e u s in g an FDS.

IN T R OD UC T ION

Many o p e r a t i n g problems in i n d u s t r i a l c r y s t a l l i z a t i o n a re r e l a t e d

t o c r y s t a l - s i z e d i s t r i b u t i o n (CSD). For example , c r y s t a l h a b i t , p u r i t y ,

s a l t i n g ( f o u l i n g ) , c a p a c i t y , s c a l e - u p , and c r y s t a l 1 i z e r s t a b i 1 i t y a re

s t r o n g l y i n f l u e n c e d by t h e s i z e d i s t r i b u t i o n o f t he p r o d u c t be ing

o b t a i n e d . The main mechanism o f i n t e r a c t i o n between the se problems and

CSD is th ro u g h th e l e v e l o f d r i v i n g f o r c e s in t h e sys tem, I . e . , s u p e r -

s a t u r a t i o n . F i g . 1 (Randolph and La rson , 1971) shows how s u p e r s a t u r a t i o n

de te rm ine s t h e CSD and in t u r n is i n f l u e n c e d by th e CSD th r o u g h p rocess

feedback in t he system. T h us , r e f e r r i n g t o F i g . 1, t h e l e v e l o f supei—

s a t u r a t i o n is d e te rm in e d by the p r o d u c t i o n r a t e and t h e t o t a l c r y s t a l

s u r f a c e a rea a v a i l a b l e f o r d e p o s i t i o n . S u p e r s a t u r a t i o n , in t u r n , d e t e r ­

mines the g ro w th r a t e ( t h e r a t e a t wh ich t h e c r y s t a l s grow in t h e i r

l i n e a r d im ens ion ) and. t he n u c l e a t i o n r a t e ( th e r a t e a t wh ich new c r y s t a l s

a t a s i z e c l o s e t o ze ro a re f o r m e d ) . C r y s t a l g rowth r a t e i s o f t e n a

l i n e a r f u n c t i o n o f s u p e r s a t u r a t i o n , G( s ) , w h i l e n u c l e a t i o n r a t e t y p i c a l l y

has a powei— law dependency on S u p e r s a t u r a t i o n , B ° (s ) . Growth and

n u c l e a t i o n r a t e s , th rou g h th e p o p u l a t i o n b a la n c e , d e te rm in e the dynamic

CSD a t any g iv e n t im e . Since the t o t a l s u r f a c e a rea i s a f u n c t i o n o f t h e

d i s t r i b u t i o n , the loop i s c lo s e d . CSD then becomes a f u n c t i o n o f

n u c l e a t i o n - g r o w t h r a t e k i n e t i c s . For many c r y s t a l s y s te m s , r e l a t i v e

n u c l e a t i o n - g r o w th k i n e t i c s a re such t h a t , under o r d i n a r y p rocess c o n d i ­

t i o n s in an MSMPR c r y s t a l 1 i z e r , the p ro d u c t s i z e is l e s s than the

Rate o f ProductProduction CSD

Nucleation B° = B°( s )

Growth Rate

G = G(s)

Supersaturation s = s ( I /A t )

Crystal SurfaceArea.

At = f (n )

PopulationBalance

F ig . 1. I n t e r r e l a t i o n s h i p o f C r y s ta l Growth Rate, N u c le a t i o n Rate, and CSD.

d e s i r e d average s i z e . To i n c re a s e p a r t i c l e s i z e , d i f f e r e n t o p e r a t i n g

c o n d i t i o n s and s p e c i a l d es ign f e a t u r e s can be used . I n c r e a s in g the

s u p e r s a t u r a t i o n u s u a l l y in c rease s n u c l e a t i o n more than g rowth and , t h u s ,

decreases p a r t i c l e s i z e . Changes in t he mean r e t e n t i o n t im e have a .

l im i t e d e f f e c t on p a r t i c l e s i z e (Rando lph, 1965) , as shown by

E qua t ion ( 1 ) : - '

Ld = KTr - T / I+ 3 _ ; ( i )

where K i s a c o n s ta n t depending on feed c o n c e n t r a t i o n . F u r t h e r ,

i n c r e a s i n g r e t e n t i o n would in c re a s e c a p i t a l in ve s tm en t a n d / o r decrease

p r o d u c t i o n . A more p r a c t i c a l way t o improve t h e average p a r t i c l e s i z e ,

w i d e l y accep ted in i n d u s t r i a l c r y s t a l l i z a t i o n , -is t h e co n t in u o u s removal

o f the s m a l l e r c r y s t a l s o r f i n e s f rom the c r y s t a l magma, l e a v i n g the

l a r g e r c r y s t a l s t o grow t o l a r g e r average s i z e (Saeman, 1956; Larson and

Rando lph, 1969)• C l a s s i f i c a t i o n on the sma l l end o f t h e c r y s t a l spec­

t rum is ach ieved w i t h a f i n e s t r a p d e v i c e t h a t can be l o c a te d o u t s i d e o r

i n s i d e the c r y s t a l l i z e r .

The upward v e l o c i t y th rou gh the t r a p 1s s 1ow and o n l y f i n e

p a r t i c l e s reach th e t o p . L a rge r p a r t i c l e s whose t e r m i n a l s e t t l i n g

v e l o c i t y exceeds the t r a p v e l o c i t y f a l l t o the bot tom and a re re tu r n e d t o

t he c i r c u l a t i n g magma. The s t ream o f f i n e p a r t i c l e s i s drawn o f f t o a

h e a t e r o r u n s a tu r a te d re g io n where the y are d i s s o l v e d and th e c r y s t a l -

f r e e s o l u t i o n is r e c y c le d t o the c r y s t a l 1 i z e r . S?nee Saeman1s o r i g i n a l

work in 1956 th e re has been g row ing i n t e r e s t in the s tu d y and m o d e l l i n g

o f the e f f e c t on CSD o f f i n e s d i s s o l v i n g systems and in f i n e s t r a p

• ' ■ • .. 4

des ign ( Larson and Randolph, 1969; L e i , S h in n a r , and Ka tz , 1971;

Rando lph, Beer, and Keener, 1973; Juzaszek and Larson , 1977) .

Saeman (1961) d iscu ssed the o p e r a t i n g c h a r a c t e r i s t i c s o f a n u c l e i

d i s s o l v i n g sys tem. C a ld w e l l (1961 ) , d i s c u s s i n g the d r a f t - t u b e - b a f f l e

c r y s t a l 1 i z e r o p e r a t i o n , emphasized th e s t r o n g i n f l u e n c e t h a t removal of.

excess f i n e s has on c r y s t a l - s i z e d i s t r i b u t i o n . Larson and Randolph

(1969) p re s e n te d a gen e ra l p o p u l a t i o n ba lance f o r p a r t i c l e s in an

a r b i t r a r y su spe n s io n . W i th p ro p e r assumpt ions, , these e q u a t i o n s may

d e s c r i b e the t r a n s i e n t response t o changes in n u c l e i d i s s o l v i n g r a t e .

S ince the n , s e ve ra l s t u d i e s o f c r y s t a l 1 i z e r s w i t h f i n e s d e s t r u c t i o n

systems have appeared in th e l i t e r a t u r e .

Nauman and Szabo (1971) c h a r a c t e r i z e d the s t e a d y - s t a t e b e h a v io r

o f c o n t in u o u s r e c y c l e c r y s t a l 1 i z e r s w i t h n o n - s e l e c t i v e f i n e s t r a p s and ,

Nauman (1971) a na lyze d th e s e l e c t i v e f i n e s t r a p s and the d ra m a t i c im prove­

ment in c r y s t a l 1 i z e r pe r fo rm ance t h a t t h e y can cause. FInes t r a p s a l l o w

o p e r a t i o n a t h i g h e r s u p e r s a t u r a t i o n 1e v e l s than m igh t o th e r w i s e be

p o s s i b l e . 11 is usual 1y assumed t h a t th e t r a p behaves as a p o i n t f i n e s

t r a p , i . e . , f i n e s removal a t a s i z e n e g l i g i b l y smal l compared t o p r o d u c t -

s i z e c r y s t a l s .

Randolph and Larson (1971) r i g o r o u s 1y ana lyzed the e f f e c t o f

f i n e s d e s t r u c t i o n where the f i n e s are n o t n e g l i g i b l y sm a l l compa red t o

p r o d u c t - s i z e c r y s t a l s . F ines t r a p s no t o n l y a l l o w a d ju s tm e n t o f p a r t i c l e

s i z e t o a s i z e wh ich has a s p e c ia l i n t e r e s t f o r the i n d u s t r y pe r s e , b u t

the y a l s o have become an im p o r t a n t t o o l i n t h e c o n t r o l o f i n d u s t r i a l

V - ; 5

c r y s t a l 1 i z e r s s in c e p ro p e r m a n i p u l a t i o n o f t h e f i n e s d e s t r u c t i o n a l l o w s

s t a b i l i z i n g o f the o p e r a t i o n o f the c y r s t a l 1 i z e r and p r e v e n t i o n o f

c y c l i ng.

The im por tance o f CSD in any c r y s t a l l i z a t i o n p rocess due to i t s

i n t e r a c t i o n w i t h some o f t h e main p roblems u s u a l l y e nco un te re d in the

o p e r a t i o n o f i n d u s t r i a l c r y s t a l 1?z e rs has been emphas ized. I t was shown

how CSD is d e te rm ine d by t h e r e l a t i v e n u c l e a t i o n - g r o w th k i n e t i c s o f a

g iv e n sys tem and how th e o p e r a t i o n o f a co n t in u o u s c r y s t a l 1 i z e r equ ipped

w i t h a f i n e s d e s t r u c t i o n sys tem i n f l u e n c e s th e CSD be ing o b t a i n e d . I t i s

th e purpose o f t h i s s tud y to d e te rm in e a n u c 1e a t i o n - g r o w t h r a t e k i n e t i c s

model f o r the KC! sys tem, as w e l l as t o g i v e more i n s i g h t in t h e u nd e r ­

s ta n d in g o f the b e h a v io r o f f i n e s t r a p s . In p a r t i c u l a r , a d e s i g n - u s e f u l

model f o r t he p r e d i c t i o n o f c r y s t a l 1 i z e r per fo rm ance as a f u n c t i o n o f

f i n e s t r a p o p e r a t i o n w i l l be p re s e n te d . The e f f e c t o f t h e t e r m in a l

v e l o c i t y i n s i d e th e t r a p on the l a r g e s t s i z e o f p a r t i c l e s be ing d i s s o l v e d

w i l l be d e te rm in e d . The e f f e c t s o f a " p o i n t " f i n e s t r a p as w e l l as t h a t

o f a f i n e s t r a p where the mass o f f i n e s b e ing d e s t ro y e d i s no t n e g l i g i b l y

sma l l compared t o p r o d u c t - s i z e c r y s t a l s w i l l be d is c u s s e d . F i n a l l y , a

rough e s t i m a t i o n o f the o p e r a t i o n c o s t o f f i n e s d i s s o l v i n g w i l l be p r e ­

sen ted . A l t h o u g h the system used in t h i s s tu d y was KC1, t h e te c h n iq u e s

used to f i n d the k i n e t i c m ode l , and a l l t h e r e s u l t s c o n c e rn in g th e f i n e s

d e s t r u c t i o n loop shou ld be c o m p le te l y gene ra l and sh o u ld a p p ly t o any

o t h e r sys tem.

THEORY

Ki n e t i cs

C o n ven t io na l t h e o r e t i c a l c o n s i d e r a t i o n s a lo ne Have been demon­

s t r a t e d t o be i n s u f f i c i e n t t o p r e d i c t CSD. However, i t has been shown

(Randolph and L a r s o n , 1.971) t h a t a p o p u l a t i o n ba lance o v e r a c r y s t a l l i z a ­

t i o n sys tem can r e l a t e t he c o n s t r a i n t s o f t h e system and the c r y s t a l l i z a ­

t i o n k i n e t i c s o f t he s o l i d be ing c r y s t a l l i z e d t o t he s i z e d i s t r i b u t i o n

o b t a i n e d . The concep t o f t h e p o p u l a t i o n ba lance and I t s u s e fu ln e s s in

the a n a l y s i s o f p a r t i c u l a t e systems i s p re s e n te d e x t e n s i v e l y by Randolph

and Larson (1 971 ) . Systems wh ich a re s u b s t a n t i a l l y w e l l mixed in th e

m a jo r p o r t i o n o f t h e i r c r y s t a l l i z a t i o n volume w i l l have a c r y s t a l s i z e

d i s t r i b u t i o n independent o f s p a t i a l l o c a t i o n in t h e c r y s t a l 1 i z e r . For

such a sys tem, t he b a s i c p o p u l a t i o n ba lance i s :

^ ; i ^ + n d ^ . B . D , 2)'

' . ' k

Th is e q u a t i o n is averaged in e x t e r n a l phase space and d i s t r i b u t e d in

i n t e r n a l phase space, n i s the p o p u l a t i o n d e n s i t y p e r u n i t volume o f

suspens ion a t s i z e L, G is the l i n e a r g rowth r a t e , V i s t h e suspens ion

volume, B and D r e p r e s e n t e m p i r i c a l b i r t h and death f u n c t i o n s a t any -

p o i n t in the phase space , and a re f l o w s go ing i n t o V ( n e g a t i v e ) o r o u t

o f V (pos i t i v e ) .

6

For a s i n g l e - s t a g e , mixed suspens ion mixed p r o d u c t removal c r y s ­

t a l l i z e r (MSMPR), E qua t ion (2) can be s i m p l i f i e d i f i t is assumed t h a t :

McCabe's AL law can be a p p l i e d t o t h e system. T h is r e q u i r e s G

no t t o be a f u n c t i o n o f L, i . e . , G = d L / d t t6 G ( L ) . Under most

i n d u s t r i a l c o n d i t i o n s , t h i s law may be assumed t o h o l d .

c r y s t a l l i z e r as the r a t i o o f suspens ion volume to v o l u m e t r i c f l o w r a te o f

the p ro d u c t Stream, r = V/Qp, the p o p u l a t i o n b a lan c e , Equ a t ion ( 2 ) ,

becomes:

The p o p u l a t i o n d e n s i t y , n , re p re s e n t s the number o f p a r t i c l e s

(AN) in a g iv e n s i z e range (AL) pe r u n i t vo lume:

The suspens ion volume i s h e ld c o n s t a n t i n t i m e , i . e . ,

d (1og V ) / d t = 0.

No a g g lo m e ra t i o n o r g ross c r y s t a l f r a c t u r e o c c u r s , i . e . .

B = D = 0.

A l l feeds t o t h e c r y s t a l l i z e r a re c r y s t a l - f r e e , i . e . , n. = 0

The p o p u l a t i o n d e n s i t y o f the d i s c h a r g e i s the same t h a t e x i s t s

in t he mixed s u spe n s io n , i . e . , n^ = n

Under these c o n d i t i o n s * and d e f i n i n g the re s id en c e t im e o f the

(3)

I f t h e c r y s t a l l i z e r o pe ra tes under s t e a d y - s t a t e c o n d i t i o n s , Equa

t i o n (3) can be d i r e c t l y i n t e g r a t e d t o o b t a i n the e x p o n e n t i a l

d i s t r i b u t i o n :

n = n° exp [~L/Gt ] (4)

In Equa t ion ( 4 ) , n° is c a l l e d the n u c l e i d e n s i t y and can be expressed as

L=0

n o(5)

E qua t ion (4) p l o t s as a s t r a i g h t l i n e on s e m i - l o g a r i t h m i c graph paper .

in F i g . 2. The s lo p e o f t h e l i n e i s equal t o - 1 / Gt . Then, f o r a g ive n

o f the c r y s t a l 1 i z e r p r o d u c t .

The f o r m a t i o n o f new c r y s t a l s can r e s u l t f rom d i f f e r e n t mecha­

n ism s : . homogeneous n u c l e a t i o n , he te rogeneous n u c l e a t I o n , secondary

n u c l e a t i o n , and a t t r i t i o n . Homogeneous n u c l e a t ion is t h e f o r m a t i o n o f

new c r y s t a l s f ro m the l i q u i d phase as a r e s u l t o f s u p e r s a t u r a t i o n o n l y .

In he te rogeneous n u c l e a t i o n , c r y s t a l s a re formed due t o the presence o f

where n° r e p re s e n ts t he i n t e r c e p t o f t h i s l i n e a t z e ro s i z e , as shown

s t e a d y - s t a t e e x p e r i m e n t , CSD a n a l y s i s and t h e known v a lu e o f r a l l o w s t h e

d e t e r m i n a t i o h o f th e n u c l e i d e n s i t y , n , and t h e g rowth r a t e , G.

In a d d i t i o n t o t h e c o n s e r v a t i o n e q u a t i o n ( 4 ) , s u i t a b l e k i n e t i c

e q u a t i o n s a re needed. The n u c l e a t ion r a t e , B°, t h e r a t e a t wh ich new

c r y s t a l s a t s i z e near t o ze ro a re fo rmed, can be re p re s e n te d by

6° = d N / d t , when L -> 0 , and can be r e w r i t t e n in the fo rm :

(6 )L~0

T h us , the n u c l e a t ion r a t e can be e a s i l y de te rm ined f rom the CSD a n a l y s i s

PO

PU

LATI

ON

D

EN

SIT

Y,

n,

num

ber/

cc

mic

ron

9

n°2 o e-L/G|T, o < L < 00

o -L R /G .T - ■ ■V n2 e ' un /u2 1 -,0< L< L F

n2= A n2 e "L / G 2 ^ ; L p < L < 0 0 J9 = e -'h

on

-R

£n°MSMPR

FDS

LpCRYSTAL SIZE, L, MICRONS

F ig . 2. S te a d y -S ta te Compar ison o f MSMPR and FDS C r y s t a l - S i z e D i s t r i b u t i o n .

f o r e i g n p a r t i c l e s in t h e suspen s io n . Secondary nucTeat ion is a k i n d o f

he te rogeneous n u cT e a t ion where the f o r m a t i o n o f new c r y s t a l s i s induced

. by th e presence o f suspended c r y s t a l s in t h e s o l u t i o n . A t t r i t i o n r e f e r s

t o mechan ica l d e g r a d a t i o n o f suspended c r y s t a l s .

A number o f d i f f e r e n t n u c l e a t i o n models have been proposed s i n c e

the b e g in n in g o f t h e c e n t u r y . Vo 1 mer and Weber (1926) proposed an

A r r h e n i o u s - t y p e e x p r e s s io n f o r homogeneous n u c l e a t iO n :

B° = c exp ( -AG° /kT ) (7)

where c i s a p r o p o r t i o n a l i t y c o n s t a n t , AG° i s the f r e e energy o f f o rm a t

t i o n o f a n u c l e u s , k i s t h e B o l tz m an 's c o n s t a n t , and T i s t h e a b s o lu te

t e m p e ra tu r e . T h is e q u a t i o n can a l s o be expressed in terms o f the

geom et ry , s u r f a c e t e n s i o n , cr, f r e e e n e rg y , and s u p e r s a t u r a t i o n r a t i o , S:

B° = c exp ( -16 NmM^c^/3r^T^p^ log ^ S) (8)

The d i f f i c u l t y o f t h i s e x p r e s s io n is t h a t i t p r e d i c t s n u c l e a t i o n o n l y a t

e x t r e m e ly h ig h s u p e r s a t u r a t i o n , a phenomenon no t Observed in most

i n o r g a n i c c r y s t a l l i z a t i o n sys tems. A t p r e s e n t , i t i s accep ted t h a t t h e

p redom in an t n u c l e a t i o n mechanism in i n d u s t r i a l c r y s t a l l i z e r s is secondary

o r heterogeneous n u c l e a t i o n . A n o th e r n u c l e a t i o n model wh ich takes i n t o

accoun t he te rogeneous e f f e c t s was proposed by T u r n b a l l and F i s h e r ( 1 9 6 5 ) :

B° = B exp [ - ( l / k T ) l 6 7 r c 3v /3 k T l o g 2 S)b] (9)n

A g a in , t h i s model p r e d i c t s c r i t i c a l , s u p e r s a t u r a t i o n dependence, and o f t e n

f a i l s in p r e d i c t i n g e x p e r im e n ta l b e h a v i o r . Miens ' n u c l e a t i o n model is

. . . ; - ' ■ . V.

based on the concept o f a m e ta s ta b le , b u t s u p e r s a t u r a t e d , re g io n w i t h i n

wh ich n u c i e a t i o n does n o t o c c u r :

B" = k(C - C J 1 ; Cm > Cs ■ (10)

where C is the m e ta s ta b le t h r e s h o l d o f n u c l e a t i o n , C i s th e s o l u t e con-m

c e n t r a t io n , and C i s th e s a t u r a t e d so l u te c o n c e n t r a t i o n , k can be a

f u n c t i o n o f t e m p e r a t u r e , b u t i i s n o t . Randolph and. Larson (1971) have

c a r r i e d o u t e x p e r im e n ta l work t a k i n g C equal t o C w i t h c o n s i d e r a b l em s

success . In t h a t case, the model becomes the s im p le p o w e r - 1 aw f u n c t i o n :

B° = k(C - Cg) = ks (11)

N e v e r t h e le s s , t h i s s im p le powei— law model does no t c o n s i d e r secondary and

he te rogeneous e f f e c t s wh ich can be i d e n t i f i e d as sources o f n u c l e i

(C lo n t z and McCabe, 1971) . To be adequate as a gene ra l r e p r e s e n t a t i o n o f

n u c l e a t i o n r a t e , the model must a l s o c o n t a i n a dependence on such

phenomena. The n u c l e a t i o n p ow er - la w m o d e l :

B° = k s ' M j (12)

i s w i d e l y accep ted f o r i t s p r a c t i c a l i t y and u t i l i t y in d e s c r i b i n g

secondary n u c l e a t i o n . In Equa t ion ( 1 2 ) , My r e p re s e n ts t h e t o t a l mass o f

c r y s t a l s p e r u n i t volume o f s l u r r y . I f t he g rowth r a t e , G, i s assumed t o

be a l i n e a r f u n c t i o n o f the s u p e r s a t u r a t i o n :

G = kgtC - Cs ) (13)

12

then the p o w e r -1 aw model can be expressed in the more common form:

b ° = (14)

The r a t e c o n s t a n t , k ^ , i s l i k e l y t o depend on t e m p e r a tu r e , degree o f

a g i t a t i o n , and the presence o f i m p u r i t i e s .

Equa t ion (14) has been found t o be a s u i t a b l e c o r r e l a t i o n in many

systems (Randolph and C is e , 1972; Randolph and Youngqui s t , 1972; Larson ,

Timm, and W o l f f , 1968; Juzaszek and L a rs on , 1977).

S ize Improvement

The u s e fu ln e s s o f the. f i n e s d e s t r u c t i o n sys tem in im p rov ing th e

average s i z e o f the c r y s t a l l i z e d p r o d u c t i s l a r g e l y re c o g n iz e d . The

e x a c t b e h a v io r o f t h e f i n e s t r a p can be o b ta in e d by. s o l v i n g the appro ­

p r i a t e mass arid p o p u l a t i o n b a la n c e s , t o g e t h e r w i t h the n u c l e a t ion

k i n e t i c s o f th e sys tem. The f o l l o w i n g development o f des ign e q u a t io n s

f o r s i z e improvement i s based on t h e t h e o r y p re sen ted by Randolph and

Larson (1 9 71 ) .

By d e f i n i t i o n , ndL re p re s e n t s t h e number o f p a r t i c l e s per u n i t

volume o f s l u r r y w i t h s i z e s between L and L+dL, I f t h e w e ig h t o f each

c r y s t a l can. be r e l a t e d t o t h e cube o f i t s s i z e in t he fo rm :

mp = Pky1-3 0 5 )

where p i s th e c r y s t a l d e n s i t y and k i s a v o l u m e t r i c shape f a c t o r

r e l a t i n g p a r t i c l e volume f o s i z e cubed, then th e mass o f p a r t i c l e s w i t h

s i z e s in (L , L+dL) i s g ive n by :

dM = pk L^ndL v

13

( 16)

" 3 ' - -M = pk / L ndL ' (17)

0

r e p r e s e n t s t h e t o t a l mass o f c r y s t a l s p e r u n i t volume o f s l u r r y . The

shape f a c t o r i s . in de pen den t o f s i z e f o r g e o m e t r i c a l l y s i m i l a r p a r t i c l e s

and can be taken o u t o f t he i n t e g r a t i o n . For the e x p o n e n t i a l d i s t r i b u ­

t i o n g ive n by E qua t ion ( 4 ) , t h e s o l i d s c o n c e n t r a t i o n e x p r e s s io n becomes:

ML = pk / L^n° exp ( - L / G t ) d L (18)T : V 0 ;

o r

4My = 6pkv n°(Gt ) (19)

In a Glass I I c r y s t a l l i z e r ( lo w s u p e r s a t u r a t i o n , h ig h y i e l d ) w i t h

a p o i n t f i n e s t r a p , bo th s o l i d s c o n c e n t r a t i o n and r e t e n t i o n t im e remain

i n v a r i a n t when f i n e s d e s t r u c t i o n is imp lemented. I f s u b s c r i p t s 2 and 1

r e f e r t o th e cases w i t h and w i t h o u t f i n e s d e s t r u c t i o n , r e s p e c t i v e l y ,

the n : . ■

Mt = Mt (20 )2 1

o r

In th e r i g h t - h a n d s i d e o f Equa t ion (21) i t has been assumed t h a t t he mass

o f t h e f i n e s d e s t ro y e d i s n e g l i g i b l e compared t o t h e p r o d u c t , i . e . , a

" p o i n t " f i n e s t r a p . For t h e e x p o n e n t i a l d i s t r i b u t i o n , n(l_) i s g ive n by

Equa t ion ( 4 ) . When t h e c r y s t a l l i z e r i s equ ipped w i t h a f i n e s t r a p , two . - ■ - , -

d i f f e r e n t CSD's a re o b ta in e d as shown in F ig . 2 , one c o r r e s p o n d in g to the

f i n e s s t ream and the o t h e r t o t h e p r o d u c t s t re am . The s lo p e o f t h e f i n e s

CSD has t h e v a lu e o f -R/Gt , where R = 1 + Q^/Qp, Qp b e i n g th e f i n e s

removal r a t e . 6 re p r e s e n t s the f r a c t i o n o f c r y s t a l s n o t removed by th e

f i n e s t r a p , i . e . , t he f r a c t i o n s u r v i v i n g as p r o d u c t . Comb?n a t io n o f

Equa t ions (6) and (14) g i v e s :

n° = k NGM MTj (22)

B r i n g i n g (19) and (22) t o (21) y i e l d s an e x p r e s s io n f o r s i z e improvement

w i t h f i n e s d e s t r u c t i o n :

where L , i s

T / i + 3(23)

the dominant c r y s t a l s i z e (w e ig h t b as i s ) d e f i n e d as :

f o r an e x p o n e n t i a l d i s t r i b u t i o n . E qua t ion (23) i n d i c a t e s t h a t t h e e f f e c ­

t i v e n e s s o f f i n e s d e s t r u c t i o n in i n c r e a s i n g th e p a r t i c l e s i z e decreases

w i t h systems hav ing a h ig h s e n s i t i v i t y o f nuc i e a t ion t o g rowth r a t e ,

i n d i c a t e d by l a r g e v a lu e s o f th e pa ram ete r i . E qua t ion (23) can a l s o be

expressed a s :

I d - , - 1r ^ = = x / i + 3 (24)

d , ■

X i s c a l l e d the e x p o n e n t i a l decay r a t i o and i s g iv e n by

Lf (R - 1)A = ------------— - = - In 8 (25)

2

where Lp is t h e l a r g e s t s i z e o f p a r t i c l e s b e ing d e s t r o y e d , d e te rm in e d by

t h e i n t e r s e c t i o n o f t h e two d i f f e r e n t s i z e d i s t r i b u t i o n s , as shown in

F ig . 2. I t must be emphasized t h a t E qua t ion (23) ho lds f o r a p o i n t f i n e s

t r a p . A more r i g o r o u s e x p r e s s io n f o r s i z e improvement f o r th e case where

t h e mass o f f i n e s d e s t ro y e d is n o t n e g l i g i b l e can be o b t a i n e d by

e x te n d in g E qua t ion (21) t o :

|_. , F , ” n

/ n . I Z d L - / n_L dL + / n_L d l (26)0 1 . 0 2 LF 2

where , i n the case o f an e x p o n e n t i a l d i s t r i b u t i o n :

16

n 1 = n°^ exp ( - L / G ^ t )

n2 ~ " ° 2 exp ( “ l r / G2T^

r>2 = 6 n °2 exp ( - L / G - t )

0 < L < “

0 < L < L r

LF < L ‘<

( 27 )

M athem at ic a l m a n i p u l a t i o n o f E qua t ions ( 1 9 ) , ( 2 6 ) , and (27) leads t o a

more gene ra l e x p r e s s io n f o r s i z e improvement in t he fo rm :

14 W R = 1 L + e - > 1 7

R .

(0( X / R - l ) ]

l / i + 3

( 28)

where <w is the d? men si On less we igh t f r a c t i o n which can be expressed by an

incomplete gamma f u n c t i o n :

u) - y- / e P p^ dp • 0

(29)

S in ce Ly - 36%, c o m b in a t io n o f E qua t ions (23) and (25) a l l o w s e x p r e s ­

s io n o f the mass ba lan ce c o n s t r a i n t as:

G2 = G exp. X i+3

(30)

So, t o s a t i s f y the mass b a la n c e , t he decay r a t i o must s a t i s f y th e

e q u a t i o n :

lfV ■X exp ( X / i + 3 ) = G y - ■ = K ( 3 0

17

In o r d e r t o s o l v e Equa t ion ( 3 1 ) , a v a lu e f o r Lp must be e s t i m a te d f rom a

Stokes l a w - t y p e c o r r e l a t i o n o r o b ta in e d f rom e x p e r im e n ta l da ta ( p i l o t

p l a n t c r y s t a l l i z e r w i t h f i n e s d e s t r u c t i o n ) . S imple MSMPR e xpe r im en ts

p r o v id e t h e v a lu e o f and a good e s t i m a t i o n o f t h e pa ram ete r 1. When

th e v a lu e o f X i s found f rom E qua t ion ( 3 1 ) , t h e v a lu e o f / L ^ can be2 1

c a l c u l a t e d d i r e c t l y .

The t o t a l p r o d u c t i o n r a t e is g i v e n as :

P = Qppk / n l ^ d l (32)P V 0

The amount o f f i n e s d e s t ro y e d i s :

F .

PF = QpPk / nL dL (33)F R V 0

and the f r a c t i o n o f n e t p r o d u c t i o n wh ich is d i s s o l v e d and re c y c le d can be

c a l c u l a t e d f ro m :

0) ( X / R - l )a) ( X R / R - l )

D e t a i l s o f t h e deve lopment o f E qu a t ions (28) and (34) a r e p re sen ted in

the Append ix .

EXPERIMENTAL EQUIPMENT

The po tass ium c h l o r i d e c r y s t a l T i z e r used in t h i s e x p e r im e n ta l

s tu d y was composed o f the f o l l o w i n g e le m e n ts :

1. Feed t a n k .

2. F e e d - l i n e h e a t e r >

3* C r y s t a l I r z e r and f i n e s t r a p .

4. F ines d e s t r u c t i o n sys tem.

5* C r y s t a l l i z e r c o o l i n g system.

6 . A n a l y s i s equ ipm ent .

A schem at ic d ia g ram o f t h e system i s shown in F ig u re 3• The equ ipment

used in t h i s s tu d y is p a r t o f a more complex system used by James R.

Beckman in a p r e v io u s work and th e re a de r is r e f e r r e d t o Beckman (1976)

f o r a more d e t a i l e d d e s c r i p t i o n .

Feed Tank

The 2 0 0 - l i t e r t a n k was made from: epoxy f i b e r g l a s s and d i v i d e d

i n t o two co m par tm en ts , bo th b e ing w e l l - m i x e d by mar ine im p e l l e r s con­

nec ted t o a common c e n t r a l s h a f t d r i v e n a t 85 rpm by a 1/15 HP c o n s t a n t -

speed Dayton g e a m o t o r . T h is he lped t o assu re a c o n s t a n t s a l t c o n c e n t r a ­

t i o n in t h e l i q u i d be ing fed t o t h e c r y s t a l l i z e r . Each compartment had

abou t a h a l f o f the t o t a l c a p a c i t y and bo th were connec ted by a d ou ghn u t ­

shaped b a f f l e . The low er compartment r e c e iv e d the p r o d u c t s o l i d s and t h e

o v e r f l o w st reams f rom th e c r y s t a l 1 i z e r . In o r d e r t o assu re l i q u i d con­

t a i n e d in t h e ta n k was s a t u r a t e d w i t h s a l t , an excess o f p o tass ium

Feed.Q

ReturnSample

Level ControlTIC Fines

trapCWSteam

FromFeedTank

M Sample

ProductCrystallizer

Cond.

Heater Hold Cooler

Fines Destruction System

Crysta l l izerCoolingSystem

To Feed TankSystem

Fig . 3. Schemat ic o f C r y s t a l l i z e r w i t h Fines D e s t r u c t i o n System.

VO

2 0

c h l o r i d e c r y s t a l s was m a in ta in e d in t h i s compar tment . A c o n s ta n t s a l t

s a t u r a t i o n in the l i q u o r was assured by keep ing -a c o n s t a n t t e m p e ra tu r e in

t h e t a n k . T h is was done by a te m p e ra tu r e c o n t r o l l e r , a m o d i f i e d Dayton

t h e r m o s t a t wh ich r e g u la t e d t h e s u p p ly o f 150 p s ig steam t o the steam

h e a t in g c o i l s , a l s o l o c a te d in t he low er com par tm en t . The feed tank

t e m p e r a tu r e , u s u a l l y a t 70°C, was a l lo w e d t o change 1°C f rom t h e se t

p o i n t .

S a tu ra te d l i q u i d f rom th e lower compartment f l o w e d th rough th e

c e n t r a l h o le in th e b a f f l e i n t o t h e upper compartment f rom where i t was

fed t o the c r y s t a l l i z e r . A c o n t in u o u s i n - l i n e CUNO f i l t e r was i n s t a l l e d

in t h i s compar tment . The f i l t e r pump to o k abou t 5 l i t e r s p e r .m in u t e o f

c l e a r l i q u o r f rom th e upper compartment and d i s c h a rg e d the f i l t e r e d

l i q u o r t o t he lo w e r co m p ar tm en t . The f i l t e r was a b le t o r e t a i n f o r e i g n

p a r t i c l e s as s m a l1 as 5 pm. The f i l t r a t i o n sys tem, bes ides c l e a n in g t h e

feed s o l u t i o n o f i m p u r i t i e s , he lped t o reduce the t ime, r e q u i r e d t o reach

s t e a d y - s t a t e c o n c e n t r a t i o n in th e feed ta n k l i q u o r . T h is was an

im p o r t a n t a i d t o system s t a r t - u p .

Feed -L in e Hea te r

S in ce i t was necessa ry t o assu re t h a t the l i q u i d be ing pumped t o

the c r y s t a l l i z e r was p a r t i c l e - f r e e , the s o l u t i o n coming o u t o f the feed

tank f l o w e d th roug h 6 f e e t o f 3 / 8 - inch s t a i n l e s s s t e e l t u b i n g , wrapped

w i t h a h e a t i n g ta p e . The te m p e ra tu r e in t h i s l i n e was m a in ta in e d between

70 and 75°C.

. . . . 2 '

C r y s t a l l i z e r and Fines Trap

The epoxy f i b e r g l a s s c r y s t a l 1 i z e r had a c a p a c i t y o f 20 l i t e r s .

I n s i d e th e c r y s t a l l i z e r , t h e r e were two c o n c e n t r i c , t i g h t - w o u n d c o o l i n g

c o i l s . The o u t e r c o i l was a 3 / 8 - inch s t a i n l e s s s t e e l t ube w i t h 8 - inch

d ia m e te r w i n d i n g , wound around a d r a f t tube and f i x e d by t h r e e v e r t i c a l

b a f f l e s . The i n n e r c o i l was a 1 / 2 - i n c h s t a i n l e s s s t e e l tube w i t h 4 - i n c h

d ia m e te r w i n d i n g , a l s o f i x e d in p o s i t i o n by t h r e e v e r t i c a l b a f f l e s

a t t a c h e d t o t he d r a f t t u b e . Two s e ts o f removable v e r t i c a l c o o l i n g tubes

o f 3 / 8 - i n c h s t a i n l e s s s t e e l t u b i n g were added in o r d e r t o m in im iz e

2f o u l i n g . The e f f e c t i v e t o t a l c o o l i n g area was abou t 0 .6 m . The s l u r r y

in the c r y s t a l l i z e r was mixed by a mar in e i m p e l l e r wh ich fo r c e d i t t o

move down i n s i d e th e d r a f t tube a n d . up the o u t e r annul us formed by the

o u t e r c o o l i n g c o i l and t h e c r y s t a l 1 i z e r w a l l . The s h a f t o f t h e i m p e l l e r

was d r i v e n ,a t 500 rpm. '

The c r y s t a l ! i z e r was equ ipped w i t h a f i n e s t r a p made o f p l e x i ­

g la s s w i t h a t o t a l area o f abou t 45 cm^. I t o ccup ie d 1 /3 o f t h e a n n u la r

a rea formed between the i n n e r and t h e o u t e r c o o l i n g c o i l s . The t r a p

a l l o w e d s e p a r a t i o n and removal o f c r y s t a l s up t o 150 m ic ron s in s i z e f rom

the c r y s t a l l i z e r . An o v e r f l o w d e v i c e was I n s t a l l e d a t t he top o f t h e

t r a p f o r l e v e l c o n t r o l . The f i n e s t r a p d e v i c e is shown in F ig . 4. The

2te m p e ra tu r e o f t h e c r y s t a l l i z e r was c o n t r o l l e d by an I R c o n t r o l l e r w h ich

a d j u s te d t h e c o o l i n g w a te r b lend t e m p e ra tu r e in o r d e r t o keep the

c r y s t a l l i z e r te m p e ra tu r e a t 40°C. .

TOP VIEW5 cm

A

sampling tubeoverflow

FRONT VIEW

14 cm

optional slabs to reduce area

g. 4. Schemat ic o f F ines Trap Dev ice .

Fines D e s t r u c t i o n System

S o l u t i o n coming o u t o f the c r y s t a l 1 i z e r th rou g h t h e f i n e s t r a p

and c a r r y i n g c r y s t a l s o f up t o 150 m ic rons in s i z e was hea ted t o about

70°C in a steam h e a t e r . Hot l i q u o r l e a v in g the h e a t e r was s t o r e d in a

ho ld tan k f o r abou t h a l f a m in u te t o a l l o w t im e f o r the f i n e s t o d i s ­

s o l v e . A f t e r t h i s t im e , t h e l i q u o r was coo led as much as p o s s i b l e w i t h ­

o u t h av ing n u c l e i f o r m a t i o n b e f o r e be ing r e tu r n e d t o th e c r y s t a l 1 i z e r .

T h is was necessary in o r d e r t o keep te m p e ra tu r e changes t o a minimum and

reduce f o u l i n g in t h e c o o l i n g c o i l s . In an i n d u s t r i a l s y s te m , f i n e s

wou ld n o r m a l l y be d e s t ro y e d by d i l u t i o n , r a t h e r than h e a t i n g . However,

no d i l u t i o n c o u ld be used in t h e p re s e n t s tu d y due t o th e t o t a l r e c y c l e

o f p r o d u c t t o t h e feed t a n k .

C r y s t a l 1 i z e r C o o l jn g System

The c o o l i n g system c o n s i s t e d o f t h r e e Eas te rn c e n t r i f u g a l pumps,

a b lend t a n k , and the c r y s t a l 1 i z e r c o o l i n g c o i l s . The warm w a te r c i r c u ­

l a t i n g w i t h i n the c o o l i n g c o i l s was b lended w i t h f r e s h coo l w a te r in th e

b lend t a n k . Use o f a tempered w a te r system r a t h e r than d i r e c t c o n t r o l o f

c o o l i n g w a te r f l o w r a t e ensured t h e lo w e s t p o s s i b l e AT d r i v i n g f o r c e

ac ross the c o o l i n g c o i l s and th e re b y m in im ize d f o u l i n g ,

• An a 1 y s i s Equipme n t -- ... - ...

Samples were taken f rom th e c r y s t a l l i z e r p r o d u c t s t ream and th e

f i n e s d e s t r u c t i o n loop s t re am . The c r y s t a l - s i z e d i s t r i b u t i o n o f the p r o ­

d uc t was o b t a i n e d by us ing an A11e n - B r a d le y Son ic S i f t e r Model L3P

equ ipped w i t h a 6 - t r a y s t a c k . The t r a y s i z e s ranged f rom 37 t o 2000 pm,

i n c r e a s i n g by a f a c t o r o f vT. The CSD o f t h e f i n e s s t ream was d e te rm ined

us ing a C o u l t e r Coun te r Model T equ ipped w i t h s e v e ra l probes w i t h d i f f e r ­

e n t a p e r t u r e s i z e s ra n g in g f rom 50 t o 400 pm.

EXPERIMENTAL PROCEDURE

Start-Up

Each e x pe r im en t was i n i t i a t e d by p r e p a r i n g t h e feed ta n k s o l u t i o n

f o r abou t 2 hours b e f o r e t h e s t a r t o f t h e ru n . The feed t a n k , f i l l e d

i n i t i a l l y w i t h 200 l i t e r s o f c o ld w a t e r , a p p r o x im a t e l y 40 k i l o g ra m s o f

s o l i d po ta ss iu m c h l o r i d e , and 48 k i l o g r a m s o f sodium c h l o r i d e , was warmed

up by t u r n i n g t h e steam on . The te m p e ra tu r e c o n t r o l l e r connec ted t o t h e

feed t a n k was a l s o t u r n e d on. The i m p e l l e r s were t u r n e d on a f t e r v e r i ­

f y i n g t h a t t h e v e r t i c a l s h a f t was f r e e o f c r y s t a l d e p o s i t i o n . Run

o p e r a t i n g te m p e ra tu r e o f between 68 and 70°C was a ch ieve d a f t e r abou t one

and o n e - h a l f h o u rs . Then, t h e CUNO f i l t e r connected t o t h e feed ta n k was -

s t a r t e d . S pe c ia l ca re was taken t o make su re t he feed t a n k c o n ta in e d

excess s o l i d - p h a s e s a l t on th e bo t tom . When the feed t a n k l i q u o r was a t

t h e r e q u i r e d t e m p e ra tu r e and c o n c e n t r a t i o n , t h e c r y s t a l l i z e r was f i l l e d .

F i r s t , i t was charged w i t h s a t u r a t e d l i q u o r r e s id u e saved f rom the end o f

t h e p r e v io u s run in a h o ld t a n k . T h is reduced i n i t i a l f o u l i n g . The

c r y s t a l l i z e r i m p e l l e r , t h e c o o l i n g w a te r sys tem, and t h e t e m p e ra tu r e con­

t r o l l e r s were t u r n e d on a t t h i s t im e . The charge o f t he c r y s t a l l i z e r was

comple ted by pumping l i q u o r a t 70°C f rom t h e feed t a n k . Power was t u r n e d

on t o t h e f e e d - l i n e h e a t e r a f t e r t h e feed pump was s t a r t e d . When th e

c r y s t a l l i z e r was f i l l e d t o t he c o n t r o l l e v e l , t h e p r o d u c t pump was

s t a r t e d . The feed and p ro d u c t pumps were s e t a p p r o x im a t e l y t o the

d e s i r e d s e t t i n g s . Then th e f i n e s loop pump was t u r n e d on . When l i q u o r

25

. - ' 26

coming f rom th e c r y s t a l i i z e r s t a r t e d t o f i l l t he f i n e s h o l d . t a n k , steam

was tu r n e d on t o a c t i v a t e t h e h e a t e r . S pe c ia l ca re was taken in keep ing

th e f i n e s r e c y c l e s t ream warm enough t o a v o id n u c l e a t ion a n d , hence, l i n e

p l u g g in g a n d / o r system s e ed in g . A f t e r t h e f i n e s loop s t ream was f l o w i n g

c o n t i n u o u s l y f o r a moment, th e l e v e l in t h e c r y s t a l 1 i z e r was once aga in

ach ieve d and t h e e n t i r e process was on s t re am . The v o l u m e t r i c f l o w r a te s

in each pump were now a c c u r a t e l y s e t u s in g a g radu a ted c y l i n d e r and s to p

w a tch . The f l o w r a te s were p e r i o d i c a l l y checked , in t h i s way t o keep them

c o n s t a n t d u r i n g t h e e n t i r e r u n .

O p e ra t io n

In each r u n , t h e s l u r r y d e n s i t y in t h e c r y s t a l 1 i z e r , My, was

m o n i to r e d ve rsus t im e . To g e t t he v a lu e o f My, samples f rom the p r o d u c t

s t re am , wh ich is r e p r e s e n t a t i v e o f t h e c r y s t a l 1 i z e r c o n t e n t s , were taken

e v e r y h a l f hour by i n t e r r u p t i n g the p ro d u c t l i n e and c o l l e c t i n g the

s t ream in a 600-ml bea ke r . A P r e c i s i o n S c i e n t i f i c Lab t i m e r was used and

around 20 grams were c o l l e c t e d in a l - m l n sample. The sample was poured

i n t o a c l e a n , d ry 350-cc s i n t e r e d g la s s buchner f u n n e l . L i q u i d and s o l i d

phases were s e pa ra ted u s in g vacuum. The volume o f l i q u i d was measured in

a g ra dua te d c y l i n d e r and r e tu r n e d t o t h e c r y s t a l 1 i z e r . The s o l i d , p r e ­

v i o u s l y washed o f mother l i q u o r w i t h a c e t o n e , was vacuum d r i e d . T h is

wash was necessa ry t o p re v e n t p a r t i c l e a g g lo m e r a t i o n . A ru b be r po l iceman

was used t o c a r e f u l l y d i s t r i b u t e th e p a r t i c l e s d u r i n g t h e d r y i n g o p e ra ­

t i o n t o a v o id c r y s t a l a g g lo m e r a t i o n . The d r i e d c r y s t a l s were weighed in

a 100-gram M e t t i e r ba lance . . The w e ig h t o f s o l i d s was d i v i d e d by t h e

volume o f f i l t e r e d l i q u i d t o o b t a i n t h e s l u r r y d e n s i t y .

■■■ ' . ' 27

A p p r o x im a te l y t h r e e hours a f t e r t h e equ ipment was o p e r a t i n g w i t h ­

o u t i n t e r r u p t i o n , a s t e a d y - s t a t e c o n d i t i o n was re a ch e d . T h is was d e t e r ­

mined when no v a r i a t i o n in t h e magma d e n s i t y w i th , t im e was o b s e r v e d .

V a r i a t i o n s o f less than 5 p e r c e n t around a mean v a lu e o f MT were con-' : . I

s i d e r e d i n h e r e n t t o the e x p e r im e n ta l o p e r a t i o n . The t im e a t wh ich the

s teady s t a t e was reached was the " r e a l " s t a r t i n g p o i n t o f t h e run in

terms o f c o l l e c t i n g the d e s i r e d i n f o r m a t i o n on the system w o rk in g under

the chosen c o n d i t i o n s .

S t e a d y - s t a t e c o n d i t i o n s were s u s ta in e d f o r 5 -6 h o u rs . Dur ing

t h a t t im e , p r o d u c t and f i n e s st reams were sampled eve ry h a l f h o u r . The

p r o d u c t was sampled in t h e way d e s c r ib e d f o r v a lu e s . In a d d i t i o n ,

a f t e r w e ig h in g th e s o l i d s , th e y were s ie v e d t o d e te rm in e t h e c r y s t a l - s i z e

d i s t r i b u t i o n . A sma l l sample f rom th e f i n e s s t ream in t h e f i n e s d i s ­

s o l v i n g loop was o b t a i n e d by i n t e r r u p t i n g t h e l i n e a t a p o i n t l o c a te d

b e f o r e t h e h e a t e r . The sample was c o l l e c t e d in a 10 0 - c c b eake r . The

s o l u t i o n was q u i c k l y poured i n t o a 3007ml Pyrex fun ne l w i t h a p o r o m e t r i c

membrane (1 urn pore d ia m e te r ) where the c r y s t a l s were im m ed ia te l y

se p a ra te d f rom the l i q u o r , f l u s h e d w i t h methanol and a c e to n e . The who le

o p e r a t i o n t o o k o n l y a few se con d s . Rapid f i l t e r i n g was necessary t o

a v o id p r e c i p i t a t i o n o f new c r y s t a l s . The f i l t e r e d s o l u t i o n volume was

measured in a 10 0 -cc g ra d u a te d c y l i n d e r and re tu r n e d t o t h e c r y s t a l l i z e r .

The d r i e d c r y s t a l s were resuspended in e l e c t r o l y t i c i so p ro p a n o l s o l u t i o n

and coun ted w i t h an e l e c t r o n i c c o u n t e r . The Isop rop ano l s o l u t i o n con­

s i s t e d o f i s o p r o p y l a l c o h o l s a t u r a t e d w i t h ammonium t h I o c y a n a t e and KC1

2 8

c r y s t a l s . The s o l u t i o n was c a r e f u l l y f i l t e r e d in a p o r o m e t r i c membrane

b e fo re use.

When u s ing the C o u l t e r Counte r Model T t o g e t t h e c r y s t a l - s i z e

d i s t r i b u t i o n o f the f i n e s s t re am , i t was found t h a t t h e 400 ym a p e r t u r e

was the most a p p r o p r i a t e f o r the s i z e range o f the c r y s t a l s being coun ted

(< 150 y m ) . i t was u s u a l l y n e cessa ry t o d i l u t e the resuspended c r y s t a l s

t o lower t h e p a r t i c l e c o n c e n t r a t i o n r e q u i r e d by t h e equ ipm en t .

Shutdown

The p ro ced u re d e s c r ib e d be low was f o l l o w e d in o r d e r t o e l i m i n a t e

any mechan ica l p roblems d u r i n g t h i s s t e p and in f u t u r e s t a r t - u p s . A l l

e l e c t r i c a l hea t arid steam was t u r n e d o f f t o cool th e s y s t e m . . The feed

pump was run in re v e rs e t o empty th e l i n e and then t u r n e d o f f . The feed

l i n e was d is c o n n e c te d f rom th e feed pump and f l u s h e d w i t h w a te r t o remove

a l l c r y s t a l s . T h is e l i m i n a t e d th e p o s s i b i l i t y o f h a v in g p lugs in the

l i n e w h ic h would cause d e la y in t he n e x t s t a r t - u p . The f i n e s pump was

a l s o re ve rsed and t h e f i n e s d i s s o l v i n g system l i n e was d r a i n e d back t o

t h e feed t a n k . The p ro d u c t pump was r e v e rs e d and s to p p e d , and the

c r y s t a l 1 i z e r c o n te n t s were d ra in e d p a r t i a l l y t o a h o ld t a n k , and then t o

t h e feed t a n k . The h o ld t a n k c o n te n t s wou ld be used t o charge th e

c r y s t a l 1 i z e r in t he n e x t r u n . When th e c r y s t a l 1 i z e r was empty, the

Impel l e t was t u r n e d o f f . The f i l t e r pump was a l s o s topped and th e f i l t e r

l i n e s were se pa ra ted f rom the feed t a n k . The e n t i r e system was then

f l u s h e d w i t h w a te r t o remove a l l c r y s t a l d e p o s i t i o n s . The f i l t e r i t s e l f

was washed w i t h h o t w a te r t o remove a l l accumula ted i m p u r i t i e s , so t h a t

i t was ready t o be used i n . a f u t u r e run . The feed ta n k was l e f t t o cool

29

w i t h t h e i m p e l l e r on t o a v o id a mass ive d e p o s i t i o n o f c r y s t a l s on the

v e r t i c a l s h a f t . I f t h i s p rocedu re was f o l l o w e d , the equ ipment would be

ready f o r t he nex t s t a r t - u p w i t h few problems and d e l a y s .

RESULTS

R e s u l t s a re p re sen ted in t h e o r d e r in wh ich t h e research program

was c a r r i e d o u t : n u c l e a t i o n - g r o w t h k i n e t i c s model , e f f e c t o f f i n e s t r a p

o p e r a t i o n on CSD, t e r m in a l v e l o c i t y measurements o f KC1 c r y s t a l s , des ign

e q u a t i o n s f o r m o d e l l i n g f i n e s t r a p o p e r a t i o n , and c o s t e s t i m a t i o n f o r

c r y s t a l s i z e im provem ent .

K i n e t i c s Model

In o r d e r t o d e te rm in e the pa ram ete rs o f E qu a t io n ( 1 4 ) , two d i f f e r ­

e n t t ypes o f e x pe r im e n ts were conduc ted under s t e a d y - s t a t e c o n d i t i o n s .

The c r y s t a l l i z e r was o p e ra te d as a s im p le MSMPR r e a c t o r and the c o r r e ­

spond ing va lues o f n 0 and G were o b t a i n e d f rom CSD a n a l y s i s . , Then a

f i n e s d e s t r u c t i o n system was implemented and CSD a n a l y s i s o f t h e p r o d u c t

and f i n e s st reams p r o v id e d th e c o r re s p o n d in g v a lues o f n ° , G, and Lp. In

each ru n , t h e d e n s i t y o f t he c r y s t a l 1 I z e r magma was reco rded versus t im e

and an average v a lu e o v e r t h e e n t i r e s t e a d y - s t a t e o p e r a t i o n was taken .

The v a r i a t i o n in so l ids c o n c e n t r a t i o n d u r i n g a t y p i c a l e xpe r im e n t is

shown in F ig . 5-

Each run was s u s ta i n e d as long as necessa ry t o reach s teady

s t a t e , u s u a l l y 6 -7 re s id e n c e t im e s . D u r ing t h i s p e r i o d , p ro d u c t and

f i n e s s t reams were sampled ev e ry h a l f h o u r . The gen e ra l o p e r a t i n g c o n d i ­

t i o n s were :

Feed r a t e , Qp - 400 cc /m in

P ro du c t r a t e , Qp = 400 c c /m in

30

SOLI

DS

CO

NC

EN

TRA

TIO

N

4 5 6 7

T IM E , HOURS

F ig . 5• V a r i a t i o n o f S o l i d s C o n c e n t ra t i o n w i t h Time.

32

C y r s t a l 1 i z e r I m p e l l e r = 500 rpm

C y r s t a l l i z e r t e m p e ra tu r e = 40°C

Feed s o l u t i o n t e m p e ra tu r e = 70°C

Residence t im e , t = 45 min

The feed and p ro d u c t r a t e were se t equal in o r d e r t o keep the o v e r f l o w

near z e ro because c l e a r l i q u o r advance ( o v e r f l o w ) a l s o i n f l u e n c e s CSD.

The r e s u l t s o f t h i s S e r ie s o f e x p e r im e n ts a re summarized in Tab le 1.

Tab le 1 . . Summary o f MSMPR and FDS E xpe r im en ta l R e s u l t s .

% n° G mt l f

, Exp (c c /m in ) Mode (# /cc -ym ) (ym/min) (gm/T) (pm)

62176 0 MSMPR 32 2 .2 4070676 : 0 : MSMPR 24 2 .4 45 - -

70176 1520 FDS 71 3 .0 42 5572876 1515 FDS 42 3.1 64 3080476 1550 FDS 58 3 .2 64 5231677 1500 FDS 456 2 .5 55 90

111 176 2200 FDS 500 3.1 50 82

60776 2920 FDS 1160 4 .7 44 13520377 3000 FDS 1000 4.1 63 13071576 2990 FDS 600 4 .6 43 15070676 3540 FDS 600 5 .0 43 130

Tw o .expe r im en ts were conducted w i t h the MSMPR mode (0_R = 0) . Ri

'0676 was s t a r t e d under FDS <c o n d i t i o n s and conducted in t h i s mode a t

; teady s t a t e f o r 6 res Idence t im e s t o t a k e samples o f th e c r y s t a l l i z e r

p ro d u c t and f i n e s s t re a m s . A f t e r t h i s p e r i o d , t h e o p e r a t i n g c o n d i t i o n s

were changed t o MSMPR mode, s h u t t i n g down the f i n e s d e s t r u c t i o n lo o p . A

■ 33

s l i g h t l y d i f f e r e n t s teady s t a t e was reached a f t e r 2 re s id en c e t im es and

m a in ta in e d f o r 6% w h i l e sam p l ing the p r o d u c t .

A n a l y s i s o f the da ta shows t h a t the system can change e a s i l y f rom

one mode t o the o t h e r w i t h o u t becoming u n s t a b l e . F i g . 6 shows the

expec ted s e m i - l o g p o p u l a t i o n d e n s i t y o b t a i n e d f rom an MSMPR e x p e r i m e n t .

A s e r i e s o f n in e e x pe r im e n ts was conduc ted under FDS c o n d i t i o n s

f o r t h r e e d i f f e r e n t l e v e l s o f the f i n e s removal r a t e , CL : 1500, 2200,

and 3000 c c /m in . F ig s . 7 th rough 14 are th e p o p u l a t i o n d e n s i t y p l o t s f o r

t y p i c a l runs a t d i f f e r e n t s .

In these f i g u r e s , the s t r a i g h t l i n e s r e p r e s e n t i n g th e CSD were

de te rm in e d as f o l l o w s . From the s ie v e a n a l y s i s d a ta , the c u m u la t i v e

w e ig h t d i s t r i b u t i o n f u n c t i o n ,

W(L) = pt<v f p n (p) dp/M-j. ,0

was c a l c u l a t e d and p l o t t e d ve rsus th e c r y s t a l s i z e , L. Ta k in g d e r i v a ­

t i v e s o f t h i s c u r v e , the w e ig h t d i s t r i b u t i o n f u n c t i o n , w, was d e te rm ine d

and the p o p u l a t i o n d e n s i t y was then c a l c u l a t e d f rom th e r e l a t i o n - 3

n = wMy/pkyL , where L is t h e average s i z e between two s u c c es s i v e s ie v e

s c r e e n s , By u s ing l i n e a r r e g r e s s io n a n a l y s i s , the b e s t l i n e was f i t t o

these p o i n t s . The symbol A was used in a 1.1 the p o p u l a t i o n d e n s i t y p l o t s

t o r e p re s e n t a c tu a l da ta p o i n t s as th e y were d i r e c t l y o b t a i n e d f rom s ie v e

a n a l y s i s .

I t can be obse rved t h a t as Q, i n c re a se s h i g h e r v a lu es o f n° and

Lp were o b t a i n e d . As d e c r e a s e s , t he s lo pes o f the s t r a i g h t l i n e s

PO

PU

LATI

ON

D

EN

SIT

Y,

n,

num

ber/

cc

mic

ron

RUN 6/21/76Q r = Odc/min (MSMPR) Qf = Qp= 4 0 0 cc/min

A Sieve Data

— Linear Regression

4 0 0 8 0 0200

CRYSTAL S IZ E , L, M IC RONS

F ig . 6, C r y s t a l - S i z e D i s t r i b u t i o n , MSMPR Run 62176.

PO

PULA

TIO

N

DE

NS

ITY

, n

, nu

mbe

r/cc

m

icro

n35

RUN 7 /0 1 /7 6 Qr = 1500 c c /m in

Coulter Counter Data

Sieve Data

L inear Regression

Stat ist ically Insignificant Data (less than 10 counts per channel)

10

I

io-'

4 0 0 6 0 0200CRYSTAL S I Z E , L, MICRONS

F i g . 7- C r y s t a l - S i z e D i s t r i b u t i o n , FDS Run 70176.

PO

PU

LATI

ON

D

EN

SIT

Y,

n,

num

ber/

cc

mic

ron

36

R U N 8 / 0 4 / 7 6

Qr = 1500 cc/m in

Qf = Qp = 4 0 0 cc /m ii)

o Coulter Counter Data

A Sieve Data

— L inear Regression

X Statistically Insignificant Data (less than 10 counts per channel)10

IQ-'

100 300 500 700 900

C RYSTA L S IZ E , L , M ICRONS

F ig . 8. C r y s t a l - S i z e D i s t r i b u t i o n , FDS Run 80476.

PO

PU

LATI

ON

D

EN

SIT

Y,

n,

num

ber/

cc

mic

ron

3 7

RUN 3 / 1 6 / 7 7Q r = 1 5 0 0 cc/min Qp = Qp = 4 0 0 cc/min Fines Trap Area = 1/3

o Coulter Counter Data 6 Sieve Data

— Lin ear Regression x Sta t is t ica l ly Ins ignif icant Data

(less than 10 counts per channel)

, 0 - 4 # i i i________ I________ !_________I________ !________ I________ I________ !_________I________ I___

2 0 0 4 0 0 6 0 0 8 0 0 1000 1200CRYSTAL S I Z E , L, MICRONS

F ig . 9. C r y s t a l - S i z e D i s t r i b u t i o n , FDS Run 31677 Using F r a c t i o n a l F ines Trap Area.

PO

PULA

TIO

N

DE

NS

ITY

, n

, nu

mbe

r/cc

m

icro

n

RUN 7 / 2 8 / 7 6 Q r = 1500 cc /m in

o Coulter Counter Data & Sieve Data — Linear Regression

x S t a t is t ic a l ly Ins ig n i f ican t Data (less than 10 counts per channel)

10

4 0 0 6 0 0200C R Y S T A L S IZ E , L, M IC R O N S

F i g . 1 0 . C r y s t a l - S i z e D i s t r i b u t i o n , FDS Run 7 2 8 7 6 .

POP

ULA

TIO

N

DE

NS

ITY

, n

, nu

mbe

r/cc

m

icro

n39

RUN I I / I 1 / 76

Qr = 2 2 0 0 cc /m in Qc = Qp = 4 0 0 c c / m in

o Coulter Counter Data A Sieve Data — Lin ear Regression

x Stat is t ica l ly In signif icant Data (less than 10 counts per channel)

10-

- 24 0 0 6 0 0200 8 0 0

CRYSTAL S IZ E , L, MICRONS

F i g . 1 1 . C r y s t a l - S i z e D i s t r i b u t i o n , FDS Run 1 1 1 1 7 6 .

PO

PU

LATI

ON

D

EN

SIT

Y,

n ,

num

ber/

cc

mic

ron

4 0

RUN 6 / 0 7 / 7 6Qr = 3 0 0 0 cc /m in Qp = Qp = 4 0 0 cc/min

o Coulter Counter Data A Sieve Data — Linear Regression x Sta t is t ica l ly Ins ig n i f ic ant Data

(less than 10 counts per channel)

2 0 0 4 0 0CRYSTAL S IZ E , L, MICRONS

600

F i g . 1 2 . C r y s t a l - S i z e D i s t r i b u t i o n , FDS Run 6 0 7 7 6 .

POPU

LATI

ON

D

EN

SIT

Y,

n.

num

ber/

cc

mic

ron

41

R U N 2 / 0 3 / 7 7

Qr = 3 0 0 0 cc/min Qp = Qp = 4 0 0 cc/min

o Coulter Counter Data a Sieve Data — L i n e a r Regression x Sta t is t ica l ly Insigni ficant Data

(less than 10 counts per channel)

10

10*

800 1000600200 400CRYSTAL S IZ E , L, MICRONS

F i g . 1 3 . C r y s t a l - S i z e D i s t r i b u t i o n , FDS Run 2 0 3 7 7 .

PO

PU

LATI

ON

D

EN

SIT

Y,

n ,

num

ber/

cc

mic

ron

4 2

RUN 7 / 0 6 / 7 6Q r = 3 5 0 0 cc /m in Qp = Qp = 4 0 0 cc /m in

o Coulter Counter Data a Sieve Data

— L in e a r Regression x S t a t is t ic a l ly Insignificant Data

(less than 10 counts per channel)

2 0 0 4 0 0 6 0 0 8 0 0

C R Y ST A L S I Z E , L, M IC RONS

F i g . 1 4 . C r y s t a l - S i z e D i s t r i b u t i o n , FDS Run 7 0 6 7 6 .

. f - 43

re p r e s e n t i n g the p o p u l a t i o n d e n s i t y o f t he l a r g e and sma l l c r y s t a l s

become s t e e p e r , thus i n d i c a t i n g a d e c r e a s in g g rowth r a t e , G. The va lu es

o f the g rowth r a t e c a l c u l a t e d f rom the s lop es o f the p r o d u c t and f i n e s

CSD's sh ou ld be the same. . For a l l e x p e r im e n t s , these v a lu es o f g rowth

r a t e as measured f rom the two s t r a i g h t - l i n e segments o f the p o p u l a t i o n

d e n s i t y p l o t matched q u i t e W e l l , w i t h a maximum d i s c r e p a n c y o f 10%.

The l a r g e s t p a r t i c l e s i z e be ing d e s t ro y e d in t h e f i n e s lo o p , Lp,

was o b ta in e d e x p e r i m e n t a l l y f rom the i n t e r s e c t i o n between the f i n e s and

p ro d u c t CSD's. I t can be observed though t h a t v a lu e s o f L g r e a t e r than

Lp were a p p a r e n t l y measured by th e C o u l t e r Co un te r . T h is r e s u l t has been

r e p o r te d in t he l i t e r a t u r e a l t h o u g h n o t c o m p le te l y e x p l a i n e d . H e l t and

Larson (1976) a t t r i b u t e t h i s r e s u l t t o the e x i s t e n c e o f a p a r a b o l i c

v e l o c i t y p r o f i l e i n s i d e th e f i n e s t r a p due t o l a m in a r f l o w wh ich e n t r a i n s

some c r y s t a l s l a r g e r than expec ted based on the average f l o w r a t e .

A f l u i d v e l o c i t y h i g h e r than th e mean v e l o c i t y wou ld then e x i s t

a t t he c e n t e r o f the t r a p c a r r y i n g c r y s t a l s o f l a r g e r s i z e . However, i f

p a r t i c l e s a t s i z e s g r e a t e r than Lp were a c t u a l l y be ing removed f rom th e

t r a p , a n o t i c e a b l e e f f e c t on the p r o d u c t CSD shou ld be o bse rve d , i . e . ,

t h e l i n e r e p r e s e n t i n g t h i s d i s t r i b u t i o n would be s h i f t e d downwards.

Sieve a n a l y s i s o f the p r o d u c t d id n o t show such an e f f e c t , i n d i c a t i n g

t h a t f i n e s l a r g e r than Lp were n o t a c t u a l l y be ing removed.

T h is sugges ts t h a t these da ta p o i n t s are a p p a r e n t , p ro b a b ly due

t o c o in c id e n c e o r n o i s e when us ing the C o u l t e r C o u n te r . Data p o i n t s t h a t

a re c l o s e to the re a l d i s t r i b u t i o n , i . e . , a t s i z e s n o t much g r e a t e r than

Lp, m ig h t have been caused by c o in c id e n c e , i . e . , two p a r t i c l e s o f a smal l

4 4

s i z e a re counted a t the same t im e by th e c o u n t e r . Thus , th e equ ipment

d e te c t s a doub led volume and a s s o c ia te s i t t o a s i z e wh ich is l a r g e r than

the rea l s i z e . Th is e x p l a n a t i o n o f s p u r io u s coun ts i s borne o u t by the

f a c t t h a t s i m i l a r s i z e channe ls a re p o p u la te d re g a r d le s s o f the va lue

o f Lf .

Data p o i n t s p rocessed f rom less than 10 coun ts p e r channel were

c o n s id e re d t o be s t a t i s t i c a l l y i n s i g n i f i c a n t and are p re s e n te d in each

p l o t f o r i n f o r m a t i o n o n l y .

Two d i f f e r e n t a p e r t u r e s i z e s were used w i t h the C o u l t e r Counte r

in t h i s s t u d y : 280 and 400 m i c r o n s . I t i s recommended by th e manufac­

t u r e r o f the C o u l t e r Counte r t o use an a p e r t u r e s i z e o f 2 .5 t imes the

maximum s i z e o f p a r t i c l e s t o be coun ted . Since the s i z e o f the p a r t i c l e s

p r e s e n t i n s i d e the f i n e s t r a p ranged between 10 and 130 m ic r o n s , a l a r g e

p o r t i o n o f t h e s i z e range was common to both a p e r t u r e s a nd , t h u s , a

d e t e r m i n a t i o n o f the b e s t o r i f i c e s i z e was necessary f rom o t h e r c o n s i d e r ­

a t i o n s , e . g . , p l u g g i n g . The 400 m ic ron a p e r t u r e would g i v e more i n s i g h t

in the l a r g e r s i z e r e g i o n , and t h e 280 m ic ron a p e r t u r e would be b e t t e r in

t h e s m a l l e r s i z e r e g io n . F ig s . 15 and 16 show a compar ison o f r e s u l t s

f o r two d i f f e r e n t e x p e r i m e n t s / W i th the 280 m ic ron a p e r t u r e , a d e p l e t i o n

in p o p u l a t i o n d e n s i t y a t sma l l s i z e s ( l e s s than 50 m ic ro n s ) was o bs e rv e d ;

however, a r e p r e s e n t a t i v e number o f p a r t i c l e s was observed in the

channe ls c o r re s p o n d in g t o the l a r g e s t s i z e s . Th is r e s u l t suggested t h a t

the l a r g e r a p e r t u r e shou ld be used . No a p p r e c i a b l e d i f f e r e n c e between

both a p e r t u r e s was found f o r coun ts a t s i z e s s m a l l e r than 10 m ic r o n s .

PO

PU

LATI

ON

D

EN

SIT

Y,

n,

num

ber/

cc

mic

ron

RUN 7 / 0 1 /7 6

Coulter Counter Data

A 2 8 0 micron aperture

o 4 0 0 micron aperture

x S ta t is t ic a l ly Insignif icant Data (less than 10 counts per channel)

10" '

4 0 0200100CRYSTAL S I Z E , L , MICRONS

F i g . 15. Compar ison o f C o u l t e r Counter Data Obta ined w i t h D i f f e r e n t A p e r t u r e s , Run 70176.

PO

PU

LATI

ON

D

EN

SIT

Y,

n ,

num

ber/

cc

mic

ron

4 6

RUN 7 / 0 6 / 7 6

Coulter Counter Data A 2 8 0 micron ap er tu re

o 4 0 0 micron aper ture x S ta t is t ica l ly Insignif icant

Data (less than 10 counts per channel)

10

104 0 0200100

C R YSTA L S I Z E , L , M IC RO NS

F i g . 16. C r y s t a l - S i z e D i s t r i b u t i o n , Run 70676.

4 7

T h u s , the 400 m ic ron a p e r t u r e appeared t o p r o p e r l y cove r the e n t i r e s i z e

range and was used t h r o u g h o u t the course o f t h i s r e s e a r c h .

F ig s . 17 and 18, c o r re s p o n d in g t o expe r im en ts 71576 (FDS) and

70676 (MSMPR), show the d i s t r i b u t i o n o f f i n e s found in the c r y s t a l l i z e r

p r o d u c t , compar ing s i e v e and C o u l t e r Counte r a n a l y s i s t e c h n iq u e s . These

data, were o b ta in e d by s a v in g the f i n e p a r t i c l e s a f t e r t he produce s ie v e

a n a l y s i s . These f i n e s were then resuspended in i s o p ro p a n o l s o l u t i o n and

counted u s in g the C o u l t e r Cou n te r . For t h e FDS e x p e r im e n t 71576, c l e a r l y

th e d i s t r i b u t i o n o f the f i n e s found in t h e p r o d u c t was the same as the

f i n e s i n s i d e the t r a p .

A d i f f e r e n t s e t o f data was c o l l e c t e d d u r i n g the dynamic runs

conduc ted and r e p o r te d by Beckman (1976 ) , The equ ipment used in t h a t

case was the s o - c a l l e d "comp lex c r y s t a l 1 i z e r " ; a c r y s t a l l i z e r whose con­

f i g u r a t i o n in c lu d e d c l e a r l i q u o r o v e r f l o w , p ro d u c t c l a s s i f i c a t i o n , and a

f i n e s d e s t r u c t i o n system. Even though the c r y s t a l l i z e r was in a t r a n ­

s i e n t mode o f o p e r a t i o n , the CSD from th e f i n e s loop formed a q u a s i -

e q u i l i b r i u m e x p o n e n t i a l d i s t r i b u t i o n due t o the s m a l l r e t e n t i o n o f the

s i z e s a f f e c t e d by the d i s s o l v i n g system. The same da ta p ro c e s s in g t e c h ­

n iques used f o r MSMPR s t e a d y - s t a t e runs c ou ld then be used t o ana lyze

these d a ta .

The n u c l e a t i o n and g rowth r a t e v a lu e s o b ta in e d f ro m a n a l y s i s o f

f i n e s loop CSD's, under s t e a d y - s t a t e and t r a n s i e n t o p e r a t i o n , were

c o r r e l a t e d in a pow er - la w fo rm g iven by Equa t ion ( 1 4 ) :

B° = k^G 'Myj (14)

PO

PU

LATI

ON

D

EN

SIT

Y,

n,

num

ber/

cc

mic

ron

4 8

RUN 7 / 1 5 / 7 6 Q r = 3 0 0 0 cc/min

o Coulter Counter Data

A Sieve Data

— Computer Simulation (after Beckman, 1976)

x Statistically Insignificant Data (less than 10 counts per channel)

8 0 06 0 04 0 0200CRYSTAL S I Z E , L, MICRONS

F i g . 17. F ines D i s t r i b u t i o n in C r y s t a l 1 i z e r Produc t and Compar ison o f Computer S im u la t i o n and Expe r im en ta l R e su l t s f o r Run 71576.

PO

PU

LATI

ON

D

EN

SIT

Y,

n,

num

ber/

cc

mic

ron

4 9

10'

RUN 7 / 0 6 / 7 6Q r = 0 cc /m in ( M S M P R ) Q r = Qp = 4 0 0 c c /m i n

o Coulter Counter Data a Sieve Data

— L i n e a r Regression

-o

1000600200C R YSTA L S IZ E , L, MICRONS

F i g . 18. Fines D i s t r i b u t i o n in C r y s t a l I i z e r Produc t f rom Sieve and C o u l t e r Counte r Techn i ques .

■ - 50

The k i n e t i c param ete rs o f t h i s model were found t o be i = 4 . 9 9 , j = 0 .1 4 ,

and = 0 .657 by m u l t i p l e l i n e a r r e g r e s s io n o f the d a ta .

F ig . 19 shows the a c tu a l e x p e r im e n ta l da ta compared w i t h the

c o r r e l a t i o n . In t h i s f i g u r e , t h e r e a re two p o i n t s i n d i c a t e d by (0) w h ich

co r respond to expe r im en ts c a r r i e d o u t w i t h a d i f f e r e n t f eed s o l u t i o n co n ­

t a i n i n g no MgSQ^ i m p u r i t y . These two p o i n t s w i t h the d i f f e r e n t feed were

n o t c o n s id e re d in t h e m u l t i p l e r e g r e s s io n a n a l y s i s .

E qu a t ion (.14) f i t s t h e e x p e r im e n ta l nucl e a t ion da ta w i t h an

average d e v i a t i o n o f 7.8%.

The r e s u l t s o f the computer s i m u l a t i o n o f t h e s t e a d y - s t a t e run

71576 u s in g th e k i n e t i c pa ram ete rs found in t h i s s tu d y (Beckman, 1976)

a re a l s o shown in F ig . 17,

S e t t ! i n g V e l o c i t y E f f e c t

The l a r g e s t p a r t i c l e s i z e be ing d i s s o l v e d in the f i n e s lo o p , Lp,

i s one o f the pa ram ete rs t h a t has t o be co ns id e re d in t he des ign o f a

f i n e s d e s t r u c t i o n sys tem. Lp i s de te rm ined f rom p o p u l a t i o n d e n s i t y p l o t s

as p r e v i o u s l y d e s c r i b e d . I t s v a lu e depends upon the s e t t l i n g v e l o c i t y

wh ich e x i s t s i n s i d e t h e f i n e s t r a p . The S e t t l i n g v e l o c i t y i s g iven by

the r a t i o between the v o l u m e t r i c r a t e a t wh ich the f i n e s a re removed,

Qn , and the c r o s s - s e c t i o n a l area o f t h e t r a p .

I f the dependency o f Lp on the v e l o c i t y , v , f o r a g iven system is

w e l l - k n o w n * then Lp can be p r e d i c t e d and used in the p r o p e r des ign

c o r r e l a t i o n s . I f t h i s r e l a t i o n s h i p i s unknown, Lp wou ld have t o be

o b t a i n e d e x p e r im e n ta l 1y In a p i l o t p l a n t c r y s t a l 1 i z e r w i t h f i n e s loop in

o r d e r t o des ign the FDS.

BO

/M

51

FINES REMOVAL RUNS

DYNAMIC RUNS F IN E S REMOVAL WITH

D I F F E R E N T FEED SOLN.

O

©

kN = 0 . 6 5 7

I = 4 . 9 9

4 . 9 9

I0"1 I 10

GROWTH RATE G, M IC R O N S / M I N

F ig . 19. N u c le a t i o n -G ro w th Rate K i n e t i c s C o r r e l a t i o n f o r the KC1 System.

' ■' ■

An e x p e r im e n ta l c o r r e l a t i o n between Lp and th e v e l o c i t y , v , was

found and t e s t e d u s in g two e q u i v a l e n t t e c h n iq u e s : k e ep ing the f i n e s loop

area c o n s t a n t and chang ing the f i n e s removal r a t e , CL; and f i x i n g Q andK K

v a r y i n g the a re a . .

The f i r s t approach was used to d e te rm ine the e m p i r i c a l c o r r e l a ­

t i o n between Lp and v f o r the KC1 sys tem. , The second approach was used

to check these r e s u l t s , as shown in F ig . 20. The s o l i d l i n e co r responds

to the t h e o r e t i c a l r e l a t i o n s h i p between, the s i z e o f a s p h e r i c a l p a r t i c l e

moving th roug h a f l u i d by e f f e c t o f g r a v i t y and i t s s e t t l i n g v e l o c i t y , v:

v =4 g L p ( p - p s )

3ps CD

1 /2(35)

Under the o p e r a t i n g c o n d i t i o n s in t h e f i n e s t r a p , t he Reynolds\

number v a r i e d between 0 .5 and 2 . 0 , and the drag c o e f f i c i e n t was con­

s id e r e d t o be g iven by the i n t e r m e d ia t e law:

' < # >

i f was found t h a t , f o r the KOI sys tem, the t h e o r e t i c a l dependence

o f Lp upon v , com b in ing Equa t ions (35) and (3 6 ) , i s exp ressed by:

L f = 1 6 8 v 0 ; 875 (37)

By m u l t i p l e l i n e a r r e g r e s s io n o f d a ta , i t was found t h a t the e x p e r im e n ta l

c o r r e l a t i o n o f t h e Lp va lues measured f rom CSD p l o t s was:

MIC

RO

NS

5 3

o Fines Trap Data o Experimental Settl ing Data

— Theory, Stokes Intermediate Region

u__i

1.0

S E T T L IN G VELOCITY v , cm/sec

F ig . 20. T h e o r e t i c a l and Expe r im en ta l C o r r e l a t i o n s between the C r i t i c a l S iz e , Lp, and the S e t t l i n g V e l o c i t y I n s i d e the F ines T rap .

54

Lp = 96 v 1 *276 (38)

In F ig . 20, the data p o i n t i n d i c a t e d by A co r re sp on d s t o e x p e r i ­

ment •31677 wh ich was c a r r i e d o u t w i t h a f i nes t r a p area equal t o one-

t h i r d o f t h e t o t a l t r a p a re a . As e x p e c t e d , t h i s d a ta c o r r e l a t e d w e l l

w i t h o t h e r e x p e r im e n ts w i t h the same t e r m i n a l v e l o c i t y . F ig . 20 a l s o

shows the r e s u l t s o f t he e x p e r im e n ta l d e t e r m i n a t i o n o f the s e t t l i n g

v e l o c i t y f o r s i n g l e KC1 c r y s t a l s . These measurements were done u s in g a

1000 -cc g ra du a ted c y l i n d e r f i l l e d w i t h s a tu r a t e d KC1 s o l u t i o n and

immersed in a t h e r m o s t a t i c bath whose tem p e ra tu re was 40°C , the same as

t he c r y s t a l l i z e r t e m p e r a t u r e .

KC1 c r y s t a l s a t d i f f e r e n t known s i z e s were dropped i n t o the s o l u ­

t i o n and the t im e r e q u i r e d f o r the p a r t i c l e s t o f a l l a p re d e te rm in e d

d i s t a n c e was measured w i t h a t i m e r .

A l t h o u g h the v a lu es o f Lp o b ta in e d f rom the' e x p e r im e n ts were

found t o in c re a s e when t h e removal v e l o c i t y i n s i d e th e t r a p in c re a s e d , as

e x p e c t e d , they were s t i l l lo w e r than the v a lues p r e d i c t e d by s e t t l i n g

t h e o r y . T h is i s p r o b a b ly due t o t h e c r o s s - s e c t i o n a l a rea o f the removal

tube r e l a t i v e t o t h a t o f t he t r a p . I t i s b e l i e v e d t h a t i f t he r a t i o

between t h e removal tube area and the t r a p was Inc reased then h ig h e r

va lues o f Lp wou ld be o b t a i n e d . At th e p re s e n t c o n d i t i o n s , t h i s r a t i o i s

v e ry sma l l and near the top o f the t r a p the f l o w near t o the w a l l s has t o

d e c e l e r a t e in the a x i a l d l r e c t i o n and a c c e l e r a t e in th e h o r i z o n t a l d i r e c ­

t i on t o reach the removal tub e . Since t h i s is a g ra dua l p ro c e s s , the

l a r g e s t p a r t i c l e s in t he s t ream q lo s e t o the w a l 1s are g r a d u a l l y

55

d e c e le r a t e d and s t a r t t o f a l l b e fo re th e y reach the to p o f th e t r a p , thus

d e c r e a s in g th e observed v a lu e o f Lp. Of c o u r s e , t h i s c o n j e c t u r e a ls o

must i n c l u d e a c i r c u l a t i n g f l o w a t some p o i n t w i t h i n the t r a p t h a t wou ld .

u l t i m a t e l y a l l o w the l a r g e r p a r t i c l e s t o e x i t back t o th e magma.

Design o f a Fines D e s t r u c t i o n System

The e q u a t i o n s necessa ry t o des ign a f i n e s d e s t r u c t i o n system have

been p r e v i o u s l y d e r i v e d f o r t h e s p e c i f i c case o f a " p o i n t " f i n e s t r a p ,

i . e . , n e g l i g i b l e f i n e s mass d i s s o l v e d , and f o r a more gen e ra l case o f

d i s s o l v i n g l a r g e r p a r t i c l e s .

I t has been shown t h a t , under " p o i n t " f i n e s t r a p c o n d i t i o n s , the

p ro d u c t s i z e improvement w i t h f i n e s d e s t r u c t i o n has the s im p le form:

However, when t h e f i n e s a re n o t n e g l i g i b l y sma l l compared t o

p r o d u c t - s i z e c r y s t a l s and r e p r e s e n t an a p p r e c ia b l e s o l u t e re c y c le s t ream ,

the s i z e improvement w i l l be:

%1

l / i + 3

(28)

The f i n e s - t o - p r o d u c t mass r a t i o (wh ich l i m i t s t h e p ro p e r use o f

the p o i n t f i n e s t r a p a p p r o x i m a t i o n ) , E qua t ion (2 4 ) , has n o t been s p e c i f ! '

c a l l y i n v e s t i g a t e d . However, i t i s g e n e r a l l y accep ted t h a t t h i s r a t i o

shou ld be le ss than 5% f o r t h e p o i n t f i n e s t rap, assumpt ion t o h o l d .

'■ : 56 Larson and Gars ide (1973) assume th e concept o f t h e p o i n t f i n e s t r a p i s

v a l i d i f t he d e s t ro y e d f i n e s a re less than 10 ym in s i z e .

C a l c u l a t i o n s o f the s i z e improvement f o r e x p e r im e n ts c a r r i e d o u t

d u r i n g t h i s s tu d y have shown t h a t the s i m p l e r a p p r o x im a t io n (Eq ua t ion 24)

ho lds f o r f i n e s - t o - p r o d u c t r a t i o s as h ig h as 35% w i t h o n l y 1% e r r o r .

In o r d e r t o e s t i m a te th e s i z e improvement w i t h f i n e s d e s t r u c t i o n

e i t h e r f rom E qu a t ion (24) o r Equa t ion ( 2 8 ) , the v a lu e o f the e x p o n e n t i a l

decay r a t i o . A, must bq d e te rm in e d f rom the mass ba lance c o n s t r a i n t .

Equation (31):

Lf (LA exp ( A / i+ 3 ) = q—7 - = K (31)

1

In o r d e r t o s o lv e Equat ion ( 3 1 ) , t he r a t i o K and the paramete r i

must be p r e v i o u s l y d e te rm in e d . I f t h e r e l a t i v e k i n e t i c o r d e r o f n u c l e a -

t i o n t o g ro w th , i , is unknown, i t can be e s t i m a te d w i t h a good app rox im a ­

t i o n f rom two MSMPR runs whose da ta have been p rocessed in the manner

d e s c r ib e d a t t he b e g in n in g o f t h i s c h a p t e r . The same MSMPR e xpe r im en ts

w i l l p r o v i d e the v a lu e o f the g rowth r a t e , G j . The f i n e s removal r a t e ,

is s e t by c h o i c e , w h i l e Lp can be e s t i m a te d f rom s e t t l i n g c o r r e l a ­

t i o n s o r e x p e r i m e n t a l l y o b t a i n e d . E qua t ion (31) was s o lv e d n u m e r i c a l l y

u s in g Newton's method and the r e s u l t s a re shown in F ig . 21a f o r d i f f e r e n t

va lues o f t h e k i n e t i c pa ram ete r I .

W i th i and A known, the s i z e improvement w i t h f i n e s d e s t r u c t i o n

can be d i r e c t l y o b t a i n e d f rom Equa t ion ( 2 4 ) . In o r d e r t o make use o f

Equa t ion ( 2 8 ) , the Incom p le te t h i r d - o r d e r gamma f u n c t i o n must be o b ta in e d

57

10.0

8.0

6.0

0.0 20 30

5.0

4.0

3.0

2.0

3020

Fig. 21. Design Correlat ions for Size Improvement with FDS.

58

f o r the c o r re s p o n d in g va lues o f A and R = 1 + QR/Qp . Tab les f o r the

in c o m p le te t h i r d - o r d e r gamma f u n c t i o n a re found in Randolph and

Larson (1971) .

S ize improvement c a l c u l a t e d f rom Equat ion (24) has been p l o t t e d

versus K as shown in F ig . 21b. I f t he d es ign e n g in e e r i s i n t e r e s t e d in

d e t e r m i n in g s i z e improvement o n l y , then the i n t e r m e d i a t e s tep o f d e t e r ­

m in in g A. is no t necessa ry and F ig . 21 b can be used d i r e c t l y .

The f r a c t i o n o f n e t p r o d u c t i o n wh ich is d i s s o l v e d and re c y c le d

can be c a l c u l a t e d f rom E qua t ion ( 3 4 ) :

: - •• — ----------- — --------- — :— r (34)1 + rV x

1 - a) ( X / R - l ) co (AR/R-1 )

The d i s s o l v e d f r a c t i o n , p , i s p l o t t e d ve rsus A in F ig . 22 f o r d i f f e r e n t

v a lu es o f R. T h is f i g u r e has c o n s i d e r a b l e i n t e r e s t f rom the des ign

v i e w p o i n t because i t shows t h a t , f o r a g iv e n v a lu e o f R, t h e r e e x i s t s a

l i m i t i n g v a lu e o f A o v e r wh ich the d i s s o l v e d f r a c t i o n no l o n g e r in c re a s e s

The a s y m p to t i c v a lu e f o r each cu rve co r responds t o ( R - l ) . The f r a c t i o n

d i s s o l v e d and r e c y c le d can be expressed as :

* = / = (39)

where MR would be t h e f i n e s s l u r r y d e n s i t y . As 0 R = (R - l )Q.p, then

E qua t ion (39) becomes:

FRA

CTI

ON

D

ISS

OLV

ED

, <j)

= P

F/P

59

20

10

I

PF Qr Mr ( R - | ) ^ M

A = (R-1)

F ig . 22. F r a c t i o n o f F ines D is s o lv e d ve rsus E x p o n e n t ia l Decay R a t i o , X .

60

which means t h a t , when <j> = R-i , t h e d i s t r i b u t i o n o f t h e f i n e s co r responds .

t o t he e n t i r e d i s t r i b u t i o n and the p ro d u c t and f i n e s d i s s o l v e d are in the

same r a t i o as t h e i r r e s p e c t i v e f l o w s .

There e x i s t s , t h e n , a p h y s i c a l l i m i t a t i o n f o r t h e v a lues o f A.

For any r e a l i s t i c d e s ig n , the f i n e s t r a p o p e r a t i n g c o n d i t i o n s must be

such t h a t t h e c r i t i c a l v a lu e o f A w i l l no t be re a ched . D i f f e r e n t combina­

t i o n s o f R and Lp r e s u l t in e q u i v a l e n t v a lu e s o f the p a ra m e te r A. Which

v a lu es a re chosen i s an economic d e c i s i o n . Large v a lues o f R mean l a r g e r

f l o w r a t e s wh ich makes t h e o p e r a t i o n more e x p e n s iv e . On the o t h e r hand,

la r g e v a lues o f Lp a re I m p r a c t i c a l because o f the d i f f i c u l t y in d i s ­

s o l v i n g such l a r g e p a r t i c l e s . F ig . 23 shows th e d e c i s i o n f l o w d iagram

f o r such a s i z e improvement a n a l y s i s . To u t i l i z e t h e p rocedu res o f

F ig . 23, the f o l l o w i n g i n f o r m a t i o n a n d / o r a c t i o n s are r e q u i r e d :

A s im p le MSMPR run p r o v id e s the v a lu e o f Gp

• Lp i s e s t im a te d f rom a s e t t l i n g c o r r e l a t i o n o r e x p e r im e n ta l 1y

o b t a i n e d by the method o f s e m i - l o g p l o t i n t e r s e c t i o n s .

» Qp is s e t by c h o i c e .

The volume o f the r e a c t o r , V, i s known.

K is c a l c u l a t e d f rom K = LpQ^/G^V.

An a d d i t i o n a l MSMPR run a l l o w s e s t i m a t i o n o f th e n u c l e a t i o n

pa ram ete r I .

W i th i known, A can be g r a p h i c a l l y o b t a i n e d ( F i g . 21 a) f o r any

v a lu e o f K.

61

- Settling correlation

-P i lo t Plant FDS

f M S M P R A V Run # r 2 J

A / i + 3

A / i +3FDS MSMPR

Fraction DissolvedSize Improvement

F ig . 23. D e c is io n Flow Diagram f o r Size Improvement A n a l y s i s .

' ' ' - . 62

* W i th i known, the s i z e improvement r a t i o can be g r a p h i c a l l y

de te rm ined " ( F i g . 21 b.) f o r any v a lu e o f K.

F i n a l l y , f o r a g iv e n v a lu e o f R, the f r a c t i o n d i s s o l v e d and

r e c y c le d can be g r a p h i c a l l y de te rm in e d ( F ig . 22) f o r any v a lu e

o f X.

Data c o l l e c t e d f o r t h r e e FDS e x p e r im e n ts in t h i s s tu d y were used

t o d e te rm in e the s i z e improvement by u s ing E qua t ions (24) and (2 8 ) , a lo ng

w i t h F ig s . 21a, 21b, and 22, u s in g the sys tem k i n e t i c s and o p e r a t i n g

parameters as e x p e r im e n t a l1 y d e t e r m i n e d . The r e s u l t s a re summarized in

Tabl 'e 2. I t can be observed t h a t , f o r a f r a c t i o n o f f i n e s d i s s o l v e d as

h ig h as 35%, E qua t ion (24) i s s t i l l an e x c e l l e n t a p p r o x im a t i o n . The

e x p e r im e n ta l va lu es o f s i z e improvement a re g iven by th e r a t i o between

the g rowth r a t e a t FDS c o n d i t i o n s , G^, and the growth r a t e a t MSMPR

c o n d i t i o n s , , f o r the same re s id e n c e t im e . The v a lu e s o f G^ were

o b ta in e d f rom Tab le 1 and G was c o n s id e re d to be 2 .3 mi c ro n s /m i n . The

e x p e r im e n ta l and p r e d i c t e d v a lu e s o f s i z e improvement a re seen t o be in

e x c e l l e n t agreement. The lower than expec ted v a lu e c o r re s p o n d in g t o =

2200 c c /m in is due t o t h e low v a lu e o f G o b ta in e d in e x p e r im e n t 111176.

Inc rem en ta l O p e ra t in g Cost w i t h FDS

Fines d i s s o l v i n g can be accom p l i shed us ing h e a t i n g a n d / o r d i l u ­

t i o n . On a l a b o r a t o r y s c a l e , the f i n e p a r t i c l e s can e a s i l y be d e s t ro y e d

by h e a t i n g , as was done in the p r e s e n t s t u d y . The l a b o r a t o r y f i n e s

d e s t r u c t i o n system c o n s i s t e d o f a steam h e a te r u n i t , a h o l d i n g t a n k , and

a c o o l e r u n i t . A te m p e ra tu r e r i s e th ro u g h the h e a te r o f about 10°C was

Tab le 2. Expe r im en ta l and P r e d i c te d S iz e Improvement.

G = 2 .3 ym/min i = 5

V = 18,000 cc K = L fQr /G V

S ize Improvement, L, / L .2 a l

R%

( c c /m in )

Lp,

Exp. (ym) K X

<!>(%)

Equa t ion (2 4 ) , Approx im ate Equat ion (2 8 ) ,

Exact (a)

Exper imen ta l S ize

1mprovement(a) (b) (c)

4 .8 1500 55 2 .0 2 .0 1.3 1.28 1.40 1.20 . . 1.30 1.30

6 .5 2200 82 4 .4 3.3 4 ,5 1.51 1.75 1.42 1.53 1.35

8 .5 3000 150 11 .0 5 .7 35.0 2.04 2.20 1.80 2.03 2.00

(a) Using t h e . e x p e r im e n t a l s e m i - l o g i n t e r s e c t i o n f o r Lp.(b) Using the t h e o r e t i c a l s e t t l i n g c o r r e l a t i o n f o r Lp, Equa t ion ( 3 7 ) .(c) Using the e x p e r im e n ta l s e t t l i n g c o r r e l a t i o n f o r Lp, Equat ion (38)

64

r e q u i r e d to t o t a l l y d i s s o l v e the f i n e s u t i l i z i n g a re s id e n c e t im e o f

c a . 1 m in u te . S ince t h i s is ah e xpe n s ive sys tem, f i n e s would be

d e s t ro y e d by d i l u t i o n r a t h e r than h e a t i n g on an i n d u s t r i a l s c a le .

Potass ium c h l o r i d e is produced i n d u s t r i a l l y in a f l a s h c o o l i n g

c r y s t a l l i z e r where the p r e c i p i t a t i o n o f the s a l t is induced by c o o l i n g

produced by f l a s h e v a p o r a t i o n . About 8-10% o f the w a te r c o n te n t in the

feed s o l u t i o n i s f l a s h e d . S ince th e magma a l s o c o n t a i n s N a d , wh ich i s .

p r e c i p i t a t e d by e v a p o r a t i o n , 50% o f the f l a s h e d w a te r is r e c y c le d t o the

c r y s t a l l i z e r t o m a in t a i n KC1 p u r i t y . I f a f i n e s d e s t r u c t i o n system were

t o be implemented on such a c r y s t a l l i z e r , a l o g i c a l and in e x p e n s iv e p r o ­

cedure would be t o make use o f the w a t e r f l a s h e d o u t t o d i s s o l v e the

n u c l e i . T h is t e c h n iq u e a vo ids inc re ased o p e r a t i n g c o s ts f o r f i n e s

h e a t i n g and p r o v id e s the w a te r necessary t o m a in t a i n the re q u i r e d p u r i t y

l e v e l .

A l o g i c a l l o c a t i o n o f the f i n e s d e s t r u c t i o n d e v i c e i s i n s i d e the

c r y s t a l l i z e r . T h is l o c a t i o n m in im iz e s r e q u i r e d p i p e s , th e need f o r l e a k -

p r o o f c o n s t r u c t i o n , hea t lo ss p ro b lem s , and e x t r a mechan ica l d r i v e s . The

f i n e s s t ream coming o u t o f the t r a p i s mixed w i t h d i l u t i o n w a te r in an

a u x i l l i a r y t a n k and then r e c y c le d t o the c r y s t a l l i z e r .

Some sample c a l c u l a t i o n s a re p re se n ted here t o a l l o w e s t i m a t i o n

o f th e in c re m e n ta l o p e r a t i n g c o s t f o r a c r y s t a l l i z e r w i t h a f i n e s t r a p ,

c o n s i d e r i n g both h e a t i n g and d i l u t i o n te c h n iq u e s f o r f i n e s d e s t r u c t i o n .

65

Fines D e s t r u c t i o n by Hea t ing

T h is c a l c u l a t i o n was done f o r t he l a b o r a t o r y c r y s t a l l i z e r o f

18 l i t e r s c a p a c i t y and c o n s id e rs a re s id e n c e t im e o f a p p r o x im a t e l y 45 min

and a s l u r r y d e n s i t y o f 50 g / 1 .

The volume and the re s id e n c e t im e de te rm ine the p ro d u c t r a t e ,

Op = V /t = 400 c c / m in , and the p r o d u c t r a t e i s then P - OpM-p = 28.8x10 ^

t o n s / d a y . The f ines removal r a t e . Op,, was d e te rm ined as a f u n c t i o n o f R

f rom 0R = (R - l ) O p .

I t i s necessa ry t o e s t i m a te the d e n s i t y and hea t c a p a c i t y o f the

KC1 s o l u t i o n :

1. D e n s i t y o f a KC1 aqueous s o l u t i o n ( P e r r y , 1973) :

P40°C = 1•030 g / c c f o r a 4-8% KOI s o l u t i o n .

2. Heat c a p a c i t y ( P e r r y , 1.973) : a t 40°C, the s o l u b i l i t y i s

19.5 g KCl /100 g s o l u t i o n , wh ich co r responds t o 0 .2 5 moles o f KC.l

and 4 .47 moles o f H^O. Then the m o la r f r a c t i o n o f KC1 in the

s o l u t i o n i s :

0 .26 . .

4 .47 + 0 . 2 6 ° ' 5

The c o r re s p o n d in g v a lu e o f th e hea t c a p a c i t y was e s t im a te d a t

Cp = 0 .775 c a 1 /g - ° G .

3. I t was c o n s id e re d t h a t an i n c re a s e in t e m p e ra tu r e o f 10°C is / '•

enough t o d i s s o l v e t h e p a r t i c l e s . Th is assumpt ion c o n s id e rs both

s o l u b i l i t y changes and d i s s o l v i n g k i n e t i c s , and i s c o n s i s t e n t

w i t h l a b o r a t o r y e x p e r ie n c e w i t h the KC1 system.

66

Then th e steam r e q u i r e d t o hea t the f i n e s s t ream and d i s s o l v e the

n u c l e i Is g i v e n by:

Qr P Cp AT steam = —— g /m in

where 4H - ^ „ a t e r - (1190 - 330 .5 ) B t u / l b .

The amount o f t h e steam r e q u i r e d depends on the v a lu e o f R. The

c o s t o f t h e steam was co n s id e re d t o be $1 .75 /1000 l b .

The w a t e r necessa ry t o cool the s o l u t i o n r e c y c le d t o the c r y s t a l -

l i z e r must a l s o be c a l c u l a t e d as a f u n c t i o n o f R. The amount o f w a te r

r e q u i r e d i s :

% p" Cp AT

w a te r ' p Cp AT •'w Pw w

A t 50°C, p . = 0 .990 g / c c and CD = 1 c a l / g - ° C ; AT was taken asw a te r ■ Pwater w

10°C. The c o s t o f w a te r Was c o n s id e re d t o be $ 0 .26 /1000 gal .

F i n a l l y , a rough e s t i m a t i o n o f th e pumping c o s t (pump + .

c i r c u l a t i n g ) was done c o n s i d e r i n g a d e p r e c i a t i o n o f 10 y e a r s . Pump c o s t

da ta were o b ta in e d f rom P e r ry (1973, p. 6 -6 ) f o r s t a i n l e s s s t e e l pumps.

The r e s u l t s a re summarized in Tab le 3•

F ines D e s t r u c t i o n by D i l u t i o n

C a l c u l a t i o n s were made based on the e x p e r im e n ta l c o n d i t i o n s p r e s ­

en t in t h i s s t u d y . However, the c o n c l u s i o n s a p p ly t o an i n d u s t r i a l

s e a le as w e l l .

T a b l e 3 . C o s t E s t i m a t i o n f o r F i n e s D e s t r u c t i o n b y H e a t i n g .

R%

( cc /m in )

Steam ( $ / t o n o f p ro d u c t )

Water ( $ / t o n o f p ro d u c t )

Pump + Power ( $ / t o n o f p r o d u c t )

T o ta l Cost L , / L , , ( $ / ton o f 2 1 p r o d u c t ) Expected

3 800 2 .5 8 2.21 .0 .1 9 3 4.99 1.08

5 1600 5.16 4.41 0.392 9.97 1.25

7 2400 7.75 6 .62 0 .598 14.97 1.50

10 3600 11.68 9 .93 0.886 22.50 2 .16

15 5600 18.18 15.45 1.389 35.03 3.40

ON —4

68

C a l c u l a t i o n s compared th e d i l u t i o n w a te r a v a i l a b l e f rom f l a s h i n g

th e feed s o l u t i o n and th e w a te r r e q u i r e d t o d i s s o l v e the f i n e s l e a v in g

th e t r a p .

Water in Feed S o l u t i o n

The te m p e ra tu re o f t h e feed s o l u t i o n was 70°C. From the mutual

s o l u b i l i t y cu rve o f KC1 -NaCl in w a t e r , a t t h i s te m p e ra tu re in 100 grams

o f s o l u t i o n t h e r e were 27 .3 grams o f KC1, i . e . , 72 .7 grams o f H^O. The

d e n s i t y o f t he s o l u t i o n a t t h i s t e m p e ra tu r e was e s t i m a te d a t 1.015 g / c c

( P e r r y , 1973) . The feed r a t e t o t h e c r y s t a l l i z e r was 400 c c / m i n . T h us :

W = 72- 7 9 H2° . n11- g so l u t l o n r nn cc so l u t i o n1 100 g s o l u t i o n 1 cc s o l u t i o n m inu te

g H O= 295 — - T - m inu te

is the t o t a l w a te r in th e feed s o l u t i o n .

Water Requi red t o D i s s o l v e th e Fines

The w a te r r e q u i r e d w i l l depend on the f i n e s removal r a t e , ,

i . e . , on th e v a lu e o f R as w e l l as f i n e s s i z e , Lp. T a b le 4 summarizes

t h e w a te r re q u i rem en t as a f u n c t i o n o f R. The c o r r e s p o n d in g va lu es of- Lp

were o b ta in e d f rom the e m p i r i c a l c o r r e l a t i o n (E qua t ion 3 8 ) . K was c a l ­

c u l a t e d from. Equa t ion (31) and the v a lu e s o f X and <f> were g r a p h i c a l l y

d e te rm in e d . The v a lu es o f Pp were c a l c u l a t e d c o n s i d e r i n g t h a t Pp - <j>-P =

<j>QpMr f

The d i l u t i o n w a te r r e q u i r e d co r respon ds t o the w a t e r necessary t o

fo rm a s a t u r a t e d s o l u t i o n w i t h the f i n e s coming o u t o f the f i n e s t r a p .

T a b l e 4 . W a t e r R e q u i r e m e n t f o r F i n e s D e s t r u c t i o n by D i l u t i o n .

Rqr

( c c /m in )V

(cm/sec)l f

(vim) K X 4>PF

(g /m in )

WaterRequired(g /m in )

wExpected

3- 800 0 .30 21 0 .4 2 0 .7 0.0012 0.024 0.121 1.08

5 1600 0 .60 50 2 .02 1.8 0.0072 0.144 0.594 1.25

• 7 2400 0 .90 84 5 .0 9 3.6 0.07 1.40 5.78 1.50

.8 2800 1.05 102 7.21 4 .4 0.14 2 .8 11.56 1.70

. 9 3200 1 .20 121 9 .8 0 5.3 0.23 4 .6 18.99 1.92

10 3600 1.35 141 12.82 6 .2 0 .42 8 .4 34.68 2.16

15 5600 2 .10 247 33.4 9 .8 4 .7 94 .0 388.1 3.40

cr\VO

7 0

At 40°C, the s o l u b i l i t y o f KC1 in t h e KC1-NaCl-wate r sys tem i s 19-5 9 KC1

per 100 g o f s o l u t i o n ; t h u s , the r e q u i r e d w a te r can be c a l c u l a t e d f rom

th e s im p le r e l a t i o n s h i p :

PF = 19.5 PF + X 100

where X is the r e q u i r e d w a t e r .

I f 8% o f the w a te r c o n t e n t in t h e feed s o l u t i o n is f l a s h e d t o

produce the r e q u i r e d c o o l i n g , then t h e w a t e r a v a i l a b l e i s 23 .6 g HgO/min

and p r o v id e s the r e q u i r e d w a te r f o r a v a lu e o f R up t o S. For va lu es o f

R h ig h e r than 9, the d i f f e r e n c e between the a v a i l a b l e and the r e q u i r e d

w a te r has t o be s u p p l l e d . A c o s t e s t i m a t i o n f o r f i n e s d e s t r u c t i o n by

d i l u t i o n was done c o n s i d e r i n g pumps, p i p i n g , and power f o r pumping c o s ts

as w e l l as the r e s u l t i n g water , c o s t f o r R >_ 10. These c a l c u l a t i o n s

i n v o l v e o n l y i n t e n s i v e v a r i a b l e s a n d / o r r a t i o s and w o u ld , t h e r e f o r e , h o ld

f o r f u l l - s c a l e equ ip ment .

Ta b le 5 shows a compar ison between t o t a l c o s ts o f f i n e s d e s t r u c ­

t i o n by d i l u t i o n and h e a t i n g . I t appears obv ious t h a t , f o r a d e s i r e d

s i z e improvement , f i n e s d e s t r u c t i o n by h e a t i n g is too e xp e n s ive and

d e s t r u c t i o n o f n u c l e i by d i l u t i o n is more a t t r a c t i v e a t an i n d u s t r i a l

s c a le .

71

Tab le 5- F ines D e s t r u c t i o n by D i l u t i o n ve rsus H e a t in g Techn ique.

R

D i l u t i o n T o ta l Cost

( $ / ton o f p r o d u c t )

H e a t ing T o ta l c o s t

( $ / t o n o f p r o d u c t )

Expected S ize Improvement

‘ W

3 0 .109 4 .9 9 1.08

5 0 .224 9 .97 1.25

7 0 .329 14.97 1.50

10 0 .532 22.50 2.16

15 2.050 35.03 3.40

SUMMARY AND CONCLUSIONS

• A nucTeat i o n - g r o w th r a t e k i n e t i c s model wh ich a d e q u a te l y d e s c r i b e s

the po tass iu m c h l o r i d e sys tem can be expressed as:

B° = O.657 M ^ ' ^ n o / c c - m in

These k i n e t i c s were de te rm ine d a t f i x e d c o n d i t i o n s o f re s id en c e

t im e , a g i t a t i o n , c r y s t a l l i z a t i o n t e m p e r a tu r e , and feed s a t u r a t i o n tem pe ra ­

t u r e in t h e normal o p e r a t i n g range o f these . v a r i a b l e s . I t was no t the

purpose o f t h i s s tu d y t o de te rm ine t h e i n d i v i d u a l e f f e c t s o f these v a r i ­

ab le s on the sys tem , b u t t o p r o v id e a re ason ab le k i n e t i c s model t o a l l o w

computer s i m u l a t i o n and s t a b i l i t y c o n t r o l s tu d y o f t h e KC1 system. The

same p o w e r - 1 aw model f i t s bo th MSMPR and FDS d a ta , in bo th s t e a d y - s t a t e

and dynamic o p e r a t i n g c o n d i t i o n s .

P a r t i c l e s l a r g e r than th e c u t s i z e , Lp, were a p p a r e n t l y measured

in t he f i n e s t r a p s t ream . These l a r g e p a r t i c l e coun ts a re a t t r i b u t e d t o

c o in c id e n c e e f f e c t s a n d / o r i n s t r u m e n t n o i s e . These p a r t i c l e counts a re

c o n s id e re d s p u r i o u s ; I f f i n e s were Indeed removed a t these l a r g e r s i z e s ,

the p o p u l a t i o n d e n s i t y in t he p ro d u c t wou ld be much lo w e r than obse rved .

The c r i t i c a l s i z e Lp o b ta in e d f rom p o p u l a t i o n p l o t s was c o r r e ­

l a t e d w i t h the upward v e l o c i t y i n s i d e t h e f i n e s t r a p assuming p lug f l o w .

The va lues o f Lp p r e d i c t e d by s e t t l i n g t h e o r y a re g r e a t e r than those

e x p e r i m e n t a l l y o b t a i n e d . The assumpt ion o f p lug f l o w in the t r a p has

been d is c u s s e d by Juzaszek and Larson (1977) and compared w i t h the

. 72

■ 7 3

assumpt ion o f a l a m in a r f l o w . T h e i r r e s u l t s do n o t c o n c l u s i v e l y d i s ­

c r i m i n a t e between models and a re a l s o s u b j e c t t o the c r i t i c i s m t h a t lo w e r

p ro d u c t p o p u l a t i o n d e n s i t i e s wou ld have been observed had these l a r g e r

f i n e s been removed a t t h e ra te s i n d i c a t e d .

Design e q u a t i o n s were deve loped t o p r e d i c t t h e b e h a v io r o f a

f i n e s d e s t r u c t i o n sys tem. These e q u a t i o n s were p l o t t e d as f u n c t i o n s o f

t he im p o r t a n t v a r i a b l e g ro u p in g s o v e r a r e a l i s t i c range . These des ign

c h a r t s a l l o w q u i c k p r e d i c t i o n ( w i t h o u t u s in g a computer) o f the s i z e

improvement expec ted by im p lem en t ing a FDS. C a l c u l a t i o n s u s ing these

c h a r t s i n d i c a t e d the " p o i n t " f i n e s t r a p i d e a l i z a t i o n was a c c u r a te f o r

amounts o f d i s s o l v i n g up to a t l e a s t 35% o f n e t p r o d u c t i o n .

A p h y s i c a l l i m i t a t i o n was found t o e x i s t f o r t h e f r a c t i o n o f

f i n e s d i s s o l v e d . T h us , t h e r a t i o o f d i s s o l v e d f i n e s t o n e t p r o d u c t can

o n l y a s y m p t o t i c a l l y approach th e v a lu e ( R - 1) no m a t t e r how h igh t h e d i s ­

s o l v i n g pa ram ete r X. When th e o p e r a t i n g c o n d i t i o n s in t he f i n e s t r a p a re

such t h a t t h e f r a c t i o n o f f i n e s d e s t ro y e d and r e c y c le d approaches th e

v a lu e ( R - l ) , then th e d i s t r i b u t i o n o f f i n e s co r responds t o t he e n t i r e.1

d i s t r i b u t i o n in the c r y s t a l l i z e r , i . e . , t h e r e a re no p a r t i c l e s a t s i z e s

l a r g e r than Lp p r e s e n t in the system and th e f i n e s sys tem i s o b v i o u s l y

i n e f f e c t i v e . Such ovei—d i s s o l v i n g o f t he f i n e s f r a c t i o n (such t h a t t h e r e

a re no s u r v i v i n g n u c l e i t o p o p u la te the p ro d u c t s i z e ranges) has been

obse rved i n d u s t r i a l l y and t y p i c a l l y r e s u l t s in w i l d o s c i l l a t i o n s o f the

CSD.. T h us , c h o ic e o f R and Lp must be based on f e a s i b i l i t y as w e l l as

economic c o n s i d e r a t i o n s .

7 4

A rough c a l c u l a t i o n o f FDS c o s t sugges ts t h a t t he im p le m e n ta t io n

o f f i n e s d i s s o l v i n g produces a lm o s t no a d d i t i o n a l o p e r a t i n g expenses i f

t h e d e s t r u c t i o n o f n u c l e i i s done by d i l u t i o n . T h is r e s u l t , o f c o u rse ,

assumes t h a t such amounts o f d i l u t i o n w a t e r a re a v a i l a b l e , e . g . , f rom

f l a s h c o o l i n g . F ines d e s t r u c t i o n by h e a t i n g is e x p e n s iv e and would n o t

compete e c o n o m ic a l l y w i t h d e s t r u c t i o n by d i l u t i o n in an i n d u s t r i a l u n i t .

In f a c t , i n d u s t r i a l . c r y s t a l ! i z e r s seldom use h e a t i n g as a method o f f i n e s

d e s t r u c t i o n .

\

APPENDIX A

SIZE IMPROVEMENT WITH FDS

E qua t ion (24) was deve loped f o r th e a pp ro x im a te ease o f a " p o i n t

f i n e s t r a p . A more r i g o r o u s a n a l y s i s o f s i z e improvement c o n s id e rs the

gene ra l case where th e mass o f p a r t i c l e s d i s s o l v e d i s n o t n e g l i g i b l e

compared t o the mass o f p r o d u c t . What f o l l o w s i s the development o f

E qua t ion (28) f o r t h i s gen e ra l case.

The t o t a l mass o f c r y s t a l s per u n i t volume o f s l u r r y i s :

00 •?Mt = p kv / L ndL (17)

An e q u i v a l e n t e x p r e s s io n f o r an e x p o n e n t i a l d i s t r i b u t i o n i s :

M, = 6pk n ° (Gt ) ^ (19)I V

The s o l i d s c o n c e n t r a t i o n w i t h o r w i t h o u t f i n e s d e s t r u c t i o n is

g ive n by E qua t ion (17) upon s u b s t i t u t i o n o f the p ro p e r f u n c t i o n f o r popu

1 a t ion d e n s i t y . When f i n e s d e s t r u c t i o n i s implemented and the mass o f

f i n e s d i s s o l v e d is n o t n e g l i g i b l e , the s l u r r y d e n s i t y , ML , can be2

expressed by Equa t ion (17) in the fo rm :

IF . » .

M = pk [ / n„L d l + / n l ^ d l ] ( A . l )2 0 L,

: 75 '

For a Class I I sys tem:

o r o of n 1L dL = / n „L dL + / n . L ^ d l0 0 L_ 2F

( A . 2 )

where n^ and n^ a re t h e p o p u l a t i o n d e n s i t i e s w i t h o u t and w i t h f i n e s

d i s s o l v i n g . For an e x p o n e n t i a l d i s t r i b u t i o n :

n 1 = n ° 1 exp ( - L / G ^ r )

n2 = n ° 2 exp ( -LR/G2t )

n2 = ^n °2 exp

0 < L < 00

0 < L < Lr

Lp < L <

(A. 3)

S u b s t i t u t i n g ( A . 3) i n t o ( A . 2) and making uSe o f E qu a t ion (19)

x r

n 0. (G.t ) ^ / e Xx -d x = n° (G9t )^ / e Rxx^dX 0 0

» CO

+ gn°2 (G2t ) f e Xx dx XF

(A . 4)

where x = L/Gt . L e t t i n g p = Rx, the f i r s t i n t e g r a l on the r i g h t - h a n d

s i d e can be r e w r i t t e n a s : ' .

Xp KXp

f e Rxx ^d x = —r ’ f e Pp^dp0 R 0

R e c a l l i n g t h a t t h e i n c o m p l e t e gamma f u n c t i o n i s :

i t ?i ( t ) = t " / e "p dp

■ 0( 2 9 )

then Equa t ion ( A . 4) becomes:

. n° (G t ) . h

n ° 1 ( ^ 1 T ) = If---------u (RXp) + Sn02 (G2r ) [1 - w (x p ) ]R

Rea r r a n g i n g :

(A .5)

vG1t

4 n°. to(RXp)7j— + B [1 - w(xp) ] (A. 6)

S ince B° = n°G = k^G 'M j "* , then n° = k^G* ^My"*. For a c o n s t a n t s l u r r y

d e n s i t y and r e t e n t i o n t im e :

G „ t V I { d „ V 1

Gr(A .7)

'1

Combining ( A . 7) w i t h ( A . 6 ) , the e x p r e s s io n f o r s i z e improvement i s

o b ta in e d as:

’ d2 i i+3

1 ,co (Rxp) ( A . 8 )

+ 3 [1 - o)(xp) ]

S u b s t i t u t i n g 6 = e and Xp = Lp/Gr = X/ ( R - i ) , the f i n a l e x p r e s s io n f o r

s i z e improvement , Equ a t ion (2 8 ) , i s o b t a i n e d :

Ld l / i + 32 (28)Ld1 R

[ i - t o ( X / R - l ) ]

The f r a c t i o n o f ne t p r o d u c t i o n wh ich i s d i s s o l v e d is expressed by

E qua t ion (3 4 ) . The d e t a i l e d deve lopment o f t h i s e q u a t i o n is p resen ted

he re .

The t o t a l p r o d u c t i o n r a t e , P = Q.pf' j j can be e xpressed a c c o r d in g

t o E qua t ion (17) as:

S i m i l a r l y , t he r a t e o f f i n e s d e s t ro y e d i s :

PF = QRp kv / nL3d l0

( 3 3 )

T h us , the f r a c t i o n wh ich i s d e s t r o y e d , <f>, can be expressed as:

79

For an e x p o n e n t i a l d i s t r i b u t i o n :

x p

QRn°(Gt )^ / e x^dx

"

apn- (GT) ' ,.[ / F = " Rx x 3dx + / e" x F<R- , ) e - x x 3dx]0 x F

(A.TO)

- X p t f T - l ) _ x

where e = e = g . S ince = (R-l)Q.p and Rx = p, t h i s e q u a t i o n

becomes:

Rx_

/ e Pp 3dp

♦ R- ----------° ----------------------------------------- (A. I I ), F - P 3 - x f ( R - D — „ x ,—r- / e Pp dp + e / e x dxR 0 x F

Using t h e d e f i n i t i o n g iv e n by E qua t ion (29) f o r the gamma d i s t r i b u t i o n :

R- li (Rx f )

* = — " - X p ( R - l )—r- w (Rxp) + e [ i - co(xF) ]R

Exp ress ing ^ as a f u n c t i o n o f X:

R-l

1 + r " e ' 1 [ 1 m0) (RA/R-T)

NOMENCLATURE

A- t o t a l s u r f a c e area p e r u n i t volume o f su spe n s io n .1 y . ■ /. . -. ■ ■ ; ■■ ‘

B p a r t i c l e b i r t h f u n c t i o n .

B ° n u c l e a t ion r a t e .

C s o l u t e c o n c e n t r a t i o n .

C : s a t u r a t e d s o l i d c o n c e n t r a t i o n .: y - ; -vv ' - ■ . • ■■ :D p a r t i c l e dea th f u n c t i o n .

G growth r a t e .

i o r d e r o f n u c l e a t i o n ( s u p e r s a t u r a t i o n ) .

j o r d e r o f n u c l e a t i o n (su sp ens io n ) . .

k c o n s t a n t in g rowth r a t e k i n e t i c s e q u a t i o n ..9

c o n s t a n t in n ucT e a t io n k i n e t i c s e q u a t i o n .

k v o l u m e t r i c shape f a c t o r .

L p a r t i c l e s i z e .

Ly dom inan t p a r t i c l e s i z e .

Lp upper l i m i t i n f i n e s d e s t r u c t i o n .

m t o t a l mass o f i n d i v i d u a l p a r t i c l e .P .• ■■ '

Mp s l u r r y d e n s i t y in f i n e s t r a p .

M y s l u r r y d e n s i t y in c r y s t a l 11 z e r .

n p o p u l a t i o n d e n s i t y a t s i z e L.

n . i n l e t p o p u l a t i o n d e n s i t y ,

n o u t l e t p o p u l a t i o n d e n s i t y .

n° n u c l e i p o p u l a t i o n d e n s i t y .

80

81

N c u m u la t i v e members o f a p o p u l a t i o n d i s t r i b u t i o n .

P p r o d u c t i o n r a t e .

Pp f i n e s p r o d u c t i o n r a t e .

Q.p feed v o l u m e t r i c f l o w r a t e .

Qp p r o d u c t v o l u m e t r i c f l o w r a t e .

Qp f i n e s v o l u m e t r i c f l o w r a t e .

R ' f i n e s d e s t r u c t i o n r a t e , (Qp + Q p) /Q p .

s s u p e r s a t u r a t i o n as C - C^.

t t im e .

v s e t t l i n g v e l o c i t y .

V suspens io n vo lume,

x dimens ion le s s c r y s t a l s i z e .

3 f r a c t i o n o f c r y s t a l s s u r v i v i n g the f i n e s t r a p .

(f> f r a c t i o n o f n e t p r o d u c t i o n .

X e x p o n e n t i a l decay r a t i o ,

p c r y s t a l d e n s i t y .

p s o l u t i o n d e n s i t y .s . ■

t mean res idence , t im e ,

w w e ig h t d i s t r i b u t i o n f u n c t i o n .

S u b s c r i p t s

1 w i t h o u t f i n e s d i s s o l v i n g system.

2' w i t h f i n e s d i s s o l v i n g sys tem.

REFERENCES

Beckman, J . R . , Ph.D. D i s s e r t a t i o n , Dept , o f Chemical E n g in e e r in g , U n i v e r s i t y o f A r i z o n a , Tucson (1976) .

C a l d w e l l , H. B . , Ind . Eng. Chem. , 2_, 115 (1961) .

C l o n t z , N. A . , and McCabe, W. L . , Chem. Ena. P ro g r . Symp. S e r . , 67, 6 (1971).

H e l t , J . E . , and La rson , M. A . , p re s en ted a t th e Wor ld Congress on Chem. E n g r . , Amsterdam, The N e th e r la n d s , June 30, 1976.

Ju z a s z e k , P . , and Larson , M. A . , AlChE J . ( i n p r e s s ) , 1977.

Larson , M. A . , and Gars i d e , J . , Chem. E n g r . , Lond . , No. 261, 318 (1973 ) .

Larson , M. A . , and Rando lph, A. D . , Chem. Engr. P r o a r . Symp. S e r . , 6 5 , 1 (1 969 ) .

La rson , M. A . , Timm, D. C . , and W o l f f , P. R. , AlChE J . , J_4, 448 (1968 ) .

L e i , S. L . , S h in n a r , R . , and Ka tz , S . , AlChE J . , 1 7 , 6 (19 71 ) .

Nauman, E. B . , Chem. Engr. P ro g r . Symp. S e r . , No. 110, 6 7 , 116 (1971) .

Nauman, E. B . , and Szabo, T. T . , Chem. Engr. P ro g r . Symp. S e r . , No. 110, 67, 108 ( 1 9 7 1 ) . -

P e r r y , R. H. ( e d . ) , Chemical E n g in e e r ' s Handbook, 5 th e d . , McGraw-H i l l , I n c . , New York (1973) .

Randolph, A. D. , AlChE J . , ] ± , 424 (1 965 ) .

Randolph, A. D. , Beer, G. L. , and Keener, J . P . , AlChE J . , 9_, 1140(1973) .

Randolph, A. D . , and C ise , M. D . , AlChE J . , J8_, 798 (1972) .

Rando lph, A. D . , and L a r s o n , M. A . , Theory o f P a r t i c u l a t e P rocesses ,Academic P ress , New York (1971 ) . ~ "

Randolph, A. D . , and You r tgqu is t , G. R . , AlChE J . , 18 , 421 (1972).

Saeman, W. C. , AlChE J . , 2, 107 (1 956 ) .

8 2 - ■

Saeman, W. C. , Ind. and E n g r . Chem., 5 3 , 612 (19 6 1).

T u r n b a l l , D . , and F i s h e r , J . C . , J . Chem. Rhys . , 17, 71 (1965 ) .

Volmer, M . , and Weber, A . , Z. Rhys. Chem. ( L e i p z i g ) , 119, 277 (1926).

. ; h

B:

m a m ® .

S j


Recommended