+ All Categories
Home > Documents > Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied...

Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied...

Date post: 08-Sep-2019
Category:
Upload: others
View: 6 times
Download: 0 times
Share this document with a friend
37
1 T. Markus RWTH-Aachen Jan 07 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties Torsten Markus Torsten Markus Institute for Energy Research (IEF-2) Forschungszentrum Jülich GmbH 52425 Jülich [email protected]
Transcript
Page 1: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

1T. Markus RWTH-Aachen Jan 07

Mitg

lied

de

r H

elm

holtz-G

em

ein

sch

aft

Experimental Determination of Thermochemical

Properties

Torsten MarkusTorsten Markus

Institute for Energy Research (IEF-2)

Forschungszentrum Jülich GmbH

52425 Jülich

[email protected]

Page 2: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

2T. Markus RWTH-Aachen June 08

Outline

- KEMS (Knudsen Effusion Mass Specktrometry)- Introduction and Example

- DTA (Differential Thermo Analysis)

- Phase Diagram Determination

- DSC (Differential Scanning Calorimetry

- Modelling (Determination of Interaction Parameters )

Page 3: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

3T. Markus RWTH-Aachen June 08

KEMS – Introduction( Knudsen Effusion MassSpectrometry )

For chemical- and materials research elucidation of the

vaporisation of materials is important

All materials vaporise if the temperature is sufficiently high

Thermodynamic data can be obtained from the partial

pressures of the evaporating species (also for thecondensed phase)

Knowledge of thermodynamic data is important to

understand the chemical and thermodynamic behaviourlike for example the interplay of substances during

chemical reactions

Page 4: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

4T. Markus RWTH-Aachen June 08

Determination of Thermodynamic Data with KnudsenEffusion Mass Spectrometry

The High Temperature Mass Spectrometry is themost imortant method for the analysis of vapors overcondensed phases

The Thermodynamic Data result from the measuredtemperature dependence of the Partial Pressures of the identified Gaseous Species

A special variant of this technique which is frequentlyused in inorganic gas phase chemistry, is the

Knudsen Effusion Masss Spectrometry (KEMS)

Page 5: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

5T. Markus RWTH-Aachen June 08

Temperatures and pressure ranges for KEMS,

TMS, LVMS

0 1000 2000 3000 4000 5000 6000 700010

-10

10-5

1

105

1010

p/P

a

T /K

Transpiration MS

Knudsen

Effusion

MS

Laser Induced MS

Page 6: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

6T. Markus RWTH-Aachen June 08

Principle of Knudsen Effusion Mass Spectrometry(KEMS)

•••• Vaporisation studies up to 2800 K

•••• Identification of gaseous species

•••• Determination of partial pressures

(10-8 ... 10 Pa)

•••• Evaluation of thermodynamic data of

•••• gaseous species

•••• condensed phases

•••• Elucidation of corrosion processes

Page 7: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

7T. Markus RWTH-Aachen June 08

Schematic Representation of a Knudsen cell magneticfield mass spectrometer system

Page 8: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

8T. Markus RWTH-Aachen June 08

Mass Spectrometer Knudsen Cell System (CH 5)

Page 9: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

9T. Markus RWTH-Aachen June 08

One Compartment Knudsen Cell

Liner

Sample

Outer Cell

Page 10: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

10T. Markus RWTH-Aachen June 08

Different types of Knudsen Cells

Page 11: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

11T. Markus RWTH-Aachen June 08

Functional principle of the two compartment Knudsen cell

Tungsten

crucible

Sample with p2<<p1 (s)

outer Tungsten

crucible

recess for the

thermo coupleconnection to the 2nd cell

separate heating

Sample with p1(s)

outer Tungsten

crucible

Tungsten

crucible

insert for a better

mixing of the gases

recess for the

thermo couple

Page 12: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

12T. Markus RWTH-Aachen June 08

Schematic representation of a Gas Inlet System

Page 13: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

13T. Markus RWTH-Aachen June 08

Determination of Thermodynamic Data

Example: ∆∆∆∆H; ∆∆∆∆S of DyI3

11stst stepstep::

identification of species present in the mass spectrum

and

Assignment of fragments to their neutral precursor

=> fragmentation coefficients

Page 14: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

14T. Markus RWTH-Aachen June 08

Identification of Gaseous SpeciesAssignment of Fragments to their neutral precursor

The temperature dependence of the ion intensities of the same neutral molecule generally show the same behaviour.

The appearance potential of the molecular ions formed by simple ionisation are generally smaller than those of fragments which come fromthe same neutral precursor. The appearance potential increase withincreasing degree of fragmentation.

Fragmentation of a molecule is often indicated by the shape of theionisation efficiency curve of the simple ionised ion

In comparison to molecular ions formed by simple ionisation the fragmentions have an additional kinetic energy contribution

Page 15: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

15T. Markus RWTH-Aachen June 08

Fragmentation

DyI3(s)

Dy2I6(g)DyI3(g)

DyI3+(g)

(1)

Dy+(g)(0,35)

DyI+(g)(0,29)

DyI2+(g)

(0,64)

Dy2I5+(g)

(1)

Dy2I3+(g)

(0,001)

Dy2I4+(g)

(0,080)

va

po

riza

tio

nE

lec

tro

nim

pa

ct

ion

iza

tio

n

(fragmentation coefficient)

Page 16: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

16T. Markus RWTH-Aachen June 08

Determination of Thermodynamic Data

Example: ∆∆∆∆HF of DyI3

22ndnd stepstep::

Measurement of the temperature dependence of ionintensities

and

Determination of partial pressures

Page 17: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

17T. Markus RWTH-Aachen June 08

100 105 110 1155

6

7

8

9

10

Dy+ DyI

+

DyI2

+ DyI

3

+

Dy2I4

+ Dy

2I5

+

log

(I T

)

arb

itra

try u

nits

1/T [10-5/ K]

1000 900 T [K]

Temperature Dependence of Ion Intensities for

the Equilibrium Vaporization of DyI3(s)

Page 18: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

18T. Markus RWTH-Aachen June 08

T temperature

I+i,j intensities of to the neutral species i related ions j

Ai,j isotopic abundance

γγγγi,j multiplier gains

σσσσi ionisation cross section of the neutral species i

k pressure calibration constant

∑ +=j

ji

jijii

i IA

Tkp ,

,,

100

1

γσ ii

i

i A

TI

σk

γ

+

=1

Experimental Determination of Partial Pressures pi of Neutral Species i

Page 19: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

19T. Markus RWTH-Aachen June 08

Different Calibration Methods

TI

p

100

Ak

i

iiii +

σγ=

p2

X

X

X

2

X kT

1

I

Ik 2

σ=

3 calibration by using the mass loss

1 vaporisation of a substance with a known vapor pressure

2 pressure dependent reaction taking place X2(g) ↔ 2X(g)2X

2X

pp

pK =

dt

dm

M

RT2

cq

1

T)i(I

)i(k i

i

π

σ=

Page 20: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

20T. Markus RWTH-Aachen June 08

Temperature Dependence of the Partial Pressures for theEquilibrium Vaporization of DyI3(s)

95 100 105 110 115 120

-3

-2

-1

0

1

DyI3

Dy2I6(g)

log

(p / P

a)

1/T [10-5/ K]

1000 900 T [K]

Page 21: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

21T. Markus RWTH-Aachen June 08

Determination of Thermodynamic Data

Example: ∆∆∆∆HF of DyI3

33rdrd stepstep::

Determination of Thermodynamic Data

Page 22: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

22T. Markus RWTH-Aachen June 08

Equilibrium Constant

0

00

0

0

0

3

3

3

3

pp

with

p

p

pp

pp

p

pK

)s(DyI

)g(DyI

)s(DyI

)g(DyI

j

jp

i

=

=⋅

⋅=

=

ν

)g(DyI)s(DyI 33 ⇔

Page 23: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

23T. Markus RWTH-Aachen June 08

j

j

j

pp

pK

ν

=

0

0

2nd law 3rd law

00 ln pTr KRTG −=∆

000

TrTrTr STHG ∆−∆=∆

Gibbs free reaction energy reaction enthalpy reaction entropy

R

S

RT

HK TrTr

p

000ln

∆+

∆−=

( )000 ln TrpTr SKRTH ∆−⋅−=∆

−∆+⋅−=∆

T

HGKRTH T

rpr

0

298

000

298 ln

( )T

HGS TrTr

Tr

000 ∆−∆

−=∆from

meas.

Determination of Thermodynamic Properties

Page 24: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

24T. Markus RWTH-Aachen June 08

Determination of thermodynamic properties

2nd law method

0

p

0

Tr K ln RTG −=∆0

Tr

0

Tr

0

Tr STHG ∆−∆=∆

BT

A

R

ST

TR

HKln TrTr

p

+⋅=

∆+⋅

∆−=

1

1 000

Page 25: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

25T. Markus RWTH-Aachen June 08

Determination of ∆∆∆∆H and ∆∆∆∆S from EquilibriumConstant

95 100 105 110 115 12010

-2

10-1

100

101

DyI3(s) = DyI

3(g)

Tm= 933K

log

Kp

1/T [10-5/ K]

1000 900 T [K]

Kmol

kJ,S

mol

kJ,H

,T

Klog

0Tr

0Tr

p

⋅=∆

=∆⇒

+⋅−=

57267

08255

974131

133220

Page 26: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

26T. Markus RWTH-Aachen June 08

Thermodynamic Data for the equilibrium vaporization of DyI3(s)

I DyI3(s) →→→→ DyI3(g)

II 2DyI3(s) →→→→ Dy2I6(g)

IV 2DyI3(f) →→→→ Dy2I6(g)

1,24·10+4-153,0±3,0-199,49±0,8-205,4±3,3-195,4±3,3920II

1,15·10-7250,7±5,24356,5±1,0352,9±4,3325,6±4,4920II

3,05·10-6201,9±3278,0±0,9279,4±2,8260,5±2,7920I

kp(Tm)∆∆∆∆S0298

kJ (kmol K)-1

∆∆∆∆H0298

kJ mol-1

3rd law

∆∆∆∆H0298

kJ mol-1

2nd law

∆∆∆∆H0Tm

kJ mol-1

Tm

K

Page 27: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

27T. Markus RWTH-Aachen June 08

Differential Thermal Analysis (DTA)

Measuring of Phase Transition

Temperatures

Determination of the Quantity of

Heat

Studies in different Atmospheres

Thermal Analysis from RT to 2800

K

T

T∆

PT

Simultaneous DTA withThermogravimetry (TG)STA 429, Netzsch

Principle of DTA

Page 28: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

28T. Markus RWTH-Aachen June 08

300

350

400

450

500

550

600

650

700

750

800

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

XNaI

Te

mp

era

tur

[°C

]

CeI3 NaI

CeI3(s)

+ SchmelzeNaI(s)

+ Schmelze

Schmelze

CeI3(s) + NaI(s)

1)°

=NaI

NaIi

p

pa

°=

3

3

CeI

CeI

ip

pa

3/2

2

])(/)([

])(/)([)(

CeINaI

NaIRS

NaIINaII

NaIINaIINaIa

++

−++

=2)

)(

)(

)(

)()( 4

4

3NaII

NaCeII

NaCeII

NaIICeIa

ZPR

+

+

+

+

=

)(),()( 43 gNaCeIlsCeIgNaI ⇔+3)

∫−

=−

−=x

x

NaIadx

xCeIa

1

0

3 )(ln1

)(ln4)

Methoden:

Phase Diagram of NaI – CeI3 determined by DTA and compositions and temperatures for KEMS measurements

Page 29: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

29T. Markus RWTH-Aachen June 08

According to definition:

Ion Intensity Ratio integration Method (GD-IIR):

a ip i

p i

I i

I i( )

( )

( )

( )

( )====

°°°°====

°°°°

++++

++++( , )i A B====

ln ( ) ( ) ln( )

( ) ( )f A x d

x I B

x I Ax

x

==== −−−− −−−−−−−−

====

++++

++++∫∫∫∫1

11

a A x f A( ) ( )====

d(1/T)

a(A) ln dRH(A)

mix∆ =

Activities:

Enthalpies and Gibbs Energies:

]ln)x(lnx[RTGmnnn X'MMXMXMX

E

m γγ −+= 1

Thermodynamic Properties of A and B in

Mixtures {xA + (1-x)B}

Page 30: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

30T. Markus RWTH-Aachen June 08

0,0

0,2

0,4

0,6

0,8

1,0

0,0 0,2 0,4 0,6 0,8 1,0

0,0

0,2

0,4

0,6

0,8

1,0

0,0 0,2 0,4 0,6 0,8 1,0

0,0

0,2

0,4

0,6

0,8

1,0

0,0 0,2 0,4 0,6 0,8 1,0

0,0

0,2

0,4

0,6

0,8

1,0

0,0 0,2 0,4 0,6 0,8 1,0

a

a

XNaI XNaI

Temperature and Composition dependency of activityfor the NaI – CeI3 system

550 °C550 °C 600 °C600 °C

625 °C625 °C 650 °C650 °C

Page 31: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

31T. Markus RWTH-Aachen June 08

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

XNaI

a

Extrapolation

a(NaI)

a(CeI3)

Gibbs-Duhem-Integration

a(NaI)

a(CeI3)

activities at 750 °C

Page 32: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

32T. Markus RWTH-Aachen June 08

Enthalpy of mixing for the NaI-CeI3 System

-14

-12

-10

-8

-6

-4

-2

0

0.00 0.20 0.40 0.60 0.80 1.00mol% NaI

En

tha

lpy

of

mix

ing

[kJ/

mo

l]

Page 33: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

33T. Markus RWTH-Aachen June 08

Thermodynamic Modeling Procedure

.minln)(0

0 =

+== ∑∑

i

ii

i

i

ii RTTG νν

νµνµ

Gibbs free energy related to

enthalpie @ reference temperature

Tref=298K

formation enthalpy

@ reference temperature

Tref=298K

43421444 3444 21)()()()( 0,0,0,0

ref

m

fref

m

i

m

ii THTHTGT ∆+−=µ

This thermodynamic input data is taken from

• KEMS experiments

• calculations using cp(T) functions

• literature tables

solve this problem and find Nνν ...1

input data needed:

Page 34: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

34T. Markus RWTH-Aachen June 08

Introduction to the Data Optimization procedure

The aim is to generate a consistent set of Gibbs energy parameters from a given set of

experimental data using known Gibbs energy data from well established phases of a

particular chemical system.

Typical experimental data include:

phase diagram data: transitions temperatures and pressures as well as amount and composition of the phases at equilibrium

calorimetric data: enthalpies of formation or phase transformation, enthalpies of mixing, heat contents and heat capacity measurements

partial Gibbs energy data: activities from vapor pressure or EMF measurements

volumetric data: dilatometry, density measurements.

The assessor has to use his best judgement on which of the known parameters should

remain fixed, which set of parameters need refinement in the optimization and which

new parameters have to be introduced, especially when assessing data for non-ideal

solutions.

Page 35: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

35T. Markus RWTH-Aachen June 08

Overview of the data to be optimized in the

NaI-CeI3 systemVarious experimental data on the binary NaI-CeI3 system have been measured:

– phase diagram data (liquidus points, eutectic points)

– liquid-liquid enthalpy of mixing

– activity of NaI(liq) at different temperatures

OptiSage will be used to optimize the parameters for the liquid Gibbs energy model (XS terms). All other data (G°of the pure stoichiometricsolids, as well as the pure liquid components) will be taken from the FACT database (i.e. remain fixed). A polynomial model for the Gibbs energy of the liquid will be used:G = (X1 G°1 + X2 G°2) + RT(X1 ln X1 + X2 ln X2) + GE

where GE = ∆∆∆∆H – TSE

Using the binary excess terms:

∆∆∆∆H = X1X2 (A1) + X12X2 (B1)

SE = X1X2 (A3) + X12X2 (B3)

Hence:

GE = X1X2 (A1 - A3T) + X12X2 (B1 - B3T)

Where A1, A3, B1 and B3 are the 4

parameters to be optimized.CeI3xCeI3

G

NaI

G°1

G°2

Page 36: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

36T. Markus RWTH-Aachen June 08

Phase Diagram of the System NaI–CeI3 (DTA)

Binary Excess Polynomial:

GmE=(xNaI

i)(xCeI3j)(A + B*T + C*T*ln(T) + D*T2 + E*T3 + F*T-1)

(calculated)

Page 37: Experimental Determination of Thermochemical Properties · T. Markus RWTH-Aachen Jan 07 1 Mitglied der Helmholtz-Gemeinschaft Experimental Determination of Thermochemical Properties

37T. Markus RWTH-Aachen June 08

Outline

- KEMS (Knudsen Effusion Mass Specktrometry)- Introduction and Example

- DTA (Differential Thermo Analysis)

- Phase Diagram Determination

- DSC (Differential Scanning Calorimetry

- Modelling (Determination of Interaction Parameters )


Recommended