+ All Categories
Home > Documents > Experimental evidence for Chirality

Experimental evidence for Chirality

Date post: 02-Jan-2016
Category:
Upload: aileen-chase
View: 35 times
Download: 0 times
Share this document with a friend
Description:
Experimental evidence for Chirality. S. Frauendorf. IKH, Forschungszentrum Rossendorf, Dresden Germany. Department of Physics University of Notre Dame USA. In collaboration with. J. Meng, PKU V. Dimitrov, ISU F. Doenau, FZR U. Garg, ND K. Starosta, MSU S. Zhu, ANL. - PowerPoint PPT Presentation
Popular Tags:
28
Experimental evidence for Chirality S. Frauendor f partment of Physics iversity of Notre Dame A IKH, Forschungszentr Rossendorf, Dresden Germany
Transcript
Page 1: Experimental evidence for Chirality

Experimental evidence for ChiralityS. Frauendorf

Department of Physics

University of Notre Dame

USA

IKH, Forschungszentrum

Rossendorf, Dresden

Germany

Page 2: Experimental evidence for Chirality

In collaboration withJ. Meng, PKUV. Dimitrov, ISUF. Doenau, FZRU. Garg, NDK. Starosta, MSUS. Zhu, ANL

Page 3: Experimental evidence for Chirality

Consequence of chirality: Two identical rotational bands.

Page 4: Experimental evidence for Chirality

The prototype of a chiral rotor

Frauendorf, Meng, Frauendorf, Meng, Nucl. Phys. A617, 131 (1997Nucl. Phys. A617, 131 (1997) )

Page 5: Experimental evidence for Chirality

Particle – Rotor model:

Frauendorf, Meng, Nuclear Physics A617, 131 (1997)Frauendorf, Meng, Nuclear Physics A617, 131 (1997)

Doenau, Frauendorf, Zhang, PRC , in preparation

Page 6: Experimental evidence for Chirality

312 ,

Dynamical (Particle Rotor) calculation

Chiral vibration

Page 7: Experimental evidence for Chirality

Frozen alignment approximation:

They are numbers

One dimensional -very well suited for analysis.

Page 8: Experimental evidence for Chirality

312 44 JJJ

chiralvibration

chiralrotation

jJ crit 3

24

Page 9: Experimental evidence for Chirality
Page 10: Experimental evidence for Chirality

out

in

out

out

in

in

yrast yrare

out

in

Page 11: Experimental evidence for Chirality

312 ,

Dynamical (Particle Rotor) calculation

Chiral vibration

Page 12: Experimental evidence for Chirality

chiralregime

2/112/11 21 jj

8 10 12 14 16 18 20 22 24 26 28 300.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

=90o

E2-

E1

I

omega1 E2E1

rotEE 3.012

Page 13: Experimental evidence for Chirality

10 12 14 16 18 20 22

0.0

0.1

0.2

0.3

0.4

=90o

1->1 1->2 2->1 2->2

B(E

2,I-

>I-

2)

I

8 10 12 14 16 18 20 22-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

=90o

1->1 1->2 2->1 2->2

B(M

1,I-

>I-

1)

I

8 10 12 14 16 18 20 22

0.0

0.1

0.2

0.3

0.4

0.5

=90o

1->1 1->2 2->1 2->2

B(E

2,I-

>I-

1)

I

Page 14: Experimental evidence for Chirality

band 2 band 1134Pr

h11/2 h11/2

10 12 14 16 18 20 220

100

200

300

400

500

600

700

800

900

1000

backbend

134Prexperiment

E2-

E1

I

E2E1 omega1

Page 15: Experimental evidence for Chirality

10 15 20 250.0

0.2

0.4

0.6

0.8

1.0

=90o 1:2E

2-E

1

I

omega1 E2E1

2/192/11 21 jj

Page 16: Experimental evidence for Chirality

10 15 20 25

0.00

0.05

0.10

0.15

0.20

0.25

0.30 =90o 1:2B

(E2

,I->

I-1

)

I

BE2u(11) BE2u(12) BE2u(21) BE2u(22)

10 15 20 25

0

1

2

3

4

5

=90o 1:2

B(M

1,I-

>I-

1)

I

BM1(11) BM1(12) BM1(21) BM1(22)

10 15 20 25-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 =90o 1:2

B(E

2,I-

>I-

2)

I

BE2s(11) BE2s(12) BE2s(21) BE2s(22)

Page 17: Experimental evidence for Chirality

Microscopic moments of inertia

Cranking of the core about the 3 axes

1:4:1:: 321 JJJIrrotational flow

1:55.3:52.1:: 321 JJJ

o3018.0

Page 18: Experimental evidence for Chirality

10 12 14 16 18 20 220

100

200

300

400

500

600

700

800

900

1000

PR + TAC

E2-

E1

I

E2E1 omega1

10 12 14 16 18 20 220

100

200

300

400

500

600

700

800

900

1000

backbend

134Prexperiment

E2-

E1

I

E2E1 omega1

Page 19: Experimental evidence for Chirality

10 12 14 16 18 20 220.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

PR + TAC

B(M

1,I-

>I-

1)

I

BM111 BM112 BM121 BM122

10 12 14 16 18 20 22

0.0

0.1

0.2

0.3

0.4

0.5

0.6

PR + TAC

B(E

2,I-

>I-

2)

I

BE2s11 BE2s12 BE2s21 BE2s22

10 12 14 16 18 20 220

100

200

300

400

500

600

700

800

900

1000

PR + TAC

E2-

E1

I

E2E1 omega1

Page 20: Experimental evidence for Chirality

10

12

13

14

15

16

17

18

19

11 10

12

13

14

15

16

17

18

19

11

112 2

Page 21: Experimental evidence for Chirality

10 15 20 25

0

1

2

3

4

5

=80o

B(M

1,I-

>I-

1)

I

BM1(11) BM1(12) BM1(21) BM1(22)

10 12 14 16 18 20 22 240.0

0.1

0.2

0.3

0.4

0.5

=80o

B(E

2,I-

>I-

2)

I

BE2s(11) BE2s(12) BE2s(21) BE2s(22)

10 15 20 250.0

0.1

0.2

0.3

0.4

0.5

=80o

B(E

2,I

->I-

1)

X Axis Title

BE2u(11) BE2u(12) BE2u(21) BE2u(22)

10 15 20 250.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

=80o

E2-

E1

I

E2E1 omega1

Page 22: Experimental evidence for Chirality

5910445 Rh 2/11

12/9 hg

C. Vaman et alPhys. Rev. Lett.92, 032501 (2004)

Page 23: Experimental evidence for Chirality

10 15 20 25

0.00

0.05

0.10

0.15

0.20

0.25

0.30 =90o 1:2B

(E2

,I->

I-1

)

I

BE2u(11) BE2u(12) BE2u(21) BE2u(22)

10 15 20 25

0

1

2

3

4

5

=90o 1:2

B(M

1,I-

>I-

1)

I

BM1(11) BM1(12) BM1(21) BM1(22)

10 15 20 25-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 =90o 1:2

B(E

2,I-

>I-

2)

I

BE2s(11) BE2s(12) BE2s(21) BE2s(22)

Page 24: Experimental evidence for Chirality

S. Zhu et al.Phys. Rev. Lett. 91, 132501 (2003)

Composite chiral band in 7513560 Nd

Page 25: Experimental evidence for Chirality

Chiral sister bands

Representativenucleus I

observed13 0.21 145910445 Rh 2/11

12/9 hg

13 0.21 4011118877 Ir

2/912/9 gg

447935 Br

12/132/13

ii

13 0.21 14

predicted

predicted

9316269 Tm 1

2/112/13ii predicted45 0.32 26

12/112/11

hh observed13 0.18 267513459 Pr

31/37

Page 26: Experimental evidence for Chirality

Chiral vibrator

2/1 2

1

12

12

)()(2/1

2

1

1

222

233

211

IIA

j

Ij

JAjJAjJAH

ii

W

J

JJ

J

Page 27: Experimental evidence for Chirality

[8] K. Starosta et al., Physical Review Letters 86, 971 (2001)

Page 28: Experimental evidence for Chirality

Conclusions

Energy condition rotEE 3.012 met for several cases.

Left-right coupling (LRC) displaces the two bands

LCR makes the transition rates in the two bands somewhat different.Seen in BM1/BE2. Lifetimes needed.

LCR distributes the classical transition strength between intrabandand interband transitions. Sensitive to details. Inter/Intra not a good indicator for chirality.

B(intra)+B(inter) can be compared with classical strength (from TAC).

New regions : A=190, A=162 TSD


Recommended