+ All Categories
Home > Documents > Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2...

Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2...

Date post: 08-Aug-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
29
Experimental search for the cosmic background neutrino decay in the cosmic far-infrared background TGSW 2014 Sep. 29th, 2014 / University of Tsukuba, Japan Yuji Takeuchi (Univ. of Tsukuba) for Neutrino Decay Collaboration 1 S.H.Kim , K. Takemasa, K.Kiuchi , K.Nagata , K.Kasahara , T.Okudaira, T.Ichimura, M.Kanamaru, K.Moriuchi, R.Senzaki(Univ. of Tsukuba), H.Ikeda, S.Matsuura, T.Wada(JAXA/ISAS), H.Ishino, A.Kibayashi (Okayama Univ), S.Mima (RIKEN), T.Yoshida, S.Komura, K.Orikasa, R.Hirose(Univ. of Fukui), Y.Kato(Kindai Univ.), Y.Arai, M.Hazumi(KEK), E.Ramberg, J.H.Yoo, M.Kozlovsky, P.Rubinov, D.Sergatskov(Fermilab) S.B.Kim(Seoul National Univ.)
Transcript
Page 1: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

Experimental search for the cosmic

background neutrino decay in the cosmic

far-infrared background

TGSW 2014 Sep. 29th, 2014 / University of Tsukuba, Japan

Yuji Takeuchi (Univ. of Tsukuba) for Neutrino Decay Collaboration

1

S.H.Kim , K. Takemasa, K.Kiuchi , K.Nagata , K.Kasahara , T.Okudaira, T.Ichimura,

M.Kanamaru, K.Moriuchi, R.Senzaki(Univ. of Tsukuba), H.Ikeda, S.Matsuura,

T.Wada(JAXA/ISAS), H.Ishino, A.Kibayashi (Okayama Univ), S.Mima (RIKEN),

T.Yoshida, S.Komura, K.Orikasa, R.Hirose(Univ. of Fukui), Y.Kato(Kindai Univ.),

Y.Arai, M.Hazumi(KEK), E.Ramberg, J.H.Yoo, M.Kozlovsky, P.Rubinov,

D.Sergatskov(Fermilab) S.B.Kim(Seoul National Univ.)

Page 2: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

Contents

โ€ข Introduction to neutrino decay search

โ€“ Proposed rocket experiment

โ€ข Candidates for far-infrared single photon detector/spectrometer

โ€“ Nb/Al-STJ with diffraction grating

โ€“ Hf-STJ

โ€ข Summary

2

Page 3: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

Neutrino

โ€ข Neutrino has 3 mass generations (1, 2, 3)

โ€ข Neutrino flavor states (e, , ) are not mass eigenstates

๐œˆ๐‘’๐œˆ๐œ‡๐œˆ๐œ=

๐‘ˆ๐‘’1 ๐‘ˆ๐‘’2 ๐‘ˆ๐‘’3๐‘ˆ๐œ‡1 ๐‘ˆ๐œ‡2 ๐‘ˆ๐œ‡3๐‘ˆ๐œ1 ๐‘ˆ๐œ2 ๐‘ˆ๐œ3

๐œˆ1๐œˆ2๐œˆ3

Neutrino can decay through the loop diagram

โ€“ ๐œˆ3 โ†’ ๐œˆ1,2 + ๐›พ

โ€ข Neutrino lifetime is very long

Cosmic neutrino background (CB) is the best neutrino source for neutrino decay search

3

๐‘Š ๐œˆ3

ฮณ e, ๐œ‡, ๐œ

๐œˆ1,2

Page 4: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

Cosmic neutrino background (C๐œˆB)

4

CMB ๐‘›๐›พ = 411/cm

3

๐‘‡๐›พ = 2.73 K

๐‘›๐œˆ + ๐‘›๐œˆ =3

4

๐‘‡๐œˆ๐‘‡๐›พ

3

๐‘›๐›พ = 110 cm3

CB (~1s after big bang)

๐‘‡๐œˆ =4

11

13๐‘‡๐›พ = 1.95K

๐‘๐œˆ = 0.5meV/c

Not yet

observed

experimentally

Page 5: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

Motivation of -decay search in CB

โ€ข Search for ๐œˆ3 โ†’ ๐œˆ1,2 + ๐›พ in cosmic neutrino background (C๐œˆB)

โ€“ Direct detection of C๐œˆB

โ€“ Direct detection of transition magnetic dipole moment of neutrino

โ€“ Direct measurement of neutrino mass: ๐‘š3 = ๐‘š32 โˆ’๐‘š1,2

2 2๐ธ๐›พ

โ€ข Aiming at sensitivity of detecting ๐›พ from ๐œˆ decay for ๐œ ๐œˆ3 = ฮŸ 1017yr๐‘ 

โ€“ SM expectation ๐œ = ฮŸ(1043yr๐‘ )

โ€“ Current experimental lower limit ๐œ > ฮŸ(1012yr๐‘ )

โ€“ L-R symmetric model (for Dirac neutrino) predicts down to ๐œ = ฮŸ(1017yr๐‘ ) for ๐‘Š๐ฟ-๐‘Š๐‘… mixing angle ๐œ < 0.02

LRS: SU(2)L๏ฝ˜SU(2)R๏ฝ˜U(1)B-L

5

๐‘Š๐ฟ ๐œˆ3๐ฟ

ฮณ ๐‘’๐ฟ, ๐œ‡๐ฟ, ๐œ๐ฟ

๐œˆ1,2๐ฟ

๐œˆ3๐‘… ๐‘š๐œˆ3

๐‘Š1 ๐œˆ3๐‘…

๐œˆ1,2๐ฟ

๐œ๐ฟ ฮณ

๐œ๐‘… ๐‘š๐œ

โ‰ƒ ๐‘Š๐ฟ โˆ’ ๐œ๐‘Š๐‘…

SM: SU(2)L๏ฝ˜ U(1)Y

Suppressed by ๐‘š๐œˆ, GIM

๐šช~ ๐Ÿ๐ŸŽ๐Ÿ’๐Ÿ‘ ๐’š๐’“โˆ’๐Ÿ

๐šช~ ๐Ÿ๐ŸŽ๐Ÿ๐Ÿ• ๐’š๐’“โˆ’๐Ÿ

Only suppressed by ๐œ~0.02

1026

enhancement to

SM

Neutrino magnetic

moment term

๐œˆ ๐‘—๐ฟ๐œŽ๐œ‡๐œˆ๐œˆ๐‘–๐‘…

PRL 38,(1977)1252, PRD 17(1978)1395

๐‘Š1๐‘Š2=cos๐œ โˆ’sin๐œsin๐œ cos๐œ

๐‘Š๐ฟ๐‘Š๐‘…

๐œˆ๐‘–๐‘…

๐œˆ๐‘—๐ฟ ฮณ

Page 6: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

Photon Energy in Neutrino Decay

m3=50meV

m1=1meV

m2=8.7meV E =4.4meV

ฮฝ3 โ†’ ๐œˆ1,2 + ๐›พ ๐ธ๐›พ =๐‘š32 โˆ’๐‘š1,2

2

2๐‘š3

E =24meV

๐œˆ3

๐ธ๐›พ ๐›พ

๐œˆ2

Sharp Edge with

1.9K smearing Red Shift effect d

N/d

E(a

.u.)

25meV(50๐œ‡๐‘š)

๐ธ๐›พ distribution in ฮฝ3 โ†’ ๐œˆ2 + ๐›พ

๐ธ๐›พ[meV]

6

๐‘š3 = 50 meV

E =24.8meV

Two body decay

(50๐œ‡๐‘š) (52๐œ‡๐‘š)

(282๐œ‡๐‘š)

โ€ข From neutrino oscillation

โ€“ ฮ”๐‘š232 = |๐‘š3

2 โˆ’๐‘š22| = 2.4 ร— 10โˆ’3 ๐‘’๐‘‰2

โ€“ ฮ”๐‘š122 = 7.65 ร— 10โˆ’5 ๐‘’๐‘‰2

โ€ข From Planck+WP+highL+BAO

โ€“ โˆ‘๐‘š๐‘– < 0.23 eV

50meV<๐‘š3<87meV

๐‘ฌ๐œธ =14~24meV (๐€๐œธ =51~89m)

Page 7: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

Backgrounds to C๐œˆB decay

7

at ฮป๏ผ50ฮผm

Zodiacal Emission

๐ผ๐œˆ~8MJy/sr

CIB

๐œ†๐ผ๐œ†~0.1-0.5MJy/sr

๐œ = 5 ร— 1012yr๐‘ 

๐ผ๐œˆ~0.5MJy/sr

๐œ = 1 ร— 1014yrs

๐ผ๐œˆ~25kJy/sr Expected ๐‘ฌ๐œธspectrum

๐‘š3 = 50meV

CMB ZE

ZL

ISD

SL DGL

CB decay

wavelength [m]

E [meV]

Su

rface

bri

gh

tne

ss I

[M

Jy/s

r]

AKARI COBE

CB decay

Page 8: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

Detector requirements โ€ข Need continuous spectrum of photon energy around ๐œ†=50๐œ‡m

(far infrared photon) with highly precise accuracy

โ€“ Photon-by-photon energy measurement with better than 2% resolution

for ๐ธ๐›พ = 25meV (๐œ†=50๐œ‡m ) to achieve better S/N as well as to identify

the sharp edge in the spectrum

โ€“ A ground based experiment is impossible, so rocket and/or satellite

experiment with this detector is required

โ€ข Superconducting Tunneling Junction (STJ) detectors in development

โ€“ Array of 50 Nb/Al-STJ pixels with diffraction grating covering ๐œ† = 40 โˆ’ 80๐œ‡m

โ€ข For rocket experiment aiming at improvement of current lower limit

for ๐‰(๐‚๐Ÿ‘) by 2 order : O(1014yr) in a 200-sec measurement

โ€“ STJ using Hafnium: Hf-STJ for satellite experiment

โ€ข ฮ” = 20๐œ‡eV : Superconducting gap energy for Hafnium

โ€ข ๐‘q.p. = 25meV 1.7ฮ” = 735 for 25meV photon: ฮ”๐ธ ๐ธ < 2% if Fano-factor is

less than 0.3

8

Page 9: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

STJ(Superconducting Tunnel Junction๏ผ‰Detector

A bias voltage (|V|<2ฮ”) is applied across the junction.

A photon absorbed in the superconductor breaks Cooper pairs and creates

tunneling current of quasi-particles proportional to the photon energy.

โ€ข Superconducting / Insulator /Superconducting

Josephson junction device

2ฮ”

9

ฮ”: Superconducting gap energy

Page 10: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

STJ examples

โ€ข STJs are already in practical use as a single photon spectrometer for a photon ranging from near-infrared to X-ray, and shows excellent performances comparing to conventional semiconductor detectors

10

5mm

5m

m

H. Sato (RIKEN)

100m x 100m

5.9KeV X-ray

Page 11: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

STJ energy resolution Statistical fluctuation in number of quasi-particles determines STJ energy

resolution

Smaller superconducting gap energy ฮ” yields better energy resolution

Si Nb Al Hf

Tc[K] 9.23 1.20 0.165

ฮ”[meV] 1100 1.550 0.172 0.020

ฮ”: Superconducting gap energy

F: fano factor

E: Photon energy

Hf Hf-STJ as a photon detector is not established

Nq.p.=25meV/1.7ฮ”=735 2% energy resolution is achievable if Fano factor <0.3

Tc :SC critical temperature

Need ~1/10Tc for practical

operation Nb Well-established as Nb/Al-STJ (back-tunneling gain from Al-layer)

Nq.p.=25meV/1.7ฮ”=9.5 Poor energy resolution, but

photon counting is possible in

principle

๐œŽ๐ธ = 1.7ฮ” ๐น๐ธ

11

Page 12: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

Proposal of a rocket experiment

Expect 200s measurement at altitude of 200~300km

Telescope with diameter of 15cm and focal length of 1m

All optics (mirrors, filters, shutters and grating) will be cooled below 4K

Diffraction grating covering =40-80m (16-31meV) and array of Nb/Al-STJ pixels: 50()x8()

Use each Nb/Al-STJ pixel as a single-photon counting detector for FIR photon of =40โˆ’80m (ฮ”๐œ† = 0.8๐œ‡๐‘š)

sensitive area of 100mx100m for each pixel (100rad x 100rad)

12

Nb/Al-STJ

array

๐œ† = 40 โˆ’ 80๐œ‡m

๐ธ๐›พ = 16~31meV ฮ”๐œƒ ฮ”๐œ†

Page 13: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

13

๐œ = 1 ร— 1014yr

Expected accuracy in the spectrum measurement

Telescope parameters

โ€ข Main mirror

โ€“ D=15cm, F=1m

โ€ข detector

โ€“ sensitive area

100mx100m/ pixel

โ€“ 50x8 array

ฮ”๐œ† =40๐œ‡๐‘š

50= 0.8๐œ‡๐‘š

CMB

ISD

SL DGL

CB decay

wavelength [m]

Su

rfa

ce

bri

gh

tness I

[M

Jy/s

r]

Zodiacal Emission

Zodiacal Light

โ€ข Zodiacal emission โ‡’ 343Hz / pixel

โ€“ 200sec measurement: 0.55M events / 8 pixels (at ๐œ† = 50๐œ‡๐‘š)

โ€“ 0.13% accuracy measurement for each wavelength: ๐œน ๐‘ฐ๐‚ =11kJy/sr

โ€ข Neutrino decay (๐‘š3 = 50 meV, ๐œ๐œˆ = 1 ร— 1014yr): ๐‘ฐ๐‚=25kJy/sr

โ€“ 2.3ฯƒ away from statistical fluctuation in ZE measurement

Integrated flux from galaxy counts

decay with ๐‰๐‚ = ๐Ÿ๐ŸŽ๐Ÿ๐Ÿ’ yrs is possible to detect, or set lower limit!

Page 14: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

Summary โ€ข We propose an experiment to search for neutrino radiative

decay in cosmic neutrino background.

โ€ข Requirements for the detector is an ability of photon-by-

photon energy measurement with better than 2% energy

resolution for ๐ธ๐›พ = 25 meV (๐œ† = 50๐œ‡๐‘š)

โ€ข Nb/Al-STJ array with grating and Hf-STJ are considered for

the experiments and under development.

โ€ข It is possible to improve the neutrino lifetime lower limit up to

O(1014yrs) for 200-sec measurement in a rocket experiment

with the detector.

14

Page 15: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

Backup

15

Page 16: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

Energy/Wavelength/Frequency

๐ธ๐›พ = 25 meV

๐œˆ = 6 THz

๐œ† = 50๐œ‡๐‘š

16

Page 17: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

STJ I-V curve โ€ข Sketch of a current-voltage (I-V) curve for STJ The Cooper pair tunneling current (DC Josephson current) is seen at V =

0, and the quasi-particle tunneling current is seen for |V|>2

Josephson current is suppressed by magnetic field 17

2ฮ”

Leak current

B field

Page 18: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

STJ back tunneling effect

Photon

โ€ข Quasi-particles near the barrier can mediate Cooper pairs, resulting in true signal gain โ€“ Bi-layer fabricated with superconductors of different gaps Nb>Al to enhance

quasi-particle density near the barrier โ€“ Nb/Al-STJ Nb(200nm)/Al(10nm)/AlOx/Al(10nm)/Nb(100nm)

โ€ข Gain: 2๏ฝž200

Nb Al Nb Al

18

Page 19: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

Feasibility of VIS/NIR single photon detection

โ€ข Assume typical time constant from STJ response to pulsed

light is ~1ฮผs

โ€ข Assume leakage is 160nA

160๐‘›๐ด = ๐‘’ ร— 1012 ๐‘  = ๐‘’ ร— 106 ๐œ‡๐‘ 

Fluctuation from electron statistics in 1ฮผs is

๐‘’ ร— 106 ๐œ‡๐‘  = 103๐‘’ ๐œ‡๐‘ 

While expected signal for 1eV are

(Assume back tunneling gain x10)

1๐‘’๐‘‰ 1.7ฮ” ร— 10๐‘’ =1๐‘’๐‘‰

1.7ร—1.5๐‘š๐‘’๐‘‰ร— 10 = 4 ร— 103๐‘’

More than 3sigma away from leakage fluctuation

19

Page 20: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

Feasibility of FIR single photon detection

โ€ข Assume typical time constant from STJ response to pulsed light is ~1ฮผs

โ€ข Assume leak current is 0.1nA

0.1๐‘›๐ด = 6.25 ร— 108๐‘’ ๐‘  = 6.25 ร— 102๐‘’ ๐œ‡๐‘ 

Fluctuation due to electron statistics in 1ฮผs is

6.25 ร— 102๐‘’ ๐œ‡๐‘  = 25 ๐‘’ ๐œ‡๐‘ 

While expected signal charge for 25meV are

25meV 1.7ฮ” ร— 10๐‘’ =25meV

1.7ร—1.5meVร— 10๐‘’ = 98๐‘’

(Assume back tunneling gain x10)

More than 3sigma away from leakage fluctuation

โ€ข Requirement for amplifier

โ€ข Noise<16e

โ€ข Gain: 1V/fC V=16mV

20

Page 21: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

Temperature dependence of Nb/Al-STJ leak current

Temperature dependence of leak current

10nA at T=0.9K T=0.4K

Magnetic field on

Rref=1๐‘€ฮฉ

Leak current can be reduced by using

small junction size. We are testing STJ

of 4m2 junction size

500ฮผV

5nA

2nA @0.5mV

Need T<0.9K for detector operation

Use 3He sorption or ADR for the

operation in rocket experiment

Junction size: 100x100um2

21

21 This Nb/Al-STJ is

produced by S. Mima

(Riken)

40um2 Nb/Al-STJ I-V curve

2nA

Junction size: 40um2

Need Ileak<0.1nA for single photon

counting with S/N>103

๐‘ฝ ๐‘ฐ

Page 22: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

100x100m2 Nb/Al-STJ response to NIR multi-photons

10 laser pulses in 200ns

NIR laser

through optical

fiber

We observed a response to NIR photons

โ€ข Response time ~1ฮผs

โ€ข Corresponding to 40 photon detection

(estimated by statistical fluctuations in

number of detected photons)

50

ฮผV

/DIV

0.8ฮผs/DIV Observe voltage drop by 250ฮผV

Response to NIR laser pulse๏ผˆฮป=1.31ฮผm)

Signal pulse height distribution

Pedestal

Pulse height dispersion is

consistent with ~40 photons

-Pulse height (a.u.) 22

STJ

I

V

1k

T=1.8K

(Depressuring LHe)

Signal

T. Okudaira

Page 23: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

4m2 Nb/Al-STJ response to VIS light at single photon level

Best fit f(x;)

1photon

2photon

3photon

0photon

even

t

ฮผ

x2

๐œ’2 minimum at ฮผ=0.93

ndf=85

23

pulse hight(AU)

Assuming a Poisson distribution convoluted with Gaussian which has

same sigma as pedestal noise:

๐‘“ ๐‘ฅ; ๐œ‡ = ๐‘tot ๐œ‡๐‘›๐‘’โˆ’๐œ‡

๐‘›!โ‹…1

2๐œ‹๐œŽ๐‘exp โˆ’

๐‘ฅ โˆ’ ๐‘›๐‘€๐œ‡

2

2๐œŽ๐‘2

๐‘›

๐‘๐›พ = 0.93โˆ’0.14+0.19

T. Okudaira

Currently, readout noise is dominated, but we are detecting VIS light at

single photon level

T=1.8K

(Depressuring LHe)

Page 24: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

Development of SOI-STJ โ€ข SOI: Silicon-on-insulator

โ€“ CMOS in SOI is reported to work at 4.2K by T. Wada (JAXA), et al.

โ€ข A development of SOI-STJ for our application with Y. Arai (KEK)

โ€“ STJ layer sputtered directly on SOI pre-amplifier

โ€ข Started test with Nb/Al-STJ on SOI with p-MOS and n-MOS FET

SOI

STJ Nb metal pad

K. Kasahara

24

STJ lower layer has electrical

contact with SOI circuit

STJ

Phys. 167, 602 (2012)

Page 25: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

Hf-STJ development

โ€ข We succeeded in observation of Josephson

current by Hf-HfOx-Hf barrier layer in 2010

(S.H.Kim et. al, TIPP2011)

However, to use this as a detector, much improvement in leak

current is required. (๐ผleak is required to be at pA level or less)

25

B=10 Gauss B=0 Gauss HfOx๏ผš20Torr,1hour

anodic oxidation๏ผš

45nm

Hf(350nm)

Hf(250nm)

Si wafer A sample in 2012

200ร—200ฮผm2

T=80~177mK Ic=60ฮผA

Ileak=50A@Vbias=10V

Rd=0.2ฮฉ

K. Nagata

Page 26: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

Hf-STJ Response to DC-like VIS light

20ฮผV/DIV

50ฮผA

/DIV

Laser ON

Laser OFF

Laser pulse: 465nm, 100kHz

10uA/100kHz=6.2ร—108e/pulse

We observed Hf-STJ response to visible light 26

K. Nagata

~10ฮผA

V

I

Page 27: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

0.5mV/div

20nA/div

I

V

VIS laser pulse (465nm) 20MHz illuminated on 4m2 Nb/Al-STJ

~1

0nA

10nA/20MHz=0.5ร—10-15 C =3.1ร—103 e

0.45 photons/laser pulse is given in

previous slide Laser OFF Laser ON

4m2 Nb/Al-STJ response to DC-like VIS light

27

Gain from Back-tunneling effect

Gal=6.7

Page 28: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

Development of SOI-STJ

28

by K. Kasahara

2mV /DIV

1 mA /DIV

500uV /DIV 10 nA /DIV

2mV /DIV 50uA /DIV

2mV /DIV

1 mA /DIV โ€ข We formed Nb/Al-

STJ on SOI

โ€ข Josephson current

observed

โ€ข Leak current is 6nA

@Vbias=0.5mV,

T=700mK B=0 B=150 gauss

n-MOS p-MOS

โ€ข n-MOS and p-MOS

in SOI on which

STJ is formed

โ€ข Both n-MOS and p-

MOS works at

T=750~960mK

VGS[V] 0.7V -0.7V

I DS[A

]

Page 29: Experimental search for the cosmic background neutrino ...hep-โ‚ฌยฆย ยท 1,2 3๐‘… ๐‘… 3 3๐‘… 1 1,2 ฮณ ๐œ ๐œ โ‰ƒ โˆ’๐œ ๐‘… SM: SU(2) Lx U(1) Y Suppressed by , GIM ๐šช~ ๐’š๐’“

SOIไธŠใฎNb/Al-STJใฎๅ…‰ๅฟœ็ญ”ไฟกๅท

Pedestal Signal

Iluminate 20 laser pulses (465nm, 50MHz) on 50x50um2 STJ which is formed on SOI

Estimated number of photons from output signal pulse

height distribution assuming photon statistics Nฮณ =

๐‘€2

ฯƒ2โˆ’ฯƒ๐‘2 ~ 206ยฑ112

500uV /DIV.

1uS /DIV.

Noise Signal

M : Mean

ฯƒ : signal RMS

ฯƒp : pedestal RMS

Confirmed STJ formed on SOI responds to VIS laser pulses

STJ on SOI response to laser pulse

29


Recommended