+ All Categories
Home > Documents > Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer...

Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer...

Date post: 20-Jan-2016
Category:
Upload: gary-houston
View: 215 times
Download: 0 times
Share this document with a friend
29
Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte
Transcript
Page 1: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

Exploiting temporal delays in interpreting EEG/MEG data in terms of

brain connectivity

Fraunhofer FIRST, Berlin

G. Nolte

Page 2: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

Problem of volume conduction

)(1 tx

)(2 tx )(3 tx)(4 tx

?

Page 3: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

)(iz complex Fourier amplitude in the i.th channel

Cross-spectrum

)()()( jiij zzS Cross-spectrum

Coherency = normalized cross-spectrum

)()(

)()(

jjii

ijij

SS

SC

Coherence = absolute value of coherency

)()( ijij CCoh

Page 4: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

Power: Task-Rest

Coherence: C3-others Coherence: C4-others

C3 C4

EEG-simulation of ERD (two sources)

Rest: Real background + simulated dipolesTask: Real background

Fake!! Sources were indepent!!

Page 5: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

Rest Coherence

Page 6: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

EEG-simulation of ERD (1 source)

Rest: Real background + simulated dipoleTask: Real background

Inverse using beamformer (DICS) on cortex

Simulated dipole Estimated power ratio: Rest/Task

Page 7: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

Coh., signal+background Coh., background

Coh., difference

seed

Page 8: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

Coh., signal+background Coh., background

Coh., difference

seed

seedoriginal dipole location

Page 9: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

Observation:

Independent sources do not contribute to the imaginary part of the cross-spectrum

1 (non-interacting) source

Interaction with time delay

volume cond.

Many sources

Page 10: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

)()(

)()(

2

1

ii

ii

sbz

saz

Assumption:

sources are non-interacting

imaginary part of coherency must arise from interacting sources

Explicit derivation

)()()( 2112 zzS

real for instantaneous volume conduction(Stinstra and Peters, 1998)

Real !

2)(iii

i

sba )()(,

jijiji

ssba

=0 for ij

Page 11: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

Coherence

Imaginary coherency

Page 12: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

Imaginary coherency

Coherence

movement

Power

Selfpaced movement, C3-C4 relationships

Observations:

• coherence follows power

• imaginary part has onset 5secs before movement

• imaginary part not related to power

Nolte, et.al., Clinic. Neurophys., 2004

Page 13: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

Significance; False Discovery Rate (FDR)

Page 14: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

Simulated non-interacting sources

Imaginary coherency

Interaction exists!

Task-related activity exists!

Is task-related actvity interacting?

differences should be based on cross-spectra

2/12/1 Bjj

Bii

Bij

Ajj

Aii

Aij

SS

S

SS

S

2/12/1 Bjj

Bii

Ajj

Aii

Bij

Aij

SSSS

SS

Page 15: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

movement

2/12/1 Bjj

Bii

Bij

Ajj

Aii

Aij

SS

S

SS

S

2/12/1 Bjj

Bii

Ajj

Aii

Bij

Aij

SSSS

SS

Difference of normalized cross-spectra

Normalized difference of cross-spectra

Page 16: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

Imag, Cross-Spectrum, Left-Right

Page 17: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

MEG, Cross-Spectrum; imag, alpha

Page 18: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

Imaginary part, 5 dipoles

S1

S2

Page 19: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

“Philosophy”

Page 20: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

“Philosophy”

Page 21: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

Method A

interesting phenomena non-interesting phenomena

Data

Method B

“Philosophy”

Page 22: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

Pairwise Interacting Source Analysis (PISA)

2211 )()()( atsatstx

independent

ICA

spectrum

ICAwith temporal decorrelation(Sobi, TDSEP)

TT aafpaafpfC 222111 )()()(

spatial pattern

ISA

))((ˆ))(Im( 11111TT abbafpfC

“interaction spectrum” 2 spatial patterns

Nolte, et.al., Phys. Rev. E., 2006

Page 23: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

EEG, imagined foot movement

ISA1 ISA2

• finds systems blindly

• no 1/f spectrum

• clear higher harmonics

Page 24: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

Observation:

2D-subspace of channel space

Model for each grid-point:

3D-subspace

MUSIC

Angle

Page 25: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

A: measured field

B

MUSICchannel-subspaces for each voxel (here 2 dipole-directions)

field for dipole in x-direction

field for dipole in y-direction

AP BPProjector on A Projector on B

1cos1 show weplotsin -Φ-

ABA PPPΦ of eigenvaluelargest cos2

Page 26: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

MUSIC RAP-MUSIC

Example 1

Page 27: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

MUSIC RAP-MUSIC

Example 2

Page 28: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

ISA-pattern;

left mu-rhythm

RAP-MUSIC

first scan

Page 29: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte.

Conclusion

• Imaginary parts of cross-spectra is not affected by non-interacting sources valuable quantity to study interactions

• ICA-like decompositions finds and separates interacting systems blindly

• Localization with MUSIC and/or dipole fit


Recommended