+ All Categories
Home > Documents > EXPLORATION OF WORLDWIDE METAL DEMAND OF LOW …€¦ · Silicium (Si) 5.66% 3.3% safe space Tin...

EXPLORATION OF WORLDWIDE METAL DEMAND OF LOW …€¦ · Silicium (Si) 5.66% 3.3% safe space Tin...

Date post: 20-Oct-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
16
EXPLORATION OF WORLDWIDE METAL DEMAND OF LOW CARBON TRANSPORT AND POSSIBLE SIGNIFICANCE OF CIRCULAR ECONOMY STRATEGIES [email protected]
Transcript
  • EXPLORATION OF WORLDWIDE METAL DEMAND OF LOW CARBON TRANSPORT AND POSSIBLE SIGNIFICANCE OF CIRCULAR ECONOMY STRATEGIES [email protected]

    KevinRectangle

    KevinTypewritten Text

    KevinTypewritten Text

    KevinTypewritten TextAt the author's request, pleasereproduce no more than one pageof this presentation without the author's permission

  • TNO, A RESEARCH AND TECHNOLOGYORGANISATION. LIKE CEA, FHG, SINTEF, VITO ETC.

  • WHY CAN METAL SUPPLY BE CONSIDERED CRITICAL IN THE FIRST PLACE?

  • http://publications.tno.nl/publication/34627352/5WmZem/TNO-2018-R11544.pdf

    Global Energy Transition and metal demand. 

  • LOW CARBON ECONOMY: PRODUCTION OF RENEWABLE ENERGY

  • LOW CARBON ECONOMY: TRANSMISSION, STORAGE AND CONVERSION

  • LOW CARBON ECONOMY: OPTIMAL CONSUMPTION

  • WORLD ECONOMY, EXPECTED TO CONTINUE TO GROW2014 2030 2050 INDEX 2030

    COMPARED TO 2010 (=100)

    INDEX 2050 COMPARED

    TO 2010 (=100)POPULATION (MILLION #)

    6 900 8 480 9 714 122.9 140.7

    GDP (BILLION $) 65 957 144 520 252 761 219.1 382.3

  • BEYOND (“WELL BELOW”) 2 DEGREE SCENARIO, INTERNATIONAL ENERGY AGENCY

  • 31 metals (also Au, Cd, B, Cr, Dy, Ga, Gd, Sm, Tb, Mg, Mn, Mo, Ni, Pb, Pr, Ta, Ti, V, Zn)

    cobalt outcome, well into safe-space, result of (self imposed) methodological rigour

    REE: estimates speak of 7% CAGR, but unofficial

    ObservedMineproduction growth 1998‐2016

    Required annual growth rate with renewables & batteries2014‐2050 

    Speed‐up production towards 2030 and 2050,  compared 1998‐2016 time period?

    Silver (Ag) 2.86% 3.0% uncertainAluminium (Al) 5.37% 2.8% safe spaceCerium/Lanthanum (Ce/La) 0.00% 3.2% speed‐upCobalt (Co) 8.1% 4.1% safe spaceCopper (Cu) 2.92% 3.4% speed‐upIron (Fe)  6.55% 3.0% safe spaceIndium (In) 5.41%  3.6% safe spaceLithium (Li) 4.61%  6.2% speed‐upNeodymium (Nd) 0.00% 4.5% speed‐upPlatinum/Palladium (Pt/Pd) 0.02% 2.8% speed‐upSelenium (Se) 3.30% 3.0% safe spaceSilicium (Si) 5.66%  3.3% safe spaceTin (Sn) 2.05% 3.1% speed‐upTellurium (Te) 4.54% 6.9% speed‐up

  • HOW ADDING UP LOOKS LIKE UP CLOSE, NEODYMIUM

    0

    20,000

    40,000

    60,000

    80,000

    100,000

    120,000

    140,000

    Neodymium

    basis beyond 2C Storage

  • Observed Mine production growth 1998-2016

    Required annual growth rate with renewables & batteries 2011-2050

    Speed-up production compared to last 20 years?

    Silver (Ag) 2.86% 3.0% uncertainAluminium (Al) 5.37% 2.8% safe spaceGold (Au) 1.48% 2.8% speed-upCadmium (Cd) 0.20% 2.7% speed-upBoron (B) 2.32% 3.2% speed-upCerium/Lanthanum (Ce/La) 0.00% 3.2% speed-upCobalt (Co) 8.07% 4.1% safe spaceChromium (Cr) 5.33% 2.8% safe spaceCopper (Cu) 2.92% 3.4% speed-upDysprosium (Dy) 0.00% 5.2% speed-upIron (Fe) 6.55% 3.0% safe spaceGallium (Ga) -0.77% 3.1% speed-upGadolinium/ Samarium/Terbium (Gd/Sm/Tb) 0.00% 3.8% speed-upIndium (In) 5.41% 3.6% safe spaceLithium (Li) 4.61% 6.2% speed-upMagnesium (Mg) 5.58% 2.7% safe spaceManganese (Mn) 5.40% 2.7% safe spaceMolybdenum (Mo) 3.85% 3.0% safe spaceNeodymium (Nd) 0.00% 4.5% speed-upNickel (Ni) 3.22% 3.3% uncertainLead (Pb) 2.43% 2.7% speed-upPraseodymium (Pr) 0.00% 3.9% speed-upPlatinum/Palladium (Pt/Pd) 0.02% 2.8% speed-upSelenium (Se) 3.30% 3.0% safe spaceSilicium (Si) 5.66% 3.3% safe spaceTin (Sn) 2.05% 3.1% speed-upTantalum (Ta) 5.20% 3.4% safe spaceTellurium (Te) 4.54% 6.9% speed-upTitanium (Ti) 2.00% 2.7% speed-upVanadium (V) 2.75% 3.2% speed-upZinc (Zn) 2.70% 2.8% uncertain

     

  • CAN CIRCULAR STRATEGIES HELP BALANCE SUPPLY AND DEMAND?

    How could it be important in coming years?

    Significant (>5%) contribution tobalancing supply and demand

    Reduce Substitution Perhaps. Breakthroughs announced each month, wait and see.

    Reuse Servitisation, Cascaded use Fair chance. But only when attractive business models prevent trench warfare about regulations.

    Recycle More efficient collection, easier disassembly

    Unlikely. Demand (quantity and quality) of primary material expected to be too high.

  • EXAMPLE 1 AND 2: SUBSTITUTION AND CASCADEDUSE OF COMPONENTS

    H C N O P S Cl non-metal elements

    Na Mg Al Si elements of hopeK Ca Fe

    Ti Cr Mn CuB F Ar Br critical elements

    frugal elements Li Be Sc V Co Ni Zn GaGe As Sr Y Zr Nb Mo PGM

    Ag Cd In Sn Sb Te Ba REM

    Ta W Re Au Hg Tl Pb Bi

    https://www.bloomberg.com/news/features/2018-06-27/where-3-million-electric-vehicle-batteries-will-go-when-they-retire

  • EXAMPLE 3, 4 AND 5: SERVITISATION, BETTER END-OF-LIFE COLLECTION AND EASIER DISASSEMBLY

  • How delicate is the balance between publicly available data and proprietary knowledge?

    What about the attempt to use macroeconomic models and IEA scenario’s to estimate 2030 and 2050 demand?

    How can forecasting support corporate or public policy making?

    What about the significance of substitution, cascaded use, servitisaton end-of-life collection?

    THANK YOU


Recommended