+ All Categories
Home > Documents > Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Date post: 17-Jan-2016
Category:
Upload: lydia-shelton
View: 213 times
Download: 0 times
Share this document with a friend
Popular Tags:
37
Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics
Transcript
Page 1: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Explorations of the Outer Solar SystemB. Scott Gaudi

Harvard-Smithsonian Center for Astrophysics

Page 2: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

The Known Solar System

• How big is the solar system?

• How big is the observed solar system?

Pluto, Kuiper Belt,

Sedna, !

atidal ≈R0

MSun

MGalaxy

⎝⎜

⎠⎟

1/3

≈200,000AU

aKB ≈50AU

aSedna ≈500AU

Page 3: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.
Page 4: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

The Known Solar System• The observed portion of the solar system

constitutes ~ one billionth of its entire volume!

Page 5: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

The Known Solar System

• What do we know about the solar system?

• Where did all this stuff come from?

• Why do we care?

Page 6: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Star Formation 101

Molecular Cloud

Cores

Collapse

Ignition/Outflow

Protoplanetary Disk

Planetary System

Hogerheijde 1998

Page 7: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Planet Formation 101

• Core-accretion Model• Dust Planetesimals (non G)• Planetesimals Protoplanets• Protoplanets Terrestrial Planets

Inner Solar System (<3AU) • Protoplanets Gas Giants

Outer Solar System (3AU-40AU)• Protoplanets Planetoids

Distant Solar System (> 40AU)

Page 8: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

The Kuiper Belt – General Properties• 1st member discovered in 1992

(1992 QB1; Jewitt & Luu 1993)• ~850 known. Total mass ~1% Earth• Radial Extent (30-50)AU, peak near 45 AU.

(Trujillo & Brown 2001)

Page 9: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

The Kuiper Belt – Dynamical Classes• Classical • Resonant• Scattered• Extended Scattered??

(Gladman et al. 2001)

Page 10: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

The Kuiper Belt – Dynamical Classes• Classical • Resonant• Scattered• Extended Scattered??

(Gladman et al. 2001)(Elliot et al. 2005)

Sedna

Page 11: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Discovered in 2003• by Brown, Trujillo, Rabinowitz

Usual Properties• Orbit

– Semimajor axis a ~ 500 AU– Perihelion q ~ 80 AU

• Size– Diameter ~ 1500 km

• Color– Very Red

• Slowly Rotating?– Period P ~ 20 days?– Companion?

Sedna — The Last Outpost

QuickTime™ and aGIF decompressor

are needed to see this picture.

PSedna ≈20days?

Page 12: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Sedna – A Binary?• At least 5%-10% of KBOs in binaries • What about Sedna?

(Noll et al 2004)(Noll et al 2002)

No!

Page 13: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Sedna – A Better Light Curve• Used the 6.5m MMT telescope • Kris Stanek, Matt Holman, Joel Hartman, Brian McLeod

PSedna ≈10hours

Page 14: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Sedna – A Better Light Curve• Used the 6.5m MMT telescope • Kris Stanek, Matt Holman, Joel Hartman, Brian McLeod• Normal!

PSedna ≈20days?

PSedna ≈10hours

Page 15: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Sedna – Open QuestionsExtended Scattered Disk?

• How did it get there?– Passing Star?– Rogue Planet?

• How many more are out there?– Could have only found Sedna over ~1% of its orbit

semimajor axis (AU)

(Ken

yon

& B

rom

ley

2005

)

Page 16: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Limitations of Direct Measurements• Strong scaling with size and distance

Detection without Light?• Gravitational Lensing

– Gaudi & Bloom (2005)

• Occultations– Bailey (1976)– Dyson (1992)– Brown & Webster (1997)– Roques & Moncuqeut (2000)

42Flux −∝ dR

Page 17: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Gravitational Lensing

α =4GM

βdc2

αβd

d

Page 18: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Gravitational Lensing

α =50μasM

M⊕

⎝⎜⎞

⎠⎟d

100AU⎛⎝⎜

⎞⎠⎟

−1β

1"⎛⎝⎜

⎞⎠⎟

−1

Page 19: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Gravitational Lensing

Π =30 'd

100AU⎛⎝⎜

⎞⎠⎟

−1

Π

Requirements• Moving object• Dense Star Field

– Faint Stars

• Precise Astrometry• Time Series

Discovery• All-Sky Synoptic Survey

Page 20: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Gravitational Lensing

(Gaudi & Bloom 2005)

Page 21: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Gravitational LensingGAIA• All-Sky Astrometric Mapper• All stars down to V~20

(one billion stars!)

• Astrometric accuracy– Bright Stars: ~30 as– Faint Stars: ~1400 as

• Measure each star ~50 times

(Gaudi & Bloom 2005)

Page 22: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Occultations

Page 23: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Principles of Occultations• Physical Parameters

• Scales– angular size

– velocity

– proper motion

vdR ,,1

AU10010kmas140

⎟⎠

⎞⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛≈=dR

dR θ

⎟⎟⎠

⎞⎜⎜⎝

⎛−= ⊕ d

vvAU

cosϕ opp.at s km27 -1≈

⎟⎠

⎞⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛≈=−

km 30AU100hr"1

11- vd

d

Page 24: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Principles of Occultations• Observables

– Duration

– Crossing Time

θ

=Kt1

1-s km 3010km0.3s

⎟⎠

⎞⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛≈vR

212 btt K −=Δ

Statistical information only

θb

Page 25: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Principles of Occultations

• Observables– Ingress/Egress time– Impact parameter– Dimensionless source

size

θθρ *

* =

1

*

Sun

*

1

pc250RAU10010km0.1

−−

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛≈dRdR

θbb*θ

1

*

Sun

** pc250R

as20 −

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛≈

dRθ

Page 26: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Principles of Occultations• Observables

– Fringe Spacing

– Dimensionless Fresnel angle

θθρ F

F =

dF

λθ =2/12/1

100AU545nmas4

⎟⎠

⎞⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛≈dλ

12/12/1

km10100AU545nm03.0

⎟⎠

⎞⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛≈Rdλ

Page 27: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Principles of Occultations• Observables

• Parameters

Fθ*θ

vdR ,,

Ft ρρ ,, *Δ2

*2

*2 ⎟⎟⎠

⎞⎜⎜⎝

⎛=

F

dρρ

θλ

2*

*2 F

Rρρ

θλ

=

KF tv

1

2 2*

* ρρ

θλ

=

Page 28: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Example Lightcurves• Light curves

– 10% errors (V=14)– 5 Hz sampling

Page 29: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Occutations by Binaries

• Detection Rate?• Binary properties

– Primary size– Size ratio– Separation

• Photometric properties– Sampling rate– Photometric errors

Page 30: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Occutation Surveys

• Challenges– Short event duration

– Low event rate

1

1-s km 3010km0.6s

⎟⎠

⎞⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛≈ΔvR

t

Σ=Γ ∫ θ2dr

Page 31: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Occutation Surveys

• Challenges– Short event duration

– Low event rate

– Monitor >1000 stars

1

1-s km 3010km0.6s

⎟⎠

⎞⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛≈ΔvR

t

Σ=Γ ∫ θ2dr

135 yr1010 −−− −≈ (R<10km)

Page 32: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Occutation SurveysTaiwanese-American Occultation

Survey (TAOS); Charles Alcock, PI• Telescopes & Hardware

– Four 50 cm robotic telescopes– f/1.9– 2 square degree 2Kx2K cameras– Jade Mountain, Taiwan

• Data– 2000 stars– 5Hz– 10 precision– Short exposure times

Page 33: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Occutation Surveys

• Shutterless “Zipper” mode

Page 34: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Occutation SurveysNext Generation Survey• Requirements

– Higher cadence– Improved photometry

(reduced sky background)– Color information

• Space based– Modeled after Kepler– Prism

TAOS

Page 35: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Occutation Surveys

Next Generation Survey

600m at 45 AU 600m at 100 AU

Page 36: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Occutation Surveys

TAOS

Next G

enera

tion

Page 37: Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.

Summary• Many unanswered questions about the Kuiper belt.• Outer solar system largely unexplored.• Sedna is weird in many ways, but not its rotation period.• Reflected light detections limited.• Can detect dim or dark but massive objects with GAIA.• Occultation can be used to detect distant, small objects.

– Light curves subject to degeneracies– Additional parameters enable parameter measurement– High cadence and accurate photometry needed

• Binaries can be detected via occultations• Occultation surveys are challenging

– Short duration– Low event reate


Recommended