+ All Categories
Home > Documents > Exponential and Logarithmic...

Exponential and Logarithmic...

Date post: 28-Jul-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
21
59 EXPONENTIAL AND LOGARITHMIC FUNCTIONS - LESSON 6 LESSON 6 EXPONENTIAL AND LOGARITHMIC FU TIONS Exponential functions are of the form y = a x where a is a constant greater than zero and not equal to one and x is a variable. Both y = 2 x and y = e x are exponen- tial functions. e function, e x , is extensively used in calculus. You should memo- rize its approximate value when x = 1. (e 1 2.718) You should also be able to quickly graph y = e x without the aid of a calculator. A simple graph of y = e x is shown below. Figure 1 1 –1 2 3 12 3 y = e x LOGARITHMIC FUNCTIONS e equation y = log a x is the same as a y = x. e inverse of the exponential function is y = a x . In this course we will restrict our study of logarithms to log base e which will be written as ln(x). e equation y = ln(x) is the inverse function of y = e x . Notice that the graph of ln(x) is a reflection of graph of e x around the line y = x. You should be able to quickly sketch from memory y = ln(x). It will also be important to remember the basic logarithm rules listed on the next page. LESSON 6 Exponential and Logarithmic Functions
Transcript
Page 1: Exponential and Logarithmic Functionsc8d06a5108a478991047-d2b8f846624deedeb4be8165ba46b5db.r23.cf1.rackcdn…eXponenTIAL AnD LoGARITHMIc FUncTIonS - LeSSon 6 59 LeSSon 6 eXponenTIAL

59eXponenTIAL AnD LoGARITHMIc FUncTIonS - LeSSon 6

LeSSon 6

eXponenTIAL AnD LoGARITHMIc FUnc-TIonS

Exponential functions are of the form y = ax where a is a constant greater than zero and not equal to one and x is a variable. Both y = 2x and y = ex are exponen-tial functions. The function, ex, is extensively used in calculus. You should memo-rize its approximate value when x = 1. (e1 ≈ 2.718) You should also be able to quickly graph y = ex without the aid of a calculator. A simple graph of y = ex is shown below.

Figure 1

1

–1

2

3

1 2 3

y = ex

LoGARITHMIc FUncTIonS The equation y = logax is the same as ay = x. The inverse of the exponential function is y = ax. In this course we will restrict our study of logarithms to log base e which will be written as ln(x). The equation y = ln(x) is the inverse function of y = ex. Notice that the graph of ln(x) is a reflection of graph of ex around the line y = x. You should be able to quickly sketch from memory y = ln(x). It will also be important to remember the basic logarithm rules listed on the next page.

LeSSon 6 Exponential and Logarithmic Functions

Page 2: Exponential and Logarithmic Functionsc8d06a5108a478991047-d2b8f846624deedeb4be8165ba46b5db.r23.cf1.rackcdn…eXponenTIAL AnD LoGARITHMIc FUncTIonS - LeSSon 6 59 LeSSon 6 eXponenTIAL

60 LeSSon 6 - eXponenTIAL AnD LoGARITHMIc FUncTIonS cALcULUS

Figure 2

y = ln(x)

I. ln(1) = 0

II. ln(e) =1

III. ln(ex) = x

IV. eln(x) = x

V. Product: ln(xy) = ln(x) + ln(y)

VI. Quotient: ln(x/y) = ln(x) – ln(y)

VII. Power: ln(xa) = a ln(x)

Remember that the natural log of a negative number is undefined. Some books specify ln(x) as ln |x|. We will use ln(x) for this book. Be careful to use only posi-tive, non-zero values for x when employing the natural log function.

Page 3: Exponential and Logarithmic Functionsc8d06a5108a478991047-d2b8f846624deedeb4be8165ba46b5db.r23.cf1.rackcdn…eXponenTIAL AnD LoGARITHMIc FUncTIonS - LeSSon 6 59 LeSSon 6 eXponenTIAL

61eXponenTIAL AnD LoGARITHMIc FUncTIonS - LeSSon 6cALcULUS

The natural log function can be used to free variable exponents from their exponential functions. Conversely, the exponential function can do the same for the natural log functions.

Example 1

Solve for x.

e2x = 1

Taking ln of both sides:

ln lnexx

x2 12 0

0

( ) = ( )==

checking e2(0) = e0 = 1

Example 2

Solve for x.

ln(x + 5) = 0

Use each side of the equation as the exponent for e.

eln(x + 5) = e0

x + 5 = 1; so x = –4

Sometimes the equations are complex and we need to use substitution to solve them. See example 3 on the next page.

Page 4: Exponential and Logarithmic Functionsc8d06a5108a478991047-d2b8f846624deedeb4be8165ba46b5db.r23.cf1.rackcdn…eXponenTIAL AnD LoGARITHMIc FUncTIonS - LeSSon 6 59 LeSSon 6 eXponenTIAL

62 LeSSon 6 - eXponenTIAL AnD LoGARITHMIc FUncTIonS cALcULUS

Example 3

Solve for x.

e2x – 4ex + 3 = 0

Substituting u = ex, u2 – 4u + 3 = 0.

Factoring, we get (u – 3)(u – 1) = 0.

Replacing u with ex, we get (ex – 3)(ex –1) = 0.

Solving each factor, we get: ex = 3; ex = 1.

Taking the ln of both sides:

ln ln

ln

ln lne

x

ex

x x( ) = ( )= ( )

( ) = ( )=

3

3

10

Example 4

Draw the graph of y = 2ex and its inverse.

y 2e

x 2e variables

x

y

=

=

=

= ( )

switch

x e

x e

y

y

12

12

ln ln

l

( )nn

ln

( )

( )

12

12

1

x y

x x

=

( ) =−f

y = 2ex

y = x

f −1 x( ) = ln( 1

2x)

Page 5: Exponential and Logarithmic Functionsc8d06a5108a478991047-d2b8f846624deedeb4be8165ba46b5db.r23.cf1.rackcdn…eXponenTIAL AnD LoGARITHMIc FUncTIonS - LeSSon 6 59 LeSSon 6 eXponenTIAL

CALCULUS LESSoN PrACTICE 6A 45

lesson practice 6AAnswer the question.

Draw the graph of y = 1. ex

3. Find the inverse function. Graph it.

Draw the graph of y = 2e2. x. Find the inverse function. Graph it.

Solve for x.3.

A. e2x + 1 = 1

B. 2e3x = e0

C. 0 = ln(2x +5)

Page 6: Exponential and Logarithmic Functionsc8d06a5108a478991047-d2b8f846624deedeb4be8165ba46b5db.r23.cf1.rackcdn…eXponenTIAL AnD LoGARITHMIc FUncTIonS - LeSSon 6 59 LeSSon 6 eXponenTIAL

LESSoN PrACTICE 6A

46 CALCULUS

D. ln(x) + ln(5) = 6

Solve for x. (4. Hint: Substitute and factor.)

A. e2x – 5ex = –6

B. 2e2x + 7ex = 4

Page 7: Exponential and Logarithmic Functionsc8d06a5108a478991047-d2b8f846624deedeb4be8165ba46b5db.r23.cf1.rackcdn…eXponenTIAL AnD LoGARITHMIc FUncTIonS - LeSSon 6 59 LeSSon 6 eXponenTIAL

CALCULUS LESSoN PrACTICE 6B 47

lesson practice 6BAnswer the question.

Draw the graph of y = e1. x + 1. Find the inverse function. Graph it.

Draw the graph of y = e2.

x2

. Find the inverse function. Graph it.

Solve for x.3.

A. ex + ln(3) = 2

B. ex + 1 = e2x – 2

Page 8: Exponential and Logarithmic Functionsc8d06a5108a478991047-d2b8f846624deedeb4be8165ba46b5db.r23.cf1.rackcdn…eXponenTIAL AnD LoGARITHMIc FUncTIonS - LeSSon 6 59 LeSSon 6 eXponenTIAL

LESSoN PrACTICE 6B

48 CALCULUS

C. ln(x2 + 3x + 5) = ln(1 – x)

D. ln( )x2

= 3

Solve for x.4.

A. 2ln2(x) + 3 = 7ln(x)

B. e2x = 2ex

Page 9: Exponential and Logarithmic Functionsc8d06a5108a478991047-d2b8f846624deedeb4be8165ba46b5db.r23.cf1.rackcdn…eXponenTIAL AnD LoGARITHMIc FUncTIonS - LeSSon 6 59 LeSSon 6 eXponenTIAL

CALCULUS LESSoN PrACTICE 6C 49

lesson practice 6CAnswer the question.

Draw the graph of y = 2x1. 2. Find the inverse function. Graph it.

Solve for x.

e2. 4x = e

ln(3x – 1) = 13.

Page 10: Exponential and Logarithmic Functionsc8d06a5108a478991047-d2b8f846624deedeb4be8165ba46b5db.r23.cf1.rackcdn…eXponenTIAL AnD LoGARITHMIc FUncTIonS - LeSSon 6 59 LeSSon 6 eXponenTIAL

LESSoN PrACTICE 6C

50 CALCULUS

e4. 2x – 7ex + 10 = 0

ln5. 2(x) = 2 ln(x)

e6. 2x – 3ex + 2 = 0

Page 11: Exponential and Logarithmic Functionsc8d06a5108a478991047-d2b8f846624deedeb4be8165ba46b5db.r23.cf1.rackcdn…eXponenTIAL AnD LoGARITHMIc FUncTIonS - LeSSon 6 59 LeSSon 6 eXponenTIAL

CALCULUS LESSoN PrACTICE 6D 51

lesson practice 6DSolve for x.

e1. 2x + 2 = 5

2e2. 2x + 5ex = 3

ln(x + 2) = 23.

Page 12: Exponential and Logarithmic Functionsc8d06a5108a478991047-d2b8f846624deedeb4be8165ba46b5db.r23.cf1.rackcdn…eXponenTIAL AnD LoGARITHMIc FUncTIonS - LeSSon 6 59 LeSSon 6 eXponenTIAL

LESSoN PrACTICE 6D

52 CALCULUS

ln(x + 1) + ln(4) = 34.

Solve for x: ln(2x – 4) = 2.5.

Draw the graph of y = e6. 3x. Find the inverse function. Graph it.

Page 13: Exponential and Logarithmic Functionsc8d06a5108a478991047-d2b8f846624deedeb4be8165ba46b5db.r23.cf1.rackcdn…eXponenTIAL AnD LoGARITHMIc FUncTIonS - LeSSon 6 59 LeSSon 6 eXponenTIAL

cAlcUlUS TeST 6 17

test 6Circle your answer.

Simplify 1. ln 92( ) =

A. ln(4.5)

B. 12

ln(4.5)

c. ln(3)

D. cannot be simplified

Solve for x: ln(x) – ln(4) = 2.2.

A. 14

e2

B. e4

c. e2

D. 4e2

ln3. ( )63

is the same as:

A. 2

B. ln(18)

c. ln(3)

D. ln(6) – ln(3)

Find the inverse function: 4. f (x) = ln(x – 2).

A. f –1(x) = ln(x + 2)

B. f –1(x) = ex + 2

c. f –1(x) = 2ex – 2

D. f –1(x) = 2ex

Simplify ln5. 2( ) + ln 10( ).

A. ln 12( )

B. 20

c. ln 2 5 ( )

D. cannot be simplified

Page 14: Exponential and Logarithmic Functionsc8d06a5108a478991047-d2b8f846624deedeb4be8165ba46b5db.r23.cf1.rackcdn…eXponenTIAL AnD LoGARITHMIc FUncTIonS - LeSSon 6 59 LeSSon 6 eXponenTIAL

TeST 6

18 cAlcUlUS

Solve for x: ln6. 2(x) – 5 ln(x) = –4

A. x = e, e4

B. x = ln(4), ln(5)

c. x = e5, e

D. x = ln(4), e

7. eX and ln(x) are inverse functions. The graph of y = ln(x) is the reflection of the graph

of y = ex around the:

A. x-axis B. y-axis c. origin D. line y = x

8. Solve for x: e2x = 3ex

A. x = ex – 3

B. x = ln(3)

c. x = ln(3) and x = 0

D. x = 0

9. Solve for x: ln(2) + ln(x) = 7

A. x = e2

7

B. x = 7e2

c. x = 2e7

D. x = e7

2

10. Solve for x: e3x – 1 = 1

A. 13

B. – 13

c. 3

D. e3

Page 15: Exponential and Logarithmic Functionsc8d06a5108a478991047-d2b8f846624deedeb4be8165ba46b5db.r23.cf1.rackcdn…eXponenTIAL AnD LoGARITHMIc FUncTIonS - LeSSon 6 59 LeSSon 6 eXponenTIAL

LeSSon pRAcTIce 5D - LeSSon pRAcTIce 6A

SoLUTIonScALcULUS 269

Lesson Practice 5D1. f x x( ) = + +( )2 4 2 π

amplitud

sin

ee

vertical shift

period π π

phase shift π

=

=

= =

= −

4

2

22

2.. f x x( ) = − −( )

=

1 3 12

3

π

amplitude

vertical shift

sin

==

=

= =

( ) = +

1

212

4

3 2 4

phase shift π

period π π

3. f x cos (xx −

=

=

=

π

amplitude

vertical shift

phase shift π

22

3

2

)

pperiod π π

π

amplitude

ver

= =

( ) = − +( )=

24 2

2 4 2

4

4. f x xcos

ttical shift

phase shift π

period π π

=

= −

= =

2

22

25. csc( ππ

π

3120 2

3

2 33

34

135 1

)( )

= = =

= ( ) =

csc( º )

tan tan º –

c

6.

7. oos

cos( )

2 0

02

x( ) =

= =

for x in [0, π]

when πθ θ ,, ,32

52

22

2 32

2 52

π π etc

π π π

π

x x x

x

= = =

=44

34

54

434

12

π π

π π

x x

x and

x

= =

=

8. tan( )==( ) = =

02

0 0

0, π

when π, 2π, 3π etc.

[ ]tan ,θ θ

π

x π

x is the o

12

0 12

0 2

0

x x

x

= =

= =

= nnly answer in 0, π[ ]2

Lesson Practice 6ALesson Practice 6A

1. y e

x e

x

y

=

=

3

3Switch variabless

( )

=

( ) = ( )( ) =( ) = ( )−

3

3

3

31

x e

x e

x y

x x

y

yln ln

ln

lnf

2.

reverse variables

y e

x e

x e

x

y

y

=

= ( )( ) =

2

2

2ln ln(( )( ) = +

( ) − ( ) =( ) = ( ) − ( )−

ln ln

ln ln

ln ln

x y

x y

x x

no

2

2

21f

tte: This problem is the same as

example 4 in thee instruction

manual but solved differently.

Booth solutions are correct.

ln ln lnx x( ) − ( ) =22( )

3.. A e

e

xx

x

B e

x

x

.

ln ln

.

2 1

2 1

3

1

1

2 1 02 1

12

2

+

+

=

( ) = ( )+ =

= −

= −

xx

x

e

e e

x

x

x

=

( ) = ( )( ) + =

= − ( )

= −( )

0

3 02

2 3 0

3 2

2

ln ln

ln

ln

ln33

0 2 5

1 2 54 2

42

2

0 2 5

c x

e exx

x

D

x

. ln

.

ln

= +( )

== +

− =

= − = −

+( )

lln ln

lnln

x

x

e e

x e

x e or

x

( ) + ( ) =( ) =

=

=

=

( )

5 6

5 6

5

51

5 6

6

6

55

5 6

5 6 0

2 3 0

6

2

2

e

A e e

y y

y y

Letx x4. . − = −

− + =

−( ) −( ) =

.

ln ln

ln

y e

y

y

e

e

x

x

x

x

=

− =

=

=

( ) = ( )= ( )

2 0

2

2

2

2

ln ln

ln

.

y

y

e

e

x

B e e

x

x

x x

− =

=

=

( ) = ( )= ( )

+ =

3 0

3

3

3

3

2 7 42 Let y e

y y

y y

y

y

x=

+ − =

−( ) +( ) =− =

=

.

2 7 4 0

2 1 4 0

2 1 0

2 1

2

yy

e

e

x

x

x

x

x

=

=

( ) == ( ) − ( )= − ( )=

1212

12

1 2

0 2

ln ln

ln ln

ln

( )

−− ( )

+ =

= −

= −

( ) = ( )

ln

ln ln –

2

4 0

4

4

4

y

y

e

e

x

x

error:

no soluution

y = x

f−1 (x) = ln(3x)

f (x) = ex

3

Lesson Practice 6A

1. y e

x e

x

y

=

=

3

3Switch variabless

( )

=

( ) = ( )( ) =( ) = ( )−

3

3

3

31

x e

x e

x y

x x

y

yln ln

ln

lnf

2.

reverse variables

y e

x e

x e

x

y

y

=

= ( )( ) =

2

2

2ln ln(( )( ) = +

( ) − ( ) =( ) = ( ) − ( )−

ln ln

ln ln

ln ln

x y

x y

x x

no

2

2

21f

tte: This problem is the same as

example 4 in thee instruction

manual but solved differently.

Booth solutions are correct.

ln ln lnx x( ) − ( ) =22( )

3.. A e

e

xx

x

B e

x

x

.

ln ln

.

2 1

2 1

3

1

1

2 1 02 1

12

2

+

+

=

( ) = ( )+ =

= −

= −

xx

x

e

e e

x

x

x

=

( ) = ( )( ) + =

= − ( )

= −( )

0

3 02

2 3 0

3 2

2

ln ln

ln

ln

ln33

0 2 5

1 2 54 2

42

2

0 2 5

c x

e exx

x

D

x

. ln

.

ln

= +( )

== +

− =

= − = −

+( )

lln ln

lnln

x

x

e e

x e

x e or

x

( ) + ( ) =( ) =

=

=

=

( )

5 6

5 6

5

51

5 6

6

6

55

5 6

5 6 0

2 3 0

6

2

2

e

A e e

y y

y y

Letx x4. . − = −

− + =

−( ) −( ) =

.

ln ln

ln

y e

y

y

e

e

x

x

x

x

=

− =

=

=

( ) = ( )= ( )

2 0

2

2

2

2

ln ln

ln

.

y

y

e

e

x

B e e

x

x

x x

− =

=

=

( ) = ( )= ( )

+ =

3 0

3

3

3

3

2 7 42 Let y e

y y

y y

y

y

x=

+ − =

−( ) +( ) =− =

=

.

2 7 4 0

2 1 4 0

2 1 0

2 1

2

yy

e

e

x

x

x

x

x

=

=

( ) == ( ) − ( )= − ( )=

1212

12

1 2

0 2

ln ln

ln ln

ln

( )

−− ( )

+ =

= −

= −

( ) = ( )

ln

ln ln –

2

4 0

4

4

4

y

y

e

e

x

x

error:

no soluution

y = x

y = 2ex

(x)= ln( )x – ln(2)f –1

Lesson Practice 6A

1. y e

x e

x

y

=

=

3

3Switch variabless

( )

=

( ) = ( )( ) =( ) = ( )−

3

3

3

31

x e

x e

x y

x x

y

yln ln

ln

lnf

2.

reverse variables

y e

x e

x e

x

y

y

=

= ( )( ) =

2

2

2ln ln(( )( ) = +

( ) − ( ) =( ) = ( ) − ( )−

ln ln

ln ln

ln ln

x y

x y

x x

no

2

2

21f

tte: This problem is the same as

example 4 in thee instruction

manual but solved differently.

Booth solutions are correct.

ln ln lnx x( ) − ( ) =22( )

3.. A e

e

xx

x

B e

x

x

.

ln ln

.

2 1

2 1

3

1

1

2 1 02 1

12

2

+

+

=

( ) = ( )+ =

= −

= −

xx

x

e

e e

x

x

x

=

( ) = ( )( ) + =

= − ( )

= −( )

0

3 02

2 3 0

3 2

2

ln ln

ln

ln

ln33

0 2 5

1 2 54 2

42

2

0 2 5

c x

e exx

x

D

x

. ln

.

ln

= +( )

== +

− =

= − = −

+( )

lln ln

lnln

x

x

e e

x e

x e or

x

( ) + ( ) =( ) =

=

=

=

( )

5 6

5 6

5

51

5 6

6

6

55

5 6

5 6 0

2 3 0

6

2

2

e

A e e

y y

y y

Letx x4. . − = −

− + =

−( ) −( ) =

.

ln ln

ln

y e

y

y

e

e

x

x

x

x

=

− =

=

=

( ) = ( )= ( )

2 0

2

2

2

2

ln ln

ln

.

y

y

e

e

x

B e e

x

x

x x

− =

=

=

( ) = ( )= ( )

+ =

3 0

3

3

3

3

2 7 42 Let y e

y y

y y

y

y

x=

+ − =

−( ) +( ) =− =

=

.

2 7 4 0

2 1 4 0

2 1 0

2 1

2

yy

e

e

x

x

x

x

x

=

=

( ) == ( ) − ( )= − ( )=

1212

12

1 2

0 2

ln ln

ln ln

ln

( )

−− ( )

+ =

= −

= −

( ) = ( )

ln

ln ln –

2

4 0

4

4

4

y

y

e

e

x

x

error:

no soluution

Page 16: Exponential and Logarithmic Functionsc8d06a5108a478991047-d2b8f846624deedeb4be8165ba46b5db.r23.cf1.rackcdn…eXponenTIAL AnD LoGARITHMIc FUncTIonS - LeSSon 6 59 LeSSon 6 eXponenTIAL

LeSSon pRAcTIce 6A - LeSSon pRAcTIce 6B

SoLUTIonS cALcULUS270

Lesson Practice 6A

1. y e

x e

x

y

=

=

3

3Switch variabless

( )

=

( ) = ( )( ) =( ) = ( )−

3

3

3

31

x e

x e

x y

x x

y

yln ln

ln

lnf

2.

reverse variables

y e

x e

x e

x

y

y

=

= ( )( ) =

2

2

2ln ln(( )( ) = +

( ) − ( ) =( ) = ( ) − ( )−

ln ln

ln ln

ln ln

x y

x y

x x

no

2

2

21f

tte: This problem is the same as

example 4 in thee instruction

manual but solved differently.

Booth solutions are correct.

ln ln lnx x( ) − ( ) =22( )

3.. A e

e

xx

x

B e

x

x

.

ln ln

.

2 1

2 1

3

1

1

2 1 02 1

12

2

+

+

=

( ) = ( )+ =

= −

= −

xx

x

e

e e

x

x

x

=

( ) = ( )( ) + =

= − ( )

= −( )

0

3 02

2 3 0

3 2

2

ln ln

ln

ln

ln33

0 2 5

1 2 54 2

42

2

0 2 5

c x

e exx

x

D

x

. ln

.

ln

= +( )

== +

− =

= − = −

+( )

lln ln

lnln

x

x

e e

x e

x e or

x

( ) + ( ) =( ) =

=

=

=

( )

5 6

5 6

5

51

5 6

6

6

55

5 6

5 6 0

2 3 0

6

2

2

e

A e e

y y

y y

Letx x4. . − = −

− + =

−( ) −( ) =

.

ln ln

ln

y e

y

y

e

e

x

x

x

x

=

− =

=

=

( ) = ( )= ( )

2 0

2

2

2

2

ln ln

ln

.

y

y

e

e

x

B e e

x

x

x x

− =

=

=

( ) = ( )= ( )

+ =

3 0

3

3

3

3

2 7 42 Let y e

y y

y y

y

y

x=

+ − =

−( ) +( ) =− =

=

.

2 7 4 0

2 1 4 0

2 1 0

2 1

2

yy

e

e

x

x

x

x

x

=

=

( ) == ( ) − ( )= − ( )=

1212

12

1 2

0 2

ln ln

ln ln

ln

( )

−− ( )

+ =

= −

= −

( ) = ( )

ln

ln ln –

2

4 0

4

4

4

y

y

e

e

x

x

error:

no soluution

Lesson Practice 6BLesson 6B1. y e

x e

x

x

y

=

= ( )

+

+

1

1

ln

reverse variables

(( ) = ( )( ) = +

( ) − =

( ) = ( ) −

+

ln

ln

ln

ln

e

x y

x y

x x

y

y 1

1

1

1

1f

2. ==

= ( )

( ) =

e

x e

x e

x

x

y

y

2

2

2ln ln

ln

reverse variables

( )(( ) =

( ) =( ) = ( )

=+ ( )

y

x y

x x

A e

e

x

x

22

2

2

1

3

ln

ln

.

ln

ln

f

3.++ ( )( ) = ( )+ ( ) = ( )

= ( ) − ( )

=

ln ln

ln ln

ln ln

ln

3 2

3 2

2 3

2

x

x

x (33

1 2 21

1 2 2

1 2 2

)B e e

e e

x xx

x x

x x

.

ln ln

+ −

+ −

=

( ) = ( )+ = −

− + = −223

3

3 5 1

3 5 1

4

2

2

2

− = −=

+ +( ) = −( )

+ + = −

+

xx

c x x x

x x x

x x

. ln ln

++ =

+( ) +( ) =+ =

= −

=

=

4 0

2 2 02 0

2

23

2 3

x xx

x

D x

e ex

l x

. ln

n

( )( )

22

2

2 3 7

2 3 7

2 7

3

3

2

2

2

=

=

( ) + = ( )

+ =

− +

e

x e

A x x

y y

y y

4. . ln ln

33 0

2 1 3 0

2 1 0

2 1

=

( )( ) =

= ( )

− =

=

=

y y

y x

y

Y

y

– –

ln Let

11212

3 0

3

3

12

ln

ln

ln

ln

x

e e

x e

y

y

x

e

x

( ) =

=

=

− =

=

( ) =

( )

xx

x x

e

x e

B e e

y y

y y

y y

( )=

=

=

=

− =

( ) −( ) =

3

3

2

2

2

2

2

2 0

2 0

. Lett

undefined

y e

y

e

e

x

x

x

x

=

=

=

( ) = ( )= ( )

ln ln

ln

0

0

0

0 ln ln

ln

y

y

e

e

x

x

x

− =

=

=

( ) = ( )= ( )

2 0

2

2

2

2

y = x

= ln(x) – 1y = ex + 12.7

f−1 x( )

Lesson 6B1. y e

x e

x

x

y

=

= ( )

+

+

1

1

ln

reverse variables

(( ) = ( )( ) = +

( ) − =

( ) = ( ) −

+

ln

ln

ln

ln

e

x y

x y

x x

y

y 1

1

1

1

1f

2. ==

= ( )

( ) =

e

x e

x e

x

x

y

y

2

2

2ln ln

ln

reverse variables

( )(( ) =

( ) =( ) = ( )

=+ ( )

y

x y

x x

A e

e

x

x

22

2

2

1

3

ln

ln

.

ln

ln

f

3.++ ( )( ) = ( )+ ( ) = ( )

= ( ) − ( )

=

ln ln

ln ln

ln ln

ln

3 2

3 2

2 3

2

x

x

x (33

1 2 21

1 2 2

1 2 2

)B e e

e e

x xx

x x

x x

.

ln ln

+ −

+ −

=

( ) = ( )+ = −

− + = −223

3

3 5 1

3 5 1

4

2

2

2

− = −=

+ +( ) = −( )

+ + = −

+

xx

c x x x

x x x

x x

. ln ln

++ =

+( ) +( ) =+ =

= −

=

=

4 0

2 2 02 0

2

23

2 3

x xx

x

D x

e ex

l x

. ln

n

( )( )

22

2

2 3 7

2 3 7

2 7

3

3

2

2

2

=

=

( ) + = ( )

+ =

− +

e

x e

A x x

y y

y y

4. . ln ln

33 0

2 1 3 0

2 1 0

2 1

=

( )( ) =

= ( )

− =

=

=

y y

y x

y

Y

y

– –

ln Let

11212

3 0

3

3

12

ln

ln

ln

ln

x

e e

x e

y

y

x

e

x

( ) =

=

=

− =

=

( ) =

( )

xx

x x

e

x e

B e e

y y

y y

y y

( )=

=

=

=

− =

( ) −( ) =

3

3

2

2

2

2

2

2 0

2 0

. Lett

undefined

y e

y

e

e

x

x

x

x

=

=

=

( ) = ( )= ( )

ln ln

ln

0

0

0

0 ln ln

ln

y

y

e

e

x

x

x

− =

=

=

( ) = ( )= ( )

2 0

2

2

2

2

f (x) = 2 ln(x)–1

x2y = e

y = x

Page 17: Exponential and Logarithmic Functionsc8d06a5108a478991047-d2b8f846624deedeb4be8165ba46b5db.r23.cf1.rackcdn…eXponenTIAL AnD LoGARITHMIc FUncTIonS - LeSSon 6 59 LeSSon 6 eXponenTIAL

LeSSon pRAcTIce 6B - LeSSon pRAcTIce 6c

SoLUTIonScALcULUS 271

Lesson 6B1. y e

x e

x

x

y

=

= ( )

+

+

1

1

ln

reverse variables

(( ) = ( )( ) = +

( ) − =

( ) = ( ) −

+

ln

ln

ln

ln

e

x y

x y

x x

y

y 1

1

1

1

1f

2. ==

= ( )

( ) =

e

x e

x e

x

x

y

y

2

2

2ln ln

ln

reverse variables

( )(( ) =

( ) =( ) = ( )

=+ ( )

y

x y

x x

A e

e

x

x

22

2

2

1

3

ln

ln

.

ln

ln

f

3.++ ( )( ) = ( )+ ( ) = ( )

= ( ) − ( )

=

ln ln

ln ln

ln ln

ln

3 2

3 2

2 3

2

x

x

x (33

1 2 21

1 2 2

1 2 2

)B e e

e e

x xx

x x

x x

.

ln ln

+ −

+ −

=

( ) = ( )+ = −

− + = −223

3

3 5 1

3 5 1

4

2

2

2

− = −=

+ +( ) = −( )

+ + = −

+

xx

c x x x

x x x

x x

. ln ln

++ =

+( ) +( ) =+ =

= −

=

=

4 0

2 2 02 0

2

23

2 3

x xx

x

D x

e ex

l x

. ln

n

( )( )

22

2

2 3 7

2 3 7

2 7

3

3

2

2

2

=

=

( ) + = ( )

+ =

− +

e

x e

A x x

y y

y y

4. . ln ln

33 0

2 1 3 0

2 1 0

2 1

=

( )( ) =

= ( )

− =

=

=

y y

y x

y

Y

y

– –

ln Let

11212

3 0

3

3

12

ln

ln

ln

ln

x

e e

x e

y

y

x

e

x

( ) =

=

=

− =

=

( ) =

( )

xx

x x

e

x e

B e e

y y

y y

y y

( )=

=

=

=

− =

( ) −( ) =

3

3

2

2

2

2

2

2 0

2 0

. Lett

undefined

y e

y

e

e

x

x

x

x

=

=

=

( ) = ( )= ( )

ln ln

ln

0

0

0

0 ln ln

ln

y

y

e

e

x

x

x

− =

=

=

( ) = ( )= ( )

2 0

2

2

2

2

Lesson 6B1. y e

x e

x

x

y

=

= ( )

+

+

1

1

ln

reverse variables

(( ) = ( )( ) = +

( ) − =

( ) = ( ) −

+

ln

ln

ln

ln

e

x y

x y

x x

y

y 1

1

1

1

1f

2. ==

= ( )

( ) =

e

x e

x e

x

x

y

y

2

2

2ln ln

ln

reverse variables

( )(( ) =

( ) =( ) = ( )

=+ ( )

y

x y

x x

A e

e

x

x

22

2

2

1

3

ln

ln

.

ln

ln

f

3.++ ( )( ) = ( )+ ( ) = ( )

= ( ) − ( )

=

ln ln

ln ln

ln ln

ln

3 2

3 2

2 3

2

x

x

x (33

1 2 21

1 2 2

1 2 2

)B e e

e e

x xx

x x

x x

.

ln ln

+ −

+ −

=

( ) = ( )+ = −

− + = −223

3

3 5 1

3 5 1

4

2

2

2

− = −=

+ +( ) = −( )

+ + = −

+

xx

c x x x

x x x

x x

. ln ln

++ =

+( ) +( ) =+ =

= −

=

=

4 0

2 2 02 0

2

23

2 3

x xx

x

D x

e ex

l x

. ln

n

( )( )

22

2

2 3 7

2 3 7

2 7

3

3

2

2

2

=

=

( ) + = ( )

+ =

− +

e

x e

A x x

y y

y y

4. . ln ln

33 0

2 1 3 0

2 1 0

2 1

=

( )( ) =

= ( )

− =

=

=

y y

y x

y

Y

y

– –

ln Let

11212

3 0

3

3

12

ln

ln

ln

ln

x

e e

x e

y

y

x

e

x

( ) =

=

=

− =

=

( ) =

( )

xx

x x

e

x e

B e e

y y

y y

y y

( )=

=

=

=

− =

( ) −( ) =

3

3

2

2

2

2

2

2 0

2 0

. Lett

undefined

y e

y

e

e

x

x

x

x

=

=

=

( ) = ( )= ( )

ln ln

ln

0

0

0

0 ln ln

ln

y

y

e

e

x

x

x

− =

=

=

( ) = ( )= ( )

2 0

2

2

2

2

Lesson Practice 6CLesson Practice 6C1. y x

x y

=

=

2

2

2

2 reverse variabless( )

=

± =

( ) = ±

=

( ) = ( )=

x y

x y

x x

e e

e e

x

x

x

2

2

2

4

2

1

4

4

f

2.

ln ln

1114

3 1 1

3 13 1

1

3 1 1

x

x

e ex e

x e

x e

x

=

−( ) ==

− == +

= +

−( )3. ln

ln

33

7 10 0

7 10 0

5

2

2

4. e e l y e

y y

y y

x x x− + = =

− + =

−( )

et

−−( ) =− =

=

=

( ) = ( )= ( )

2 0

5 0

5

5

5

5

ln ln

ln

y

y

e

e

x

x

x ln ln

ln

ln

y

y

e

e

x

x

x

x

− =

=

=

( ) = ( )= ( )

( ) =

2 0

2

2

2

2

225. lln ln

ln

x y x

y y

y y

y y

y

x

( ) = ( )

=

− =

( ) −( ) ==

( )

let 2

2

2

2 0

2 0

0

==

=

==

− =

=

( ) =( )0

1

2 0

2

20

0

e e

x ex

y

y

x

e

xln

ln

lnxx

x x

x x

x x

e

x e

e e

e e

e e

( )=

=

− + =

−( ) −( ) =− = −

2

2

2 3 2 0

1 2 0

1 0

6.

22 0

1 21 2

0 2

=

= =

= ( ) = ( )= ( )

e ex x

x

x x

ln ln

,ln

y = 2x2

f (x) = –1

y = x

± x

2

Page 18: Exponential and Logarithmic Functionsc8d06a5108a478991047-d2b8f846624deedeb4be8165ba46b5db.r23.cf1.rackcdn…eXponenTIAL AnD LoGARITHMIc FUncTIonS - LeSSon 6 59 LeSSon 6 eXponenTIAL

LeSSon pRAcTIce 6c - LeSSon pRAcTIce 6D

SoLUTIonS cALcULUS272

Lesson Practice 6C1. y x

x y

=

=

2

2

2

2 reverse variabless( )

=

± =

( ) = ±

=

( ) = ( )=

x y

x y

x x

e e

e e

x

x

x

2

2

2

4

2

1

4

4

f

2.

ln ln

1114

3 1 1

3 13 1

1

3 1 1

x

x

e ex e

x e

x e

x

=

−( ) ==

− == +

= +

−( )3. ln

ln

33

7 10 0

7 10 0

5

2

2

4. e e l y e

y y

y y

x x x− + = =

− + =

−( )

et

−−( ) =− =

=

=

( ) = ( )= ( )

2 0

5 0

5

5

5

5

ln ln

ln

y

y

e

e

x

x

x ln ln

ln

ln

y

y

e

e

x

x

x

x

− =

=

=

( ) = ( )= ( )

( ) =

2 0

2

2

2

2

225. lln ln

ln

x y x

y y

y y

y y

y

x

( ) = ( )

=

− =

( ) −( ) ==

( )

let 2

2

2

2 0

2 0

0

==

=

==

− =

=

( ) =( )0

1

2 0

2

20

0

e e

x ex

y

y

x

e

xln

ln

lnxx

x x

x x

x x

e

x e

e e

e e

e e

( )=

=

− + =

−( ) −( ) =− = −

2

2

2 3 2 0

1 2 0

1 0

6.

22 0

1 21 2

0 2

=

= =

= ( ) = ( )= ( )

e ex x

x

x x

ln ln

,ln

Lesson Practice 6DLesson Practice 6D1. e

e

x

x

x

2 2

2 2

5

5

2 2

+

+

=

( ) = ( )+ =

ln ln

lln

ln

ln

5

2 5 2

5 22

2 5 3

2

2

( )= ( ) −

=( ) −

+ = =

x

x

e e let y ex x x2.

yy y

y y

y y

y

y

y

ex

2

2

5 3

2 5 3 0

2 1 3 0

2 1 0

2 1

12

+ =

+ − =

−( ) +( ) =− =

=

=

==

=

= − ( )= − ( )= − ( )

+

12

12

1 2

0 2

2

x

x

x

x

y

ln

ln ln

ln

ln

( )

33 0

3

3

3

2 22

=

= −

= −

= −( )

+( ) =+

y

e

x

x

e

x

x

ln

lnln

undefined

3.(( )

=

+ =

= −

+( ) + ( ) =+( )( ) =

e

x e

x e

x

x

2

2

2

2

2

1 4 3

4 1 3

4. ln ln

ln

lln

l

ln

4 4 3

4 4

4 4

44

4 4 3

3

3

3

x

e e

x e

x e

x e

x

+( ) ==

+ =

= −

= −

+( )

5. nn

– –

2 4 2

2 4

2 4

42

0 1

1

11

2

2

2

3

3

x

x e

x e

x e

x y

e

e

−( ) =− =

= +

= +

6.

33

3

3

3

e

Finding

y e

x ex y

y x

x

y

the inverse

=

=( ) =

=( )

ln

ln33

31f − ( ) = ( )

x xln

Page 19: Exponential and Logarithmic Functionsc8d06a5108a478991047-d2b8f846624deedeb4be8165ba46b5db.r23.cf1.rackcdn…eXponenTIAL AnD LoGARITHMIc FUncTIonS - LeSSon 6 59 LeSSon 6 eXponenTIAL

LeSSon pRAcTIce 6D - LeSSon pRAcTIce 7A

SoLUTIonScALcULUS 273

Lesson Practice 6D1. e

e

x

x

x

2 2

2 2

5

5

2 2

+

+

=

( ) = ( )+ =

ln ln

lln

ln

ln

5

2 5 2

5 22

2 5 3

2

2

( )= ( ) −

=( ) −

+ = =

x

x

e e let y ex x x2.

yy y

y y

y y

y

y

y

ex

2

2

5 3

2 5 3 0

2 1 3 0

2 1 0

2 1

12

+ =

+ − =

−( ) +( ) =− =

=

=

==

=

= − ( )= − ( )= − ( )

+

12

12

1 2

0 2

2

x

x

x

x

y

ln

ln ln

ln

ln

( )

33 0

3

3

3

2 22

=

= −

= −

= −( )

+( ) =+

y

e

x

x

e

x

x

ln

lnln

undefined

3.(( )

=

+ =

= −

+( ) + ( ) =+( )( ) =

e

x e

x e

x

x

2

2

2

2

2

1 4 3

4 1 3

4. ln ln

ln

lln

l

ln

4 4 3

4 4

4 4

44

4 4 3

3

3

3

x

e e

x e

x e

x e

x

+( ) ==

+ =

= −

= −

+( )

5. nn

– –

2 4 2

2 4

2 4

42

0 1

1

11

2

2

2

3

3

x

x e

x e

x e

x y

e

e

−( ) =− =

= +

= +

6.

33

3

3

3

e

Finding

y e

x ex y

y x

x

y

the inverse

=

=( ) =

=( )

ln

ln33

31f − ( ) = ( )

x xln–1 1

y = e 3x

(1, 20)

Lesson Practice 6D1. e

e

x

x

x

2 2

2 2

5

5

2 2

+

+

=

( ) = ( )+ =

ln ln

lln

ln

ln

5

2 5 2

5 22

2 5 3

2

2

( )= ( ) −

=( ) −

+ = =

x

x

e e let y ex x x2.

yy y

y y

y y

y

y

y

ex

2

2

5 3

2 5 3 0

2 1 3 0

2 1 0

2 1

12

+ =

+ − =

−( ) +( ) =− =

=

=

==

=

= − ( )= − ( )= − ( )

+

12

12

1 2

0 2

2

x

x

x

x

y

ln

ln ln

ln

ln

( )

33 0

3

3

3

2 22

=

= −

= −

= −( )

+( ) =+

y

e

x

x

e

x

x

ln

lnln

undefined

3.(( )

=

+ =

= −

+( ) + ( ) =+( )( ) =

e

x e

x e

x

x

2

2

2

2

2

1 4 3

4 1 3

4. ln ln

ln

lln

l

ln

4 4 3

4 4

4 4

44

4 4 3

3

3

3

x

e e

x e

x e

x e

x

+( ) ==

+ =

= −

= −

+( )

5. nn

– –

2 4 2

2 4

2 4

42

0 1

1

11

2

2

2

3

3

x

x e

x e

x e

x y

e

e

−( ) =− =

= +

= +

6.

33

3

3

3

e

Finding

y e

x ex y

y x

x

y

the inverse

=

=( ) =

=( )

ln

ln33

31f − ( ) = ( )

x xln

1

y = ln( )x

3

Lesson Practice 7ALesson Practice 5A1. lim

lim

x

x

x x

x

−( ) =

3

3

2

2

3 +

llim lim

lim

x x

x

x

x x

→ →

+ =

− + =

− −( ) = −

3 3

27 2 7 42

3

9 3 3 9

2. −− = −

− +

+= − +

+=

→−

4 1

3 3

2 2

0 0 30 2

320

2

2

23.

4.

lim

lim

t

z

t t

t

z 1

z

c

2

π

+

−= − +

−= −

( )( )→

2

2 14 2

12

3

4

5. lim tansinθ

θθ oos

π

π cos π4

π

θ

θ

( ) =

=

=

limtan

sin4

34

41

22

22

( )( ) ( )

−− = −

=

124

2

9

33 26. lim

x

x

x x

x

When 3, the functio

2

nn is undefined.

we get,

Factoring

xxlim→

+( )3

3 xx

x x

xx

x x

x

x

−( )−( ) =

+( )= =

+ +

→−

3

3

3 63

2

5

3

3

lim

lim

2

7. 663

1

5

3

1

x

x x

x

x x

x

x

+=

+( ) +( )+( ) = −

+ +

→−

→−

lim

lim

2 3

3

2

8. 661

2 311

x

x xx

limit

x

+( ) =

+( ) +( )+( ) =

→−lim

does not eexist

sin 2 cos9.

10.

lim

lim

θθ θ

→( ) + ( )( ) =

+ ( ) =0

0 2 1 2

θθθ θ

→( ) − ( ) +( ) =

( ) − + =

03

4 1 0 3 7

4 sec sin

Page 20: Exponential and Logarithmic Functionsc8d06a5108a478991047-d2b8f846624deedeb4be8165ba46b5db.r23.cf1.rackcdn…eXponenTIAL AnD LoGARITHMIc FUncTIonS - LeSSon 6 59 LeSSon 6 eXponenTIAL

TeST 4 - TeST 6

SoLUTIonScALcULUS 427

Test 41.

2.

f

f

f

x x x

B

x

( ) = −

−( ) = −( ) − −( )= +=

2

2

2

1 1 2 1

1 23

:

(( ) = −

−( ) = −( ) − −( )= +

( ) =

x x

c f x x x

x x

X x

2

2 22

2

4 2

2

2

2

2

:

3. f −−

+( ) = +( ) − +( )

= + + − −

(

2

2

2 2 2

2

2 2

x

D x h x h x h

x xh h x h

x

: f

f4. )) = − ( ) =

( )( ) = −( )

= −( )=

x x x x

c x x x

x x

2

2

2

2 3

2

3 2

3

;

:

g

g f g

xx x

A x x

y x

x y

2 6

3

3

3

( ) = −

= −

= − (

5. : f

switch variables))− = −

− + =

= −

( ) = −−

x y

x y

y x

x x

c A

3

3

3

31f

6. : is the sine ffunction.

B is a non-vertical line, so it is

a fuunction.

c is a parabola with the "c" shape

so itt fails the vertical line test.

D is the naturall log function.

of inverse7.

8.

B definition

c x

:

: f (( ) =

=

= ( )

=

= ±

2

2

2

2

2

2

2

2

2

x

y x

x y

x y

y x

switch variables

ff − ( ) = ±1

2x x

This is a graph of a parabola with

thee "c" shape. It is not a function,

but its graphh is in quadrants

I and IV.

9. A c dc d

d c c

. =

=

( ) =

π

π

π

Test 5Test 51. B x: cosThe period of y is 2 ,

so the

= ( ) π

pperiod of y

will be half as large.

= ( )cos

:

2x

c2. ssec

sin , ,

( )π4

21

2

0 0

= = =

( ) = =

hypadj

c y When3. y π 2ππ,

3π, 4π etc

2 2 2π

θ θ θ

θ θ

= = =

= =

0 2

0

π

ππ π

π π

of fr

2

02

θ

θ

=

= , ,

4. A definition eequency

quadrant II, tangen

5. A : tan tan º( )34

135π =

tt is negative

tan

of ampli

( )34

1π = −

6. c Definition ttude

π

is the vertical shift

π

7.

8.

9.

B

B

c

csc

2

74( )== =

( ) = =

csc º –

sin , ,

x π π,

π

315 2

2 0 02

3

10. D x when

2252

192

, , , 2π, π ... π 10

are 21 solution

π

There ss.

Test 51. B x: cosThe period of y is 2 ,

so the

= ( ) π

pperiod of y

will be half as large.

= ( )cos

:

2x

c2. ssec

sin , ,

( )π4

21

2

0 0

= = =

( ) = =

hypadj

c y When3. y π 2ππ,

3π, 4π etc

2 2 2π

θ θ θ

θ θ

= = =

= =

0 2

0

π

ππ π

π π

of fr

2

02

θ

θ

=

= , ,

4. A definition eequency

quadrant II, tangen

5. A : tan tan º( )34

135π =

tt is negative

tan

of ampli

( )34

1π = −

6. c Definition ttude

π

is the vertical shift

π

7.

8.

9.

B

B

c

csc

2

74( )== =

( ) = =

csc º –

sin , ,

x π π,

π

315 2

2 0 02

3

10. D x when

2252

192

, , , 2π, π ... π 10

are 21 solution

π

There ss.

Test 6Test 6

1.

2.

c

D

ln ln ln ln ln

l

92

12

9 9 9 312( )

= ( ) = = ( ) = ( )( )nn ln

ln

ln

ln

x

x

e ex e

x e

D

x

( ) − ( ) =

=

=

=

=

4 2

42

4

4

4 2

2

2

( )

(

( )

3. 663

6 3

2

2

)= ( ) ( )

= −( )= −( )

ln – ln

ln

ln

4. B y x

x y switch vaariables( )

=

= −

+ =

( ) = +

−( )

e e

e y

e y

x e

x y

x

x

X

ln 2

1

2

2

2f

5. cc

A x

ln ln ln

ln ln

: ln

2 10 2 10

20 2 5

2

( ) + ( ) = ( )( )= ( ) = ( )

(6. )) − ( ) = −

− = −

− + =

−( ) −( ) =− =

5 4

5 4

5 4 0

1 4 0

1 0

2

2

ln x

y y

y y

y y

y

y ==

( ) ===

− =

=

( ) =( )

1

1

4 0

4

41

ln lnln

x

e ex e

y

y

xx ee e

x e

D definition

xln( )=

=

4

4

of an inverse

from

7.

lesson 4

8. B e e

e e

x e

x x

x x

2

2

3

3

2 3

=

( ) = ( )= ( ) +

ln ln

ln ln xx

x x

x

D x

x

e

( )= ( ) += ( )

( ) + ( ) =( ) =

2 3

3

2 7

2 7

ln

ln

ln ln

lnl

9.

nn

ln ln

2 7

7

7

3 1

3 1

2

2

1

1

3

x

x

x

e

x e

x e

A e

e

x

( )

=

=

=

=

( ) = ( )10.

−− ==

=

1 03 1

13

x

x

Page 21: Exponential and Logarithmic Functionsc8d06a5108a478991047-d2b8f846624deedeb4be8165ba46b5db.r23.cf1.rackcdn…eXponenTIAL AnD LoGARITHMIc FUncTIonS - LeSSon 6 59 LeSSon 6 eXponenTIAL

TeST 6 - TeST 7

SoLUTIonS cALcULUS428

Test 6

1.

2.

c

D

ln ln ln ln ln

l

92

12

9 9 9 312( )

= ( ) = = ( ) = ( )( )nn ln

ln

ln

ln

x

x

e ex e

x e

D

x

( ) − ( ) =

=

=

=

=

4 2

42

4

4

4 2

2

2

( )

(

( )

3. 663

6 3

2

2

)= ( ) ( )

= −( )= −( )

ln – ln

ln

ln

4. B y x

x y switch vaariables( )

=

= −

+ =

( ) = +

−( )

e e

e y

e y

x e

x y

x

x

X

ln 2

1

2

2

2f

5. cc

A x

ln ln ln

ln ln

: ln

2 10 2 10

20 2 5

2

( ) + ( ) = ( )( )= ( ) = ( )

(6. )) − ( ) = −

− = −

− + =

−( ) −( ) =− =

5 4

5 4

5 4 0

1 4 0

1 0

2

2

ln x

y y

y y

y y

y

y ==

( ) ===

− =

=

( ) =( )

1

1

4 0

4

41

ln lnln

x

e ex e

y

y

xx ee e

x e

D definition

xln( )=

=

4

4

of an inverse

from

7.

lesson 4

8. B e e

e e

x e

x x

x x

2

2

3

3

2 3

=

( ) = ( )= ( ) +

ln ln

ln ln xx

x x

x

D x

x

e

( )= ( ) += ( )

( ) + ( ) =( ) =

2 3

3

2 7

2 7

ln

ln

ln ln

lnl

9.

nn

ln ln

2 7

7

7

3 1

3 1

2

2

1

1

3

x

x

x

e

x e

x e

A e

e

x

( )

=

=

=

=

( ) = ( )10.

−− ==

=

1 03 1

13

x

x

Test 7Test 51. D Limit from the left = 1 and limit

from the right = 2. They are not

equal, so the limitt does

not exist.

from the left

and ri

2. c

itlim

gght = 0

sin x = 0

x 2x 3

3.

4.

c

B

x

x

lim

lim

( )

++

=

π

2

2+++

=

+− ( ) = +

− ( ) = =→

22 3

45

3 12 1

42

21

5. Dl lnx

lim 3 x2 n x

66.

7.

B

cx

lim

lim

θ

θθ→

( )−

=( )−

=−

= −0

2

2 10 2

22

1 2 sec2

x

x 3

x 3 5

2 + −−

=

+( ) −( )−

=

+ =

xx

xxx

x

62

222

2

lim

lim

8.. Dxlim→

−−2

3x 2

can't be factored.

A vertical assymptote

occurs at x 2.

2x 1

=

= =→

+9. A e

e

e

ex xlim

0

1

0ee

A ttt t

t

10. lim lim

lim

→− →−

−+

= −( )+

=2 2

42

4 t t tt 2

3 2

→→−

→−

+( ) −( )+( ) =

−( ) = − − −( ) = −

2

2

22

2 2 2 2

t t 2

tt

t ttlim 22 4 8−( ) =

Test 51. D Limit from the left = 1 and limit

from the right = 2. They are not

equal, so the limitt does

not exist.

from the left

and ri

2. c

itlim

gght = 0

sin x = 0

x 2x 3

3.

4.

c

B

x

x

lim

lim

( )

++

=

π

2

2+++

=

+− ( ) = +

− ( ) = =→

22 3

45

3 12 1

42

21

5. Dl lnx

lim 3 x2 n x

66.

7.

B

cx

lim

lim

θ

θθ→

( )−

=( )−

=−

= −0

2

2 10 2

22

1 2 sec2

x

x 3

x 3 5

2 + −−

=

+( ) −( )−

=

+ =

xx

xxx

x

62

222

2

lim

lim

8.. Dxlim→

−−2

3x 2

can't be factored.

A vertical assymptote

occurs at x 2.

2x 1

=

= =→

+9. A e

e

e

ex xlim

0

1

0ee

A ttt t

t

10. lim lim

lim

→− →−

−+

= −( )+

=2 2

42

4 t t tt 2

3 2

→→−

→−

+( ) −( )+( ) =

−( ) = − − −( ) = −

2

2

22

2 2 2 2

t t 2

tt

t ttlim 22 4 8−( ) =

Test 51. D Limit from the left = 1 and limit

from the right = 2. They are not

equal, so the limitt does

not exist.

from the left

and ri

2. c

itlim

gght = 0

sin x = 0

x 2x 3

3.

4.

c

B

x

x

lim

lim

( )

++

=

π

2

2+++

=

+− ( ) = +

− ( ) = =→

22 3

45

3 12 1

42

21

5. Dl lnx

lim 3 x2 n x

66.

7.

B

cx

lim

lim

θ

θθ→

( )−

=( )−

=−

= −0

2

2 10 2

22

1 2 sec2

x

x 3

x 3 5

2 + −−

=

+( ) −( )−

=

+ =

xx

xxx

x

62

222

2

lim

lim

8.. Dxlim→

−−2

3x 2

can't be factored.

A vertical assymptote

occurs at x 2.

2x 1

=

= =→

+9. A e

e

e

ex xlim

0

1

0ee

A ttt t

t

10. lim lim

lim

→− →−

−+

= −( )+

=2 2

42

4 t t tt 2

3 2

→→−

→−

+( ) −( )+( ) =

−( ) = − − −( ) = −

2

2

22

2 2 2 2

t t 2

tt

t ttlim 22 4 8−( ) =


Recommended