+ All Categories
Home > Documents > External vs. internal OLED outcoupling strategies · 2016. 2. 11. · Scattering films as...

External vs. internal OLED outcoupling strategies · 2016. 2. 11. · Scattering films as...

Date post: 27-Jan-2021
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
13
External vs. internal OLED outcoupling strategies Barry P. Rand Department of Electrical Engineering and Andlinger Center for Energy and the Environment 2016 DOE SSL R&D Workshop February 4, 2016 – Raleigh, NC
Transcript
  • External vs. internal OLED outcoupling strategies

    Barry P. Rand

    Department of Electrical Engineering and Andlinger

    Center for Energy and the Environment

    2016 DOE SSL R&D Workshop

    February 4, 2016 – Raleigh, NC

  • OLED outcoupling analysis

    Conventional bottom emitting OLEDs face multiple challenges

    when it comes to getting all of the photons out

    ▸ SPP losses

    ▸ Waveguided

    ▸ Substrate trapped

    ▸ Parasitic absorption

    BARRY P. RAND 2

    remains 20~30%

    Significant bottleneck

    Surface plasmonic loss

    ηout

  • 3

    50 100 150 200 250 3000.0

    0.2

    0.4

    0.6

    0.8

    1.0Absorption

    Plasmonic loss

    Waveguided

    Substrate trappedRela

    tive p

    ort

    ion

    ETL thickness (nm)

    Outcoupled

    1) Minimize surface plasmonic loss mode

    Plasmonic loss minimized by:

    1) using thick transport layers

    2) introducing corrugation

    * Calculation based on Phys. Rev. B 85, 115205

    W.H. Koo et al, Nat. Photon. 4 (2010)

    Introduction

    Strategies for maximizing ηout of OLEDs

    BARRY P. RAND

  • 4

    Introduction

    Strategies for maximizing ηout of OLEDs

    BARRY P. RAND

    50 100 150 200 250 3000.0

    0.2

    0.4

    0.6

    0.8

    1.0Absorption

    Plasmonic loss

    Waveguided

    Substrate trappedRela

    tive p

    ort

    ion

    ETL thickness (nm)

    Outcoupled

    1) Minimize surface plasmonic loss mode

    2) Use high-index substrates to convert waveguided mode

    Waveguided mode merged with

    substrate trapped mode

    High-n glass

    S. Reineke et al, Nature 459 (2009)

    * Calculation based on Phys. Rev. B 85, 115205

  • BARRY P. RAND 5

    Introduction

    Strategies for maximizing ηout of OLEDs

    - Half-sphere lens,

    - Microlens array,

    S.-H. Eom et al, Org. Electron. 12 (2011)

    - Scattering films 50 100 150 200 250 300

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0Absorption

    Plasmonic loss

    Waveguided

    Substrate trappedRela

    tive p

    ort

    ion

    ETL thickness (nm)

    Outcoupled

    1) Minimize surface plasmonic loss mode

    2) Use high-index substrates to convert waveguided mode

    3) Use external extraction layers to recover substrate mode

    * Calculation based on Phys. Rev. B 85, 115205

  • BARRY P. RAND 6

    Introduction

    Scattering films as extraction layers

    A straightforward way to address the substrate-trapped mode:

    Scattering particles embedded in a clear host medium

    Polymer microspheres in acrylate R. Bathelt et al, Org. Electron. 8 (2007)

    ZrO2 powder in PDMS J.J. Shiang et al, J. Appl. Phys. 95 (2004)

    TiO2 NPs in polymer film H.-W. Chang et al, J. Appl. Phys. 113 (2013)

  • BARRY P. RAND 7

    Introduction

    Scattering films as extraction layers

    A straightforward way to address the substrate-trapped mode:

    Scattering particles embedded in a clear host medium

    What if we use high-index (n ~ 1.8) substrates

    to merge waveguided mode with substrate-trapped mode?

    1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

    Glass High-n

    substrate ZrO2 TiO2

    Index contrast between oxide scatterers and the substrate reduces as nsub gets higher :

    Utilizing voids (n = 1) as non-absorbing scattering centers

    in high-index, low-cost plastic substrates

    Refractive

    index

  • : polyamic acid (PAA) monomer

    Kapton® polyimide

    : Kapton® polyimide (PI) after imidization @ 360 °C

    ~ 1 mm film

    ~1.73 @ 510 nm

    Polyimide as a high-index host medium

    T.-W. Koh et al, ACS Photonics 2, 1366 (2015) 8 BARRY P. RAND

  • * Phase inversion process:

    1) NMP (N-methyl-2-pyrollidone)

    is miscible with water

    2) PAA dissolves in NMP, but not in water

    Dynamic, spontaneous void formation

    9 T.-W. Koh et al, ACS Photonics 2, 1366 (2015)

    Phase inversion technique to introduce voids

    BARRY P. RAND

  • 400 500 600 7000.0

    0.3

    0.6

    0.9

    T / H

    aze

    Wavelength [nm]

    Ttotal

    Tdiffuse

    Haze

    Characterization of the porous PI films

    T.-W. Koh et al, ACS Photonics 2, 1366 (2015) 10 BARRY P. RAND

  • 0.1 1 100

    10

    20

    control device

    w/ porous polyimide scattering layer

    EQ

    E [

    %]

    Current density [mA cm-2]

    3 4 5 6

    0.1

    1

    10 control device

    w/ porous polyimide scattering layer

    Voltage [V]

    Cu

    rre

    nt d

    en

    sity [

    mA

    cm

    -2]

    0

    1000

    2000

    3000

    4000

    Lu

    min

    an

    ce

    [cd

    m-2]

    EQE @

    J = 3 mA/cm2

    Power efficiency

    @ L = 100

    cd/m2

    control 11.9% 18.0 lm/W

    with porous

    PI 19.0% 32.1 lm/W

    1 10 100 10000

    20

    40

    control device

    w/ porous polyimide scattering layer

    Pow

    er

    effic

    iency [lm

    W-1]

    Luminance [cd m-2]

    1.60x 1.78x

    T.-W. Koh et al, ACS Photonics 2, 1366 (2015) 11

    Porous PI layers on white OLEDs

    BARRY P. RAND

  • 0 10 20 30 40 50 60

    0.45

    0.50

    0.55

    0.60

    0.65

    control device

    w/ porous polyimide scattering layer

    Viewing angle (o)

    x c

    oo

    rdin

    ate

    0.30

    0.35

    0.40

    0.45

    y c

    oord

    inate

    T.-W. Koh et al, ACS Photonics 2, 1366 (2015) 12

    Porous PI layers on white OLEDs

  • Conclusions

    High-index, low-cost substrate material is essential in merging waveguided mode with substrate-trapped mode in OLEDs

    Polyimide is a good high-index candidate, with easy processability and excellent chemical/thermal robustness

    Air voids are effective low-index scatterers in PI, compared to using high-index scattering particles

    Outcoupling enhancements >1.9x confirmed, demonstrating the effectiveness of our scalable, low-cost approach

    Integration with PI substrates for flexible OLEDs possible, for further outcoupling efficiency enhancement

    13

    Funding acknowledged from DOE

    EERE SSL program (#DE-EE0006672)


Recommended