+ All Categories
Home > Documents > Extraction of Cerebral Vasculature from Anatomical MRI · Extraction of Cerebral Vasculature from...

Extraction of Cerebral Vasculature from Anatomical MRI · Extraction of Cerebral Vasculature from...

Date post: 17-Oct-2019
Category:
Upload: others
View: 9 times
Download: 0 times
Share this document with a friend
16
Extraction of Cerebral Vasculature from Anatomical MRI Andreas Deistung, University of Jena Jurgen Reichenbach, University of Jena Marek Kocinski, TUL Piotr Szczypinski, TUL Andrzej Materka, TUL
Transcript
Page 1: Extraction of Cerebral Vasculature from Anatomical MRI · Extraction of Cerebral Vasculature from Anatomical MRI Andreas Deistung, University of Jena JurgenReichenbach, University

Extraction of Cerebral

Vasculature from Anatomical

MRI

Andreas Deistung, University of Jena

Jurgen Reichenbach, University of Jena

Marek Kocinski, TUL

Piotr Szczypinski, TUL

Andrzej Materka, TUL

Page 2: Extraction of Cerebral Vasculature from Anatomical MRI · Extraction of Cerebral Vasculature from Anatomical MRI Andreas Deistung, University of Jena JurgenReichenbach, University

2

The purpose of our research

Vascular Tree Generation

(geometry, flow, pressure drop, viscosity)

3D MRI Data

3D segmentation of a vessel 3D model of a vessel

Pressure drop & flow simulation

comparison

Mesh generation

Page 3: Extraction of Cerebral Vasculature from Anatomical MRI · Extraction of Cerebral Vasculature from Anatomical MRI Andreas Deistung, University of Jena JurgenReichenbach, University

3

What we focus on

3D MRI data(selected cross-section)

The 3D vascular model

Knowledge-Based Extraction of Cerebral Vasculaturefrom Anatomical MRI

Page 4: Extraction of Cerebral Vasculature from Anatomical MRI · Extraction of Cerebral Vasculature from Anatomical MRI Andreas Deistung, University of Jena JurgenReichenbach, University

4

The algorithm

1. Multiscale vessel enhancementa. Gaussian filtering

b. Hessian matrix computation

c. Vesselness function

2. Center-line extractiona. 3D Segmentation

b. Skeletonization

3. Surface smoothing with tube-like deformable models

Page 5: Extraction of Cerebral Vasculature from Anatomical MRI · Extraction of Cerebral Vasculature from Anatomical MRI Andreas Deistung, University of Jena JurgenReichenbach, University

5

Gaussian Filtering

• Derivatives of image L is a convolution with derivatives of Gaussian:

( ) ( ) ( )sGLssL ,, xx

xxx ∂

∂∗=

∂ γ

The D-dimensional Gaussian is defined:

( ) 2

2

2

22

1, s

De

s

sG

x

x−

Where γ is a normalization parameter and s is a scale parameter . For a typical diameter of a vessel smin=0.2, smax=2.

maxmin sss ≤≤

Page 6: Extraction of Cerebral Vasculature from Anatomical MRI · Extraction of Cerebral Vasculature from Anatomical MRI Andreas Deistung, University of Jena JurgenReichenbach, University

6

• A Taylor expansion of the image L in the neighborhood of point x0

( ) ( )000000

xxxxxx δδδδ s

T

s

TsLsL ,0,0,, Η+∇+≈+

ss 0,0, , Η∇

where:

is a gradient and Hessian matrix of an imagecomputed at x0 coordinates, at scale s.

Multiscale vessel enhancement

Page 7: Extraction of Cerebral Vasculature from Anatomical MRI · Extraction of Cerebral Vasculature from Anatomical MRI Andreas Deistung, University of Jena JurgenReichenbach, University

7

Multiscale vessel enhancement

• Hessian matrix computed at coordinates x0:

• Eigenvalues are sorted

• The eigenvector of the highest eigenvalueindicate a direction of the vessel at coordinates x0

=

zzzyzx

yzyyyx

xzxyxx

LLL

LLL

LLL

H

123 λλλ ≤≤

Page 8: Extraction of Cerebral Vasculature from Anatomical MRI · Extraction of Cerebral Vasculature from Anatomical MRI Andreas Deistung, University of Jena JurgenReichenbach, University

8

Blob like structures:

Plate-like structures:

Hessian norm: ∑≤

=Η=3

2

j

jFS λ

32

1

λλ

λ

⋅=BR

3

2

λ

λ=AR

3D 2D

2

1

λ

λ=BR

Multiscale vessel enhancement

Page 9: Extraction of Cerebral Vasculature from Anatomical MRI · Extraction of Cerebral Vasculature from Anatomical MRI Andreas Deistung, University of Jena JurgenReichenbach, University

9

Vesselness function

( ) ( )γγ ,max 00maxmin

sVVsss ≤≤

=

( )

−−

−−=

2

2

2

2

2

2

0

2exp1

2exp

2exp1

0

,

c

SRRsV BA

βαγ

λ2>0 and λ3>0

Vesselness function :

( )

−−

−=

2

2

2

2

0

2exp1

2exp

0

,

c

SRsV B

βγ

λ2 >0

3D case:

2D case:

Finally:

Page 10: Extraction of Cerebral Vasculature from Anatomical MRI · Extraction of Cerebral Vasculature from Anatomical MRI Andreas Deistung, University of Jena JurgenReichenbach, University

10

Multiscale Filtering Results

Slide before filtering Vesselness function representation

Page 11: Extraction of Cerebral Vasculature from Anatomical MRI · Extraction of Cerebral Vasculature from Anatomical MRI Andreas Deistung, University of Jena JurgenReichenbach, University

11

Axial, coronal and sagittal planes of the

multi-scale enhancement filtered volume.

Maximum intensity projections through

the 3D volume.

Multiscale Filtering Results

Page 12: Extraction of Cerebral Vasculature from Anatomical MRI · Extraction of Cerebral Vasculature from Anatomical MRI Andreas Deistung, University of Jena JurgenReichenbach, University

12

3D Visualization Results

Visualisation of a selected vessel after

3D vesselness function thresholding

and data segmentation with flood-fill

(seed growing) algorithm.

The surface is rough and uneven.

Applying a surface smoothing methods

is needed.

Page 13: Extraction of Cerebral Vasculature from Anatomical MRI · Extraction of Cerebral Vasculature from Anatomical MRI Andreas Deistung, University of Jena JurgenReichenbach, University

13

Center-line extraction resultsthe first step for surface smoothing with deformable models

after masking and thresholding

after applying a skeletonization

algorithm

Vesselness function

Page 14: Extraction of Cerebral Vasculature from Anatomical MRI · Extraction of Cerebral Vasculature from Anatomical MRI Andreas Deistung, University of Jena JurgenReichenbach, University

14

Plans for the future work

• Improving a 3D data filtering algorithm,

• Applying tube-like deformable models for surface smoothing,

• Modelling a viscosity, blood flow andpressure drop.

Page 15: Extraction of Cerebral Vasculature from Anatomical MRI · Extraction of Cerebral Vasculature from Anatomical MRI Andreas Deistung, University of Jena JurgenReichenbach, University

15

References:

• Knowledge-Based Extraction of Cerebral Vasculature from Anatomical MRI – L.R.

Ostergaard, O.V. Larsen, J. Haase, F.V. Meer, A.C. Evans, D.L. Collins

• Multiscale vessel enhancement filtering– A.F.Frangi, W.J. Niessen, K.L. Vincken, M.A. Viergever

• Edge Detection and Ridge Detection with Automatic Scale Selection – T.

Lindberg

Page 16: Extraction of Cerebral Vasculature from Anatomical MRI · Extraction of Cerebral Vasculature from Anatomical MRI Andreas Deistung, University of Jena JurgenReichenbach, University

16

Thank you for your attention


Recommended