+ All Categories
Home > Documents > Extremely Durable Concrete using Methane Decarbonization ......Ultra 6129 -5 Premix+Ultra 6815 +6...

Extremely Durable Concrete using Methane Decarbonization ......Ultra 6129 -5 Premix+Ultra 6815 +6...

Date post: 02-Jun-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
15
Extremely Durable Concrete using Methane Decarbonization Nanofiber Co-products with Hydrogen (EERE - Pipeline H 2 ) Modular Processing of Flare Gas for Carbon Nanoproducts (NETL - Flare Gas) Alan W. Weimer, PI, University of Colorado Boulder (CU) Mija H. Hubler, co-PI, University of Colorado Boulder (CU) Team Members: Forge Nano (FN), National Ready Mixed Concrete Association (NRMCA) We are producing H 2 and a beneficial carbon nanofiber concrete additive from natural gas by chemical vapor deposition using a low-cost sacrificial and compatible catalyst support EERE: $1.25 M (36) NETL: $3.75 M (41) Project Vision Total Project Cost ( mo)
Transcript
Page 1: Extremely Durable Concrete using Methane Decarbonization ......Ultra 6129 -5 Premix+Ultra 6815 +6 Fine sand only 6427 0 Fine Sand+CNFs+Ultra 6882 +7 Fine Sand+CNFs+Premix+Ultra 6936

Extremely Durable Concrete using Methane Decarbonization Nanofiber

Co-products with Hydrogen (EERE - Pipeline H2)

Modular Processing of Flare Gas for Carbon Nanoproducts (NETL - Flare

Gas)

Alan W. Weimer, PI, University of Colorado – Boulder (CU)

Mija H. Hubler, co-PI, University of Colorado – Boulder (CU)

Team Members: Forge Nano (FN), National Ready Mixed Concrete Association (NRMCA)

We are producing H2 and a beneficial carbon nanofiber concrete additive

from natural gas by chemical vapor deposition using a low-cost sacrificial

and compatible catalyst support

EERE: $1.25 M (36)

NETL: $3.75 M (41)

Project VisionTotal Project Cost (mo)

Page 2: Extremely Durable Concrete using Methane Decarbonization ......Ultra 6129 -5 Premix+Ultra 6815 +6 Fine sand only 6427 0 Fine Sand+CNFs+Ultra 6882 +7 Fine Sand+CNFs+Premix+Ultra 6936

The Concept and the Project Objectives

1

Page 3: Extremely Durable Concrete using Methane Decarbonization ......Ultra 6129 -5 Premix+Ultra 6815 +6 Fine sand only 6427 0 Fine Sand+CNFs+Ultra 6882 +7 Fine Sand+CNFs+Premix+Ultra 6936

The Team

2

Page 4: Extremely Durable Concrete using Methane Decarbonization ......Ultra 6129 -5 Premix+Ultra 6815 +6 Fine sand only 6427 0 Fine Sand+CNFs+Ultra 6882 +7 Fine Sand+CNFs+Premix+Ultra 6936

EERE (Pipeline): In-situ Ambient Pressure ALD/CCVD Reactor Design

3

Pipeline Gas (EERE)

Key Process Parameters

Catalyst ALD fabrication In-situ

Catalyst Support Fumed Silica

Catalyst MetalMonometallic (e.g, Fe, Ni,

or Co)

Pressure Range Ambient

Temperature Range 600 – 850°C

Scale-upPipeline centralized

process

CNF applicationHigh-performance

concrete

Page 5: Extremely Durable Concrete using Methane Decarbonization ......Ultra 6129 -5 Premix+Ultra 6815 +6 Fine sand only 6427 0 Fine Sand+CNFs+Ultra 6882 +7 Fine Sand+CNFs+Premix+Ultra 6936

NETL (Flare Gas): Ex-situ ALD Pressurized CCVD Reactor Design

4

Flare Gas (NETL)

Key Process Parameters

Catalyst ALD

fabrication Ex-situ

Catalyst Support Silica fume

Catalyst MetalBimetallic (e.g, Fe/Co,

Ni/Co, Fe/Ni etc…)

Pressure Range 400 – 500 psig

Temperature Range 600 – 850°C

Scale-up Modular process

Carbon Nanoproduct

Application

Ultra high-

performance concrete

Page 6: Extremely Durable Concrete using Methane Decarbonization ......Ultra 6129 -5 Premix+Ultra 6815 +6 Fine sand only 6427 0 Fine Sand+CNFs+Ultra 6882 +7 Fine Sand+CNFs+Premix+Ultra 6936

EERE: Mix design and mechanical tests for HPC

5

Premixing Ultrasound

CNF addition Toughness (N-mm)Toughness

Increment (%)

No CNFs (general sand) 321 0

Ultra 0.1 cwt% of CNFs 411 +28

Ultra 0.25 cwt% of CNFs 374 +17

CNFs successfully dispersed by two stage process:

1) premixing with HRWR to change surface properties

2) Ultrasound dispersion to break Van der Waals forces

Reproduce HPC Mix design (wt.%) with Expected Performance

w/c Cement Water Sand SF HRWRCoarse

aggregate

28-day comp.

strength (psi)

0.32 19.92 6.34 27.66 1.92 0.46 43.69 9732

Ensure Minor Change in Setting time of HPC when adding CNFs

70.0

75.0

80.0

85.0

90.0

95.0

0 200 400 600 800 1000 1200 1400 1600 1800

Te

mp

era

ture

, F

Time, min.

no CNFs

ultrasonic dispersed CNFs

HPC with commercial CNF toughness testing

Page 7: Extremely Durable Concrete using Methane Decarbonization ......Ultra 6129 -5 Premix+Ultra 6815 +6 Fine sand only 6427 0 Fine Sand+CNFs+Ultra 6882 +7 Fine Sand+CNFs+Premix+Ultra 6936

NETL: Mix design and mechanical tests for UPHC

6

Develop Optimized UHPC mix design

Mix w/c Cement Water Sand SF HRWRGround

quartz

1 0.22 31.62 6.97 44.28 7.89 1.33 7.89

2 0.23 30.05 6.91 51.92 9.75 1.37 0.00

3 0.22 38.68 8.53 32.54 9.66 0.94 9.66

4 0.21 34.45 7.43 34.93 6.90 1.30 14.99

5 0.18 35.84 6.45 49.51 6.64 1.55 0.00

1 2 3 4 5

17103 15412 18795 15767 18007

Averaged compressive strength of samples after 28 days curing (psi)

1 2 3 4 5

4.25 3.25 3.5 3.875 4.75

Slump test results (in)

UHPC mix design (wt.%)

Optimized for

medium slump.

Achieved required UHPC

compressive strength.

Dispersion method Peak Load (N)Peak Load

Increment (%)

NoCNFs (general sand) 6440 0

Dumpin 6094 -5

Ultra 6129 -5

Premix+Ultra 6815 +6

Fine sand only 6427 0

Fine Sand+CNFs+Ultra 6882 +7

Fine Sand+CNFs+Premix+Ultra 6936 +8

Mix design 5 with 0.1 cwt% of commercial CNFs

Flexure Test

Optimize Dispersion for Improved Flexure Strength of UHPC with Commercial CNFs

Dispersion is critical for improved

mechanical performance.

Page 8: Extremely Durable Concrete using Methane Decarbonization ......Ultra 6129 -5 Premix+Ultra 6815 +6 Fine sand only 6427 0 Fine Sand+CNFs+Ultra 6882 +7 Fine Sand+CNFs+Premix+Ultra 6936

EERE Results: Preliminary Technoeconomic Analysis

7

CVD

Reactor with

Integrated

Furnace

Heat

Exchanger

Sacrificial

CatalystCNF coated

Silica Fume

770k mt/yr

Pressure

Swing

Adsorbers

Furnace

Exhaust

Hydrogen

Product

43k mt/yr

Natural Gas

Feed

12 BSCF/yr

ParametersHydrogen price: $2/kg

NG cost: $3/KSCF

IRR: 10%

Lifetime: 15 years

Estimated TDC: $2B-4B

Cost of Capital: 8.5%

ResultsCNF coated silica, price range:

$2 - $4 per kg

Pure CNF, price range:

$10 - $20 per kg

Pure CNF, current technology:

$300 per kg (bulk)

Compressor

Page 9: Extremely Durable Concrete using Methane Decarbonization ......Ultra 6129 -5 Premix+Ultra 6815 +6 Fine sand only 6427 0 Fine Sand+CNFs+Ultra 6882 +7 Fine Sand+CNFs+Premix+Ultra 6936

NETL Results: Preliminary Technoeconomic Analysis

8

CVD

Reactor with

Integrated

Furnace

Heat

Exchanger

Sacrificial

Catalyst

CNF coated

Silica Fume

580 mt/yr

Hydrogen

Pump

Natural Gas

Feed

9.7 MMSCF/yr

ParametersNG cost: Free

IRR: 10%

Lifetime: 15 years

Estimated TDC: $1M-2M

Cost of Capital: 8.5%

ResultsCNF coated silica, price range:

$2 - $4 per kg

Pure CNF, price range:

$10 - $20 per kg

Pure CNF, current technology:

$300 per kg (bulk)

Furnace

Exhaust

Page 10: Extremely Durable Concrete using Methane Decarbonization ......Ultra 6129 -5 Premix+Ultra 6815 +6 Fine sand only 6427 0 Fine Sand+CNFs+Ultra 6882 +7 Fine Sand+CNFs+Premix+Ultra 6936

Challenges and Technical Partnerships

Challenges/Risks

‣ CNF/CNP Synthesis Risk - Particle ALD catalyst will be unable to grow substantial CNF/CNP quantity

‣ Cement Mixing Risks - The produced CNFs/CNPs are not easily homogenized with cement

‣ CVD Reactor Scale-up Risk

‣ Identify technology implementation of CNF/CNP additives

Reducing Risk/Mitigation Strategies

‣ CNF Synthesis Risk Reduction - Metal nanoparticles will be deposited as metals in-situ using ALD with a reduction step, followed by CVD (can be sequenced if desired)

‣ Cement Mixing Risk Reduction – Methods to ensure dispersion will be investigated using detergents and anti-foam agents

‣ Skid Design, Construction, and Operation at Forge Nano

‣ NRMCA will link the research team with potential contacts or organizations and the co-PI will be engaged in committees writing standards for implementation

9

Page 11: Extremely Durable Concrete using Methane Decarbonization ......Ultra 6129 -5 Premix+Ultra 6815 +6 Fine sand only 6427 0 Fine Sand+CNFs+Ultra 6882 +7 Fine Sand+CNFs+Premix+Ultra 6936

Timeline EERE (Pipeline)

10

I

2020/2021 2021/2022 2022/2023

Page 12: Extremely Durable Concrete using Methane Decarbonization ......Ultra 6129 -5 Premix+Ultra 6815 +6 Fine sand only 6427 0 Fine Sand+CNFs+Ultra 6882 +7 Fine Sand+CNFs+Premix+Ultra 6936

Timeline: NETL (Flare Gas)

11

1.1 Project Mgt. Plan

1.2 Project Maturation Plan

1.3 TEA

Completed Tasks

Current Tasks

2.1 Lab CVD Construction

3.1 Skid Design

4.1 Concrete Mix Design

Page 13: Extremely Durable Concrete using Methane Decarbonization ......Ultra 6129 -5 Premix+Ultra 6815 +6 Fine sand only 6427 0 Fine Sand+CNFs+Ultra 6882 +7 Fine Sand+CNFs+Premix+Ultra 6936

Collaborations

12

Fund-Receiving Collaborator Project Roles

ForgeNanoReactor/process design and

technoeconomic analysis

National Ready Mixed

Concrete Association

(NRMCA)

Concrete materials, mix design,

and consulting

Page 14: Extremely Durable Concrete using Methane Decarbonization ......Ultra 6129 -5 Premix+Ultra 6815 +6 Fine sand only 6427 0 Fine Sand+CNFs+Ultra 6882 +7 Fine Sand+CNFs+Premix+Ultra 6936

Acknowledgements

13

Page 15: Extremely Durable Concrete using Methane Decarbonization ......Ultra 6129 -5 Premix+Ultra 6815 +6 Fine sand only 6427 0 Fine Sand+CNFs+Ultra 6882 +7 Fine Sand+CNFs+Premix+Ultra 6936

14

What questions do you have?


Recommended