+ All Categories
Home > Documents > F = 2 FCNCs in general SUSY models to NLO · NPB 619 (2001) gluinos Dominant contribs, when NOT...

F = 2 FCNCs in general SUSY models to NLO · NPB 619 (2001) gluinos Dominant contribs, when NOT...

Date post: 02-Oct-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
20
Diego Guadagnoli Technische Universitaet Muenchen ∆F = 2 FCNCs in general SUSY models to NLO  Outline  Introduction:   theoretical framework (OPE + RGE),                                  the MSSM and the Mass Insertion Approximation (MIA)  Motivation and status of the calculations for the F = 2 systems  NLO Calculation of the F = 2 Hamiltonian: schemes considered,                                                                                         checks of the calculation  Phenomenological analysis: B s  system in the light of ∆M s    by  CDF-DD.Guadagnoli, Ringberg 06, October 2-6, 2006
Transcript
Page 1: F = 2 FCNCs in general SUSY models to NLO · NPB 619 (2001) gluinos Dominant contribs, when NOT assuming any symmetry in the squark matrix Higgses Dominant contribs (negative), for

Diego GuadagnoliTechnische Universitaet Muenchen

∆F = 2  FCNCsin general SUSY models

to NLO 

  Outline⇨ Introduction:   theoretical framework (OPE + RGE),                                 the MSSM and the Mass Insertion Approximation (MIA)

⇨ Motivation  and status of the calculations for the F = 2 systems 

⇨ NLO Calculation of the F = 2 Hamiltonian:    schemes considered,                                                                                            checks of the calculation

⇨ Phenomenological analysis:  Bs system in the light of  ∆Ms   by  CDF­D∅

D.Guadagnoli, Ringberg 06, October 2­6, 2006

Page 2: F = 2 FCNCs in general SUSY models to NLO · NPB 619 (2001) gluinos Dominant contribs, when NOT assuming any symmetry in the squark matrix Higgses Dominant contribs (negative), for

Renormalization scale: ~ few GeV

Coefficient Functions (CFs):encode physics beyond  

Operator Matrix Elements:encode physics below  

✔  Theoretical input

⟨ Bs0∣H full

SMH fullSUSY∣Bs

0⟩

SUSY contributions: Minimal SupersymmetricStandard Model (MSSM)

⟨B s0∣H full

MSSM∣Bs0⟩=∑

i

dim 6

C i ⟨B s0∣Qi ∣B s

0 ⟩ contributions fromdim 6 op 's

The full amplitude is expanded as:NEGLIGIBLE

Step Perturbative  calculation of the CFs at some “high” energy scale,  O(SUSY masses).Thus avoid large logs.

Step RGE  evolution of the CFs(and of the matrix elem’s) down to the scale  .ADM for the op. basis needed (perturbatively).

Step NON­Perturbative  calculation of the op. matrix elem’sbetween the physical meson states.Lattice QCD mandatory.

Experimentalobservables:

∆Ms ,  s meson­antimesonoscillation amplitude

⟨ Bs0∣H full

SM∣Bs0⟩depend on

D.Guadagnoli, Ringberg 06, October 2­6, 2006

Page 3: F = 2 FCNCs in general SUSY models to NLO · NPB 619 (2001) gluinos Dominant contribs, when NOT assuming any symmetry in the squark matrix Higgses Dominant contribs (negative), for

mass basis flavor basis

mass eigenstatesbasis

flavor × chiralitybasis

On the Mass Insertion Approx (MIA)

☞   Redefinition of the squark fields:    flavor × chirality basis    vs.   mass basis

uLI =Z U

† I iU i

d LI = Z D

† I iD i

“Left” squarks

uRI = ZU

† I3 iU i

d RI =Z D

† I3iDi

“Right” squarks

i = 1,...,6

Z D† M1 L

2 0 ⋯

0 M 2 L2 ⋯

⋮ ⋮ ⋱Z D = m112 12

LL ⋯

21LL m22

2 ⋯⋮ ⋮ ⋱ ≃ m2 1 0 12

LL ⋯

21LL 0 ⋯⋮ ⋮ ⋱

The ‘MIA’                                                               Hyp #1:diag terms

~ degenerate

Hyp #2:non­diag small

I = flavor

squark propagator(flavor basis + MIA)

≃diagonal

+ ×NON­diag.: Mass Insertion

SUSY source

of FCNC's

‘rotation’

D.Guadagnoli, Ringberg 06, October 2­6, 2006

Page 4: F = 2 FCNCs in general SUSY models to NLO · NPB 619 (2001) gluinos Dominant contribs, when NOT assuming any symmetry in the squark matrix Higgses Dominant contribs (negative), for

∆MsMSSM / ∆Ms

SM

Buras et al.NPB 619 (2001)

gluinos

Dominant contribs, when NOT assuming any symmetry in the squark matrix

Higgses

Dominant contribs (negative),for large tan 

M sH−box∝ −tan 2

M sH−DP∝ − tan 4

M sMSSM = M s

SM

M sg M s

H−box M sH−DP M s

M s0

neutralinos:negligible

For low/moderate tan , SUSY contrib’s = gluinos

  Naïve ranking of gluino contributions

One has in general

M s

M sg ≤ 10−2

u×ud×d

charginos

Ball et al.PRD 69 (2004)

SUSY contributions to ∆Ms

Looking at single ’s,bounds are hierarchical

LL (or RR)   only      ☞ | | 0.4

(LR , RL)        ☞ b  s  does better

LL × RR   only    ☞ | | 0.02÷0.05

Assuming  Mgluino  /  Msquark ⋲ 1, one finds

M sg

M sSM≃ 500GeVm q

2

O 1 LL2 RR2

O 10 {LR2 RL2 & LRRL }

O 100 LLRR D.Guadagnoli, Ringberg 06, October 2­6, 2006

Page 5: F = 2 FCNCs in general SUSY models to NLO · NPB 619 (2001) gluinos Dominant contribs, when NOT assuming any symmetry in the squark matrix Higgses Dominant contribs (negative), for

     ‘State of the art’ of the calculations for F = 2 Hamiltonians

Step ➊ CFs(MSUSY)

SM:  complete to NLOBuras et al. 

1990Herrlich + Nierste 

1994, ‘95 & ‘96

MSSM:  complete to LOGabbiani et al. 

1996

Step ➋CFs evolution:

CFs(MSUSY)  CFs()

SM + MSSM:  complete to NLO Ciuchini et al. 

1998

Step ➌Hadronic Matrix 

Elements

SM + MSSM:  quenched lattice estimateBécirévic et al. 

2001

calculation to 2 loops of the anomalous dimension matrix for the basisQi  (dim = 6)

  for the basis Qi  (dim = 6)  [unquenched (= full QCD)           estimate highly desirable]

D.Guadagnoli, Ringberg 06, October 2­6, 2006

  NLO available only  for the 2HDM and        for charginos

Page 6: F = 2 FCNCs in general SUSY models to NLO · NPB 619 (2001) gluinos Dominant contribs, when NOT assuming any symmetry in the squark matrix Higgses Dominant contribs (negative), for

☞   NLO corrections to the CFs in the MSSM  were still missing (... and important)

Motivations

M.Ciuchini et al.JHEP 10 (1998)

 2)  Existing phenomenological analyses are affected by a        residual scheme and   dependence naively corresponding to        an O(S(MSUSY)) error. 

D.Bécirévic et al.NPB 634 (2002)

 3)  They allow to reach within the MSSM the same precision as that in the SM.

 1)  A complete­to­NLO analysis requires both the NLO ADM for the operator basis                   (already present) and of the NLO corrections to the CFs. If one or both the                           ingredients are missing, the error in the analyses is a NLO one.

(LL & RR contribs.) vs. scale 

2 Abs{⟨ Bd∣Heff B=2∣Bd ⟩}

Large scale dependence, but note that    ☞ CFs are proportional to S

2  

☞ ADM entries for the new ∆F = 2 operators (gluino exch.) are surprisingly large

Page 7: F = 2 FCNCs in general SUSY models to NLO · NPB 619 (2001) gluinos Dominant contribs, when NOT assuming any symmetry in the squark matrix Higgses Dominant contribs (negative), for

NLO calculationof the ∆F=2 Hamiltonian

(M.Ciuchini et al., 2006)

Page 8: F = 2 FCNCs in general SUSY models to NLO · NPB 619 (2001) gluinos Dominant contribs, when NOT assuming any symmetry in the squark matrix Higgses Dominant contribs (negative), for

same external statesas in the full theory 

1 loop correctionsin the effective theory

CFs are obtained  enforcing (at the scale MSUSY)  the following equality  (‘matching’ full­eff)

Amplitude in the full theory

LO = + + +

F.Gabbiani et al.NPB 477 (1996)

It becomes important ✔    to automatize as much of the calculation as possible✔    to be sure not to forget any diagram

external states witharbitrary kinematics2 loop amplitude

in the full theory

EffFull

⟨b d∣H fullMSSM∣b d ⟩ = ∑

i

dim 6

C i ⟨b d∣Qi∣b d ⟩R = ∑i j

dim 6

C i r ij⟨ b d∣Q j∣bd ⟩tree

CFs calculation

NLO = +   another  70  1PI, “non­equivalent” diagrams

Ciuchini, Franco, D.G., Lubicz, Porretti, Silvestrini

JHEP 09 (2006)

Page 9: F = 2 FCNCs in general SUSY models to NLO · NPB 619 (2001) gluinos Dominant contribs, when NOT assuming any symmetry in the squark matrix Higgses Dominant contribs (negative), for

NLO calculation: general strategy

The whole calculation was performed within the program Mathematica

Generation of all the2 loop Wick contractions

in the MSSM (strong)

Manipulations onthe single diagram.

In particular: gamma matrix reduction

Basis: package FeynArts✔  it generates all the 2 loop topologies with       insertion of vertices in a given model✔  it writes the single diagram in the form       of a Feynman Amplitude

Basis: package TRACER✔  it allows to calculate traces of gamma               structures in arbitrary dimensions✔  it allows the use of different regularization        schemes.  In particular   DRED e NDR

Modification of the implemented model 

(MSSM) for allowing the most general squark 

mixing

Integration over the loop momenta

Use of both schemes(def. of the 

evanescents mandatory)

✔  adopting the Mass Insertion Approximation          (MIA),  only  ≤ 3 loop masses (‘feasible’)✔  integrals diverge both UV and IR.       Use of  2  IR regs. as a check:        gluon mass  and  IR­dimensional

Creation of theFeynman Amplitudefor the single diagrams

D.Guadagnoli, Ringberg 06, October 2­6, 2006

Page 10: F = 2 FCNCs in general SUSY models to NLO · NPB 619 (2001) gluinos Dominant contribs, when NOT assuming any symmetry in the squark matrix Higgses Dominant contribs (negative), for

Some checks of the calculation

The CFs were calculated ☑   in two regularization schemes (DRED & NDR)

☑   with two IR regulators: ‘gluon mass’ & dimensional

Case A: DRED, with IR­reg = gluon mass  Note residual (1/IR) divergences after renormalization

Necessary to include LO contributions fromDRED evanescents

Case B: DRED, with IR­reg = dim

1 st check

Case C:NDR, with

IR­reg = gluon mass

2 nd check

 Notes for the check A vs. C✔  Consider the Z of scheme changing (DRED – NDR)      in the effective theory✔  NDR breaks SUSY:  add suitable  finite corrections  to        masses and SU(3) couplings

Martin + VaughnPLB 318, 331 (93)

D.Guadagnoli, Ringberg 06, October 2­6, 2006

Page 11: F = 2 FCNCs in general SUSY models to NLO · NPB 619 (2001) gluinos Dominant contribs, when NOT assuming any symmetry in the squark matrix Higgses Dominant contribs (negative), for

Impact of  NLO CFs

­dependence of the amplitude: case “LL only”

= LO= NLO

scale dependence~10 % (LO)   ~ 3.5% (NLO)

D.Guadagnoli, Ringberg 06, October 2­6, 2006

Page 12: F = 2 FCNCs in general SUSY models to NLO · NPB 619 (2001) gluinos Dominant contribs, when NOT assuming any symmetry in the squark matrix Higgses Dominant contribs (negative), for

Impact of  NLO CFs: continued

­dependence of the amplitude: case “LR only”

= LO= NLO

scale dependence~6 % (LO)   ~ 2% (NLO)

D.Guadagnoli, Ringberg 06, October 2­6, 2006

Page 13: F = 2 FCNCs in general SUSY models to NLO · NPB 619 (2001) gluinos Dominant contribs, when NOT assuming any symmetry in the squark matrix Higgses Dominant contribs (negative), for

Phenomenologicalanalysis

(Bs system)

Page 14: F = 2 FCNCs in general SUSY models to NLO · NPB 619 (2001) gluinos Dominant contribs, when NOT assuming any symmetry in the squark matrix Higgses Dominant contribs (negative), for

Constraining 's

a)   Generate values for the matrix element by ✔ extracting the exp input (2)            with normal distributions

✔ extracting Abs['s] and Arg['s]      with flat distributions

b)   Calculate observables O in (1),  with the values generated in  a), and give them a                  ‘gaussian weight’,  i.e. weigh with Exp[­(Oth – Oexp)

2]/(22exp)

MonteCarlo

ms = 17.33−0.210.42±0.07 ps−1

F=1 decays:b sb s l l−

Exp quantities

Exp input

(2)

ms = 2 Abs {⟨ Bs∣Heff B, S=2∣B s⟩}

(1)

Theory relations

and MSSM formulae for the decays

Phenomenological analysisWith the O(S) corrections to the CFs it becomes possible a full NLO analysis

☑  SM couplings  &  masses

  ϱ, from tree­level processes

Evaluation of the matrix element⟨ Bs∣Heff

B , S=2∣B s⟩...and the other input in (1)   bag parameters from the lattice

D.Guadagnoli, Ringberg 06, October 2­6, 2006

Page 15: F = 2 FCNCs in general SUSY models to NLO · NPB 619 (2001) gluinos Dominant contribs, when NOT assuming any symmetry in the squark matrix Higgses Dominant contribs (negative), for

⇨General procedure:  Our matrix element is written as  follows

Constraints on Re[] and Im[]

⟨ Bs∣HeffB , S=2∣B s⟩ = Re ASMi Im ASMASUSY Re AB

232i Im AB232

SM part

⇨We switch on one 2AB  at a time:  LL only,  RR only,  LL=RR,  LR,  RL  or  LR=RL

Example 1: constraints on Re[] vs. Im[],  case “LL only”

SUSY part proportional “to a given 2

AB”

Always pairs of 's appear in the 

ampliude

y­axis: Im[(23)LL]x­axis: Re[(23)LL]

Constraints□ = ms

□ = b   s  □ = b   s l+ l­ □ = all

tan  = 10(23)LL 

[-0.1,+0.05] + i [­0.2,0.2]

D.Guadagnoli, Ringberg 06, October 2­6, 2006

Page 16: F = 2 FCNCs in general SUSY models to NLO · NPB 619 (2001) gluinos Dominant contribs, when NOT assuming any symmetry in the squark matrix Higgses Dominant contribs (negative), for

y­axis: Im[(23)XY]x­axis: Re[(23)XY]

Constraints□ = ms

□ = b   s  □ = b   s l+ l­ □ = all

LL, RR insertions: the Ms constraint is relevant / fundamental

LL only, tan =3

⇩[-0.15,+0.15] + i [­0.25,0.25]

RR only, tan =3

⇩[-0.4,+0.4] + i [­0.9,0.9]

LL=RR, tan =3

⇩[-0.05,+0.05] + i [­0.03,0.03]

LL=RR, tan =10

⇩[-0.03,+0.03] + i [­0.02,0.02]

Page 17: F = 2 FCNCs in general SUSY models to NLO · NPB 619 (2001) gluinos Dominant contribs, when NOT assuming any symmetry in the squark matrix Higgses Dominant contribs (negative), for

y­axis: Im[(23)XY]x­axis: Re[(23)XY]

Constraints□ = ms

□ = b   s  □ = b   s l+ l­ □ = all

LR, RL insertions:  F=1 constraints rule

LR only, tan =3

⇩[-0.0025,+0.01] + i [­0.015,0.015]

RL only, tan =3

⇩[-0.008,+0.008] + i [­0.008,0.008]

Remarks

Constraints on LL and LL=RR mass insertions are severe

Constraints on LR and RL mass insertions are very severe

Do these constraints have a severe impact on theBs – mixing  phase  ?

D.Guadagnoli, Ringberg 06, October 2­6, 2006

Page 18: F = 2 FCNCs in general SUSY models to NLO · NPB 619 (2001) gluinos Dominant contribs, when NOT assuming any symmetry in the squark matrix Higgses Dominant contribs (negative), for

Bs – mixing phase

✔  In the SM one has Arg M12SM ≡ Arg{⟨ Bs∣H eff , SM

B , S=2∣Bs⟩} = 22 ≃ 0.04

     What is the allowed range for                      with the previous limits on the ’s  ?Arg M 12MSSM

LL only, tan =3~ 10 × SM value  are allowed

LR only, tan =3no sizable deviations 

from the SM

RR only, tan =3~ 100 × SM value  are easy to get

(but RR is still mildly constrained...)

LL=RR, tan =3~ 100 × SM value  are again easy

(yet LL=RR is severely constrained!)

The CP asymmetry in Bs   will provide a truly fantastic probe!

D.Guadagnoli, Ringberg 06, October 2­6, 2006

Page 19: F = 2 FCNCs in general SUSY models to NLO · NPB 619 (2001) gluinos Dominant contribs, when NOT assuming any symmetry in the squark matrix Higgses Dominant contribs (negative), for

Bs – mixing phase

✔  PDF’s for  sin 2 s in the LL, RR  and  LL=RR cases

LL only, tan =3 RR only, tan =3 LL=RR, tan =3

D.Guadagnoli, Ringberg 06, October 2­6, 2006

Page 20: F = 2 FCNCs in general SUSY models to NLO · NPB 619 (2001) gluinos Dominant contribs, when NOT assuming any symmetry in the squark matrix Higgses Dominant contribs (negative), for

= LO= NLO

Example: constraints on Abs[] ,  case “LL only”

Impact of  NLO CFs

Previous phenomenological analyses used LO values for the CFs. What is the effect of going to the NLO ?

✔ NLO tends to slightly relax               limits on 's

✔ The effect is a percent level one.     Many percent for the      “LR = RL” case.

D.Guadagnoli, Ringberg 06, October 2­6, 2006


Recommended