+ All Categories
Home > Documents > F inite Element Method

F inite Element Method

Date post: 23-Jan-2016
Category:
Upload: haley
View: 32 times
Download: 0 times
Share this document with a friend
Description:
F inite Element Method. for readers of all backgrounds. G. R. Liu and S. S. Quek. CHAPTER 5:. FEM FOR BEAMS. CONTENTS. INTRODUCTION FEM EQUATIONS Shape functions construction Strain matrix Element matrices Remarks EXAMPLE Remarks. INTRODUCTION. - PowerPoint PPT Presentation
Popular Tags:
26
1 F F inite Element inite Element Method Method FEM FOR BEAMS for readers of all backgrounds for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 5:
Transcript
Page 1: F inite Element Method

1

FFinite Element Methodinite Element Method

FEM FOR BEAMS

for readers of all backgroundsfor readers of all backgrounds

G. R. Liu and S. S. Quek

CHAPTER 5:

Page 2: F inite Element Method

2Finite Element Method by G. R. Liu and S. S. Quek

CONTENTSCONTENTS INTRODUCTION FEM EQUATIONS

– Shape functions construction– Strain matrix– Element matrices – Remarks

EXAMPLE– Remarks

Page 3: F inite Element Method

3Finite Element Method by G. R. Liu and S. S. Quek

INTRODUCTIONINTRODUCTION

The element developed is often known as a beam element.

A beam element is a straight bar of an arbitrary cross-section.

Beams are subjected to transverse forces and moments.

Deform only in the directions perpendicular to its axis of the beam.

Page 4: F inite Element Method

4Finite Element Method by G. R. Liu and S. S. Quek

INTRODUCTIONINTRODUCTION

In beam structures, the beams are joined together by welding (not by pins or hinges).

Uniform cross-section is assumed.FE matrices for beams with varying cross-

sectional area can also be developed without difficulty.

Page 5: F inite Element Method

5Finite Element Method by G. R. Liu and S. S. Quek

FEM EQUATIONSFEM EQUATIONS

Shape functions constructionStrain matrixElement matrices

Page 6: F inite Element Method

6Finite Element Method by G. R. Liu and S. S. Quek

Shape functions constructionShape functions construction

Consider a beam element d1 = v1

d2 = 1

d3 = v2

d4 = 2

x = - a = 1

x = a = 1

x,

2a

0

Natural coordinate system: a

x

Page 7: F inite Element Method

7Finite Element Method by G. R. Liu and S. S. Quek

Shape functions constructionShape functions construction

33

2210)( vAssume that

In matrix form:

3

2

1

0

321)(

v or αp )()( Tv

)32(11 2

321

a

v

ax

v

x

v

Page 8: F inite Element Method

8Finite Element Method by G. R. Liu and S. S. Quek

Shape functions constructionShape functions construction

1

11

(1) ( 1)

d(2)

d

v v

v

x

To obtain constant coefficients – four conditions

2

21

(3) (1)

d(4)

d

v v

v

x

At x= a or = 1

At x= a or = 1

Page 9: F inite Element Method

9Finite Element Method by G. R. Liu and S. S. Quek

Shape functions constructionShape functions construction

4

3

2

1

321

321

2

2

1

1

0

1111

0

1111

aaa

aaa

v

v

or αAd ee

aa

aa

aa

aa

e

11

00

33

22

4

11A or ee dAα 1

Page 10: F inite Element Method

10Finite Element Method by G. R. Liu and S. S. Quek

Shape functions constructionShape functions construction

Therefore,

ev dN )(

where

)()()()()( 43211 NNNNe PAN

)1()(

)32()(

)1()(

)32()(

3244

341

3

3242

341

1

a

a

N

N

N

Nin which

Page 11: F inite Element Method

11Finite Element Method by G. R. Liu and S. S. Quek

Strain matrixStrain matrix

yLvx

vy

x

uxx

2

2

Therefore,

NNNNB

22

2

22

2

a

y

a

y

xyyL

4321 NNNN Nwhere

)31(2

,2

3

)31(2

,2

3

43

21

aN N

a

N N(Second derivative of shape functions)

Page 12: F inite Element Method

12Finite Element Method by G. R. Liu and S. S. Quek

Element matricesElement matrices

dd][][1

d)()(dd

1

132

2

2

2

4

1

1

2

2

2

22

NNNN

NNBcBk

TzTz

Ta

aA

T

V

e

a

EIa

aEI

xxx

AyEV

x

NNNNNNNN

NNNNNNNN

NNNNNNNN

NNNNNNNN

a

EI ze d

41342414

41332313

42322212

41312111

1

13

k

2

22

3

4.

33

234

3333

2

asy

a

aaa

aa

a

EI zek

Evaluate integrals

Page 13: F inite Element Method

13Finite Element Method by G. R. Liu and S. S. Quek

Element matricesElement matrices

x

NNNNNNNN

NNNNNNNN

NNNNNNNN

NNNNNNNN

Aa

aAxAV TTa

aA

T

V

e

d

dddd

44342414

43332313

42322212

41312111

1

1

1

1

NNNNNNm

2

22

8.

2278

6138

13272278

105

asy

a

aaa

aa

Aae

m

Evaluate integrals

Page 14: F inite Element Method

14Finite Element Method by G. R. Liu and S. S. Quek

Element matricesElement matrices

13

2

13

1

1

2

1

1

1

1

4

3

2

1

2

2

ddd

s

af

sy

s

af

sy

s

s

s

s

yf

S

sT

V

bT

e

m

faf

m

faf

m

f

m

f

N

N

N

N

afSfVf

y

y

f

NNf

eeeee fdmdk

Page 15: F inite Element Method

15Finite Element Method by G. R. Liu and S. S. Quek

RemarksRemarks

Theoretically, coordinate transformation can also be used to transform the beam element matrices from the local coordinate system to the global coordinate system.

The transformation is necessary only if there is more than one beam element in the beam structure, and of which there are at least two beam elements of different orientations.

A beam structure with at least two beam elements of different orientations is termed a frame or framework.

Page 16: F inite Element Method

16Finite Element Method by G. R. Liu and S. S. Quek

EXAMPLEEXAMPLEConsider the cantilever beam as shown in the figure. The beam is fixed at one end and it has a uniform cross-sectional area as shown. The beam undergoes static deflection by a downward load of P=1000N applied at the free end. The dimensions and properties of the beam are shown in the figure.

P=1000 N

0.5 m

0.06 m

0.1 m

E=69 GPa =0.33

Page 17: F inite Element Method

17Finite Element Method by G. R. Liu and S. S. Quek

EXAMPLEEXAMPLE Step 1: Element matrices

33 6 41 10.1 0.06 1.8 10 m

12 12zI bh

9 6

3

6 -2

3 0.75 3 0.7569 10 1.8 10 0.75 0.25 0.75 0.125

3 0.75 3 0.752 0.25

0.75 0.125 0.75 0.25

3 0.75 3 0.75

0.75 0.25 0.75 0.1253,974 10 Nm

3 0.75 3 0.75

0.75 0.125 0.75 0.25

e

K k

Page 18: F inite Element Method

18Finite Element Method by G. R. Liu and S. S. Quek

EXAMPLEEXAMPLE

Step 1 (Cont’d):

1 1

1 16

2 2

2 2

?3 0.75 3 0.75 unknown reaction shear force

?0.75 0.25 0.75 0.125 unknow3,974 10

3 0.75 3 0.75

00.75 0.125 0.75 0.25

v Q

M

v Q P

M

DK F

n reaction moment

Step 2: Boundary conditions 1 1 0v

1 1

1 16

2 2

2 2

03 0.75 3 0.75

00.75 0.25 0.75 0.1253.974 10

3 0.75 3 0.75

00.75 0.125 0.75 0.25

v Q

M

v Q P

M

Page 19: F inite Element Method

19Finite Element Method by G. R. Liu and S. S. Quek

EXAMPLEEXAMPLE Step 2 (Cont’d):

6 -23 0.753.974 10 Nm

0.75 0.25

K

Therefore, Kd=F where

dT = [ v2 2] , 1000

0

F

Page 20: F inite Element Method

20Finite Element Method by G. R. Liu and S. S. Quek

EXAMPLEEXAMPLE

Step 3: Solving FE equation– Two simultaneous equations

v2 = -3.355 x 10-4 m

2 = -1.007 x 10-3 rad 6

1 2 2

6 4 3

3.974 10 ( 3 0.75 )

3.974 10 [ 3 ( 3.355 10 ) 0.75 ( 1.007 10 )]

998.47N

Q v

61 2 2

6 4 3

3.974 10 ( 0.75 0.125 )

3.974 10 [ 0.75 ( 3.355 10 ) 0.125 ( 1.007 10 )]

499.73Nm

M v

Substitute back into first two equations of Kd=F

Page 21: F inite Element Method

21Finite Element Method by G. R. Liu and S. S. Quek

RemarksRemarks

FE solution is the same as analytical solution Analytical solution to beam is third order

polynomial (same as shape functions used) Reproduction property

Page 22: F inite Element Method

22Finite Element Method by G. R. Liu and S. S. Quek

CASE STUDYCASE STUDY

Resonant frequencies of micro resonant transducer

Membrane

Bridge

Page 23: F inite Element Method

23Finite Element Method by G. R. Liu and S. S. Quek

CASE STUDYCASE STUDYNumber of 2-

node beam elements

Natural Frequency (Hz)

Mode 1 Mode 2 Mode 3

10 4.4058 x 105 1.2148 x 106 2.3832 x 106

20 4.4057 x 105 1.2145 x 106 2.3809 x 106

40 4.4056 x 105 1.2144 x 106 2.3808 x 106

60 4.4056 x 105 1.2144 x 106 2.3808 x 106

Analytical Calculations

4.4051 x 105 1.2143 x 106 2.3805 x 106

Page 24: F inite Element Method

24Finite Element Method by G. R. Liu and S. S. Quek

CASE STUDYCASE STUDY

Mode 1 (0.44 MHz)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

x (um)

Dy

(um

)

Page 25: F inite Element Method

25Finite Element Method by G. R. Liu and S. S. Quek

CASE STUDYCASE STUDYMode 2 (1.21MHz)

-1.5

-1

-0.5

0

0.5

1

1.5

0 20 40 60 80 100

x (um)

Dy

(um

)

Page 26: F inite Element Method

26Finite Element Method by G. R. Liu and S. S. Quek

CASE STUDYCASE STUDY

Mode 3 (2.38 MHz)

-1.5

-1

-0.5

0

0.5

1

1.5

0 20 40 60 80 100

x (um)

Dy

(um

)


Recommended