Date post: | 02-Jun-2018 |
Category: |
Documents |
Upload: | sonia-filatzikioti |
View: | 220 times |
Download: | 0 times |
of 48
8/10/2019 Fabrication and Characterization of GFET
1/48
8/10/2019 Fabrication and Characterization of GFET
2/48
II
E
. F ,
,
. I ,
(FET). F KTH FET (GFET)
90 . A
O (A2O3) K (ALD).
B
+5 V. A 20 A2O3 ,
, 14 V. F,
. T
.
8/10/2019 Fabrication and Characterization of GFET
3/48
8/10/2019 Fabrication and Characterization of GFET
4/48
IV
I , D. M L,
. H
. I
.
I P M , ,
KTH. A, I
.
I P CM
, . I D.G M , D. PE H
, D. A S R S
R S, D. H R .
M T A S .
S V G, R G, C H
. I M M
.
I M M, M K, S R, O G,L L, B B, E D L .
I .
E I , N,
.
8/10/2019 Fabrication and Characterization of GFET
5/48
V
A .................................................................................................................................................. IIA ................................................................................................................................. IV
1. I ........................ ...................... ............................ ................... ............................ ........... 1
2. G........................................ .............................. ..................... ........................... ................... 3
2.1. G P ....................... ...................... ............................... ................... ................. 3
2.2. G A ........................ ........................ ........................... .......................... ........ 5
2.3. G P M ..................... ............................ .................... ........................... 6
2.3.1. M ..................... ........................... ........................ .......................... ... 6
2.3.2. E G S C S C ............................... ................... ........... 7
2.3.3. C V D................................... .............................. .................... ........ 7
2.3.4. S A S ......................... ............................ ................... ........... 7
2.4. G ......................... ............................ ................... ...................... 7
2.4.1. M D GFET .................. .............................. ................. ......................... 8
2.4.2. CV C GFET ........................ ............................ .................... ..... 9
3. F .......................... ...................... ............................ ................... ............................ ......... 11
3.1. G P .......................... ........................ ........................... .......................... ...... 11
3.1.1. S ....................... .......................... ......................... .......................... 11
3.1.2. G ......................... ............................ ................... ......... 12
3.2. D F ........................... ............................ ....................... ........................... ......... 13
3.2.1. D .......................... ...................... ............................ .................... ........................... . 14
3.2.2. E L (EBL) ...................... ............................ .................... ......................... 15
3.2.3. S D M C ...................... ............................... ................... ............ 15
3.2.4. H ALD ...................... ............................ ................... ......... 16
3.2.5. G E............................................. ........................... .................... .................... 18
3.3. S ........................ ...................... ............................ ................... .............................. .... 19
4. C .......................... ...................... ............................ .................... ........................... . 20
4.1. R S ....................... ...................... ............................... ................... ............... 20
4.2. C B D ......................... ............................ ................... ............ 22
4.2.1. U B GFET ..................... ............................ ...................... .................... 24
4.2.2. B GFET A2O3 ......................... ....................... ........................... . 27
8/10/2019 Fabrication and Characterization of GFET
6/48
VI
4.3. M E: L ...................... .............................. .................... ...... 29
4.3.1. S ............................ ............................ ....................... ........................ ...... 29
4.3.2. B B ....................... ............................ ................... ......... 33
4.4. C ..................... ............................ .................... ................. 34
5. C ........................... ...................... ............................ ................... ............................ ......... 36
R ............................................................................................................................................ 38
8/10/2019 Fabrication and Characterization of GFET
7/48
1
1.
F M L
I C (IC),
. H, ,
. M
. A ,
1
2.
F 2004,
. P,
, . A
,
. T
. I
3 .T
2D
4.
F 5
CMOS . Y,
. O ,
. S,
.
8/10/2019 Fabrication and Characterization of GFET
8/48
8/10/2019 Fabrication and Characterization of GFET
9/48
3
2.
F , 8. H,
2D 3D . G
. T
, , , .
2.1.
G 2 (F. 2.1)
. T
2004 G N 1. S2
9. T 1.42
Figure 2.1: sp2and p orbitals of
carbon atoms in graphene [2].
8/10/2019 Fabrication and Characterization of GFET
10/48
4
. T
,
.
G A B
(F. 2.2). T
K , D , (F. 2.2 2.2).
T D , . T,
D E
D 10.
2.2: ) A B. ) B . ) D B 9.
G D
(21),
F .
8/10/2019 Fabrication and Characterization of GFET
11/48
5
(21)
W 10
F 8. S, , M D F
11,12.
T
. C 10.
A, H , 15000 2/V.
SO2 11, 27000 2/V. 13 200000 2/V.
3,14. H, ,
15.
O
16, H 17,
18.
2.2. A
D ,
. H,
, . I ,
19,20.
O , RF
2. T 100 GH
240 21.
I ,
. F , C 108
A/2, ,
22,23. T
24. F ,
8/10/2019 Fabrication and Characterization of GFET
12/48
6
25.
A , ,
26,27.
F, , , ,
(NEMS) 28 29,30.
2.3.
I N . 1,
. A
,
. T
,
, .
2.3.1.
G V D W . A , S T,
.
2.3: , , 90 . .
8/10/2019 Fabrication and Characterization of GFET
13/48
7
N,
90 300
2. A , . I ,
,
, 2.3.
2.3.2. E C C
T
(0001) 1300C
31,32. S , ,
, 20 26. A
,
.
2.3.3. C D
I , N, C, P, I R
. U
,
3335. S
2. CVD
,
36.
2.3.4. A
I , T
37. D
38. A
,
36.
2.4.
E N
. 1. A ,
(GFET) . I ,
8/10/2019 Fabrication and Characterization of GFET
14/48
8
S/SO2
. H,
, 2007 39.
2.4.1. D E
W ,
. T
40. I ,
/
(RIP) 41. T
F ( 2.4)42.
2.4: 42
L . T,
. H
41,
. U GFET SO2, RIP
43.
O , GFET
6. A
, ,
(ALD)
6. Y,
8/10/2019 Fabrication and Characterization of GFET
15/48
9
44 7 ALD
. S ALD ,
P 6.
2.4.2. C C E
F 2.5 (GFET) 2.
B , GFET
D . I , GFET
. H,
. A,
45.
2.5: 2.
I , GFET
46,47. F , GFET
MOSFET. I , (V
8/10/2019 Fabrication and Characterization of GFET
16/48
8/10/2019 Fabrication and Characterization of GFET
17/48
11
3.
I ,
S/SO2. S
, A2O3
(ALD). I , .
3.1.
3.1.1.
A
. T,
. I , 90
99 .
I , . T
. T
(F. 3.1) 0.5 0.5
.
A (SPR 700 1.2), (XLS
7500/2145 ) .
8/10/2019 Fabrication and Characterization of GFET
18/48
12
3.1: EB .
I , 100 T
(P PAK 600 C S) . T
(F. 2.2).
3.2: EB
T, (D DFD640 ) 0.5 X 0.5 . B, ,
SO2.
3.1.2.
G
. T,
. A,
8/10/2019 Fabrication and Characterization of GFET
19/48
13
(. 3.3). R
, .
3.3: ( ).
.
3.2.
D
, , ,
. T 3.4.
8/10/2019 Fabrication and Characterization of GFET
20/48
14
3.4: E , ) , ) (A), ) D /A , ) , ) A23 AD, ) (A), ) D
/A , ) .
3.2.1.
B ,
ACAD . I ,
.
F 3.5 .
3.5: , ) , ) .
D GFET , .
F / , ,
8/10/2019 Fabrication and Characterization of GFET
21/48
15
(. 3.5.). S,
(. 3.5.).
3.2.2. ()
R EBL GFET
. O
. A 200 PMMA (A2) EBL ,
R T 150 SEM & E . T
M (MIBK) F I (IPA). F 3.6
.
3.6: , 30 B.
3.2.3.
W 5/40 T/A (PVD). T
SO2. F 3.7
.
3.7: .
8/10/2019 Fabrication and Characterization of GFET
22/48
16
N GFET
. A , .
3.2.4.
A ,
. H
, . A L
D (ALD) 6. S
ALD (BENEQ TFS 200, 2.8) A2O3 .
3.8 AD .
A (ALD)
49. A 3.9.,
/ ALD .
1) R (trimethylaluminum, in case of Al2O3 deposition)
. T
.
2) R (trimethylaluminum) (M)
.
8/10/2019 Fabrication and Characterization of GFET
23/48
17
3) P ( ) . T
.
4) T .
R . T
3.9..
3.9: ) A 23 , , A , 2 ,
(..). ) C AD 50.
H, , ALD
. U
ALD 6.
S, 34 A ,
. T, ALD
A2O3
8/10/2019 Fabrication and Characterization of GFET
24/48
18
.. A 3.10, 300 200C
30 A2O3.
3.10: A23 A 200C 51.
3.2..
F EBL , .
R 200 PMMA OPTI SST20 . F (
3.5).
T , 5/40 T/A
P PAK 600 C S, A. F,
GFET 3.11. 3.11.
.
8/10/2019 Fabrication and Characterization of GFET
25/48
19
3.11: E .
3.3.
G S/SO2
99
. B , ,
EBL . T
/ . T/A PVD
. H A2O3
ALD. O 3.12.
3.12: E
I
.
8/10/2019 Fabrication and Characterization of GFET
26/48
20
4.
T
(GFET) 3. R
. T
K 4200SCS
. A,
ALD .
4.1.
R , ,
. I ,
R .
R
52. S , ,
, R . H, R H LRAM
GFET.
F 4.1 R S ,
2. T R ;
1580 1 2 (G ), (2D )
2700 1 53. T 2D ,
52
53.
8/10/2019 Fabrication and Characterization of GFET
27/48
21
4.1: , ; 2.
W H LRAM, A+
(=514.5 ). T (
. 4.2) . T R 4.2 G
1580 1, 2D 2700 1. C
R 4.1, .
4.2: 2D . . .
8/10/2019 Fabrication and Characterization of GFET
28/48
22
I A2O3 , R
. I R
4.3. T G 2D R . I
. I ,
1350 1 (D)
.
: A23 .
4.2.
A EBL ,
. F 4.4 GFET S/SO 2
.
4.4: D E . /2 ; A23 A/ /
8/10/2019 Fabrication and Characterization of GFET
29/48
23
4.5: ) B E . ) .
F 4.5 20
A2O3 , 5.2 . A ,
. A, (. 3.3) (D P) 14 V. M
.
F 4.5 15 V
+15 V . T
GFET . A,
( )
4.5. W , ;
. C 103 A,
.
I , GFET,
A2O3, . A,
.
8/10/2019 Fabrication and Characterization of GFET
30/48
8/10/2019 Fabrication and Characterization of GFET
31/48
8/10/2019 Fabrication and Characterization of GFET
32/48
26
(45)
A 1.2 5.2 11016 2 55 2/V. 193 2/V..
H, ,
54. A
C
. T,
, 45. A ,
47.
(46)
(47)
F , 4.8 1.2
. T 22 2/V. 110122.
T 20 90 2/V.
.
4.8: . .
8/10/2019 Fabrication and Characterization of GFET
33/48
27
4.2.2. 23
A , A 2O3 . A
A ,
ALD. T
A2O3 . F 4.9
( )
( ) A2O3.
4.9: B () A23(). ) =1.2 , ) = 5.2 .
8/10/2019 Fabrication and Characterization of GFET
34/48
28
D A2O3
. F, F. 4.9,
. S / , A2O3
.
T (
) . T A2O3
/A2O3
. I , D
( 5 V 14 V ),
/
SO2 .
T, . I
,
, . T
.
F, . I
/ , 40. T 4.1
.
41: .
()
()
(V)
C
(F/2)
(S)
U
(S)
W H
(2/V.)
U
(2/V.)
W H
1.2 3.3 50 3.5 1 107 5.66 108 22 12
5.2 4.4 50 3.5 1.2 107 5.23 108 80 36
8/10/2019 Fabrication and Characterization of GFET
35/48
29
4.3.
4.3.1.
T
. A,
. V
,
. S
, .
C 47, :
(47)
-30 -25 -20 -15 -10 -5 0 5 10
0,2
0,4
DrainCurrent(A/m)
Back Gate Voltage (V)
L=1.2m
L=1.2m
L=5.2m
Vd= 60 mV
Vd= 30 mV
4.10: D , , 30 () 60 ().
H,
. F 4.10
, . T 42
8/10/2019 Fabrication and Characterization of GFET
36/48
30
. T /
. T
.
O , ,
/ . I ,
.
F, 34.8 K (. 4.11). T,
(. 4.11) 33.3 K
. F,
,
( 4.11). F (
) 2 K, 1.6 K/.
T 33 K .
4.11: ; ) ; ) ; )
H . T
. F 4.12
SEM .
C 4.12,
(V) 48:
8/10/2019 Fabrication and Characterization of GFET
37/48
31
(48)
W RC , R , V
.
4.12: A E. .
F 4.13
V=50 V. T R= 33 K
.
4.13: () , .
8/10/2019 Fabrication and Characterization of GFET
38/48
32
B V V . 47, /
(. 4.14). T 30 K
.
4.14: . B .
I , ,
. A ,
, .
H, , 1500
2/V..
F,
. I , . Q ,
,
54. T
.
8/10/2019 Fabrication and Characterization of GFET
39/48
33
4.3.2.
A ,
90 SO2 . I
. I
, .
W HF
. T 100 A ,
. T
F 4.15.
F 4.15 . H,
. T
42.
-40 -30 -20 -10 0 10
0,6
0,8
1,0
1,2
1,4
1,6
1,8
2,0
Vd=30 mV
DrainCurrent(A
)
Back Gate Voltage (V)
With back contact
Without back contact
Vd=60 mV
4.15: B (=30 =60 ).
T,
.
8/10/2019 Fabrication and Characterization of GFET
40/48
8/10/2019 Fabrication and Characterization of GFET
41/48
35
I F. 4.16,
1.5 . Y,
2 D . T .
F 4.17
, 10 V 30 V. I
.
4.17: , = 10 30 . .
T D 13 V, A2O3 .
8/10/2019 Fabrication and Characterization of GFET
42/48
36
.
I , KTH () GFET
, , . E
. W GFET
20 (A2O3)
(ALD). W ALD
. W
ALD.
B , A2O3,
,
. A
, A2O3 . T
/A2O3 . F,
.
T GFET . I
. I
, ,
.
A
GFET,
. O
8/10/2019 Fabrication and Characterization of GFET
43/48
37
, , 42. A
MOSFET.
8/10/2019 Fabrication and Characterization of GFET
44/48
38
[1] K.S. Novoselov, a K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V.Grigorieva, and a a Firsov, Electric field effect in atomically thin carbon films., Science(New York, N.Y.), vol. 306, Oct. 2004, pp. 666-9.
[2] M.C. Lemme, Current Status of Graphene Transistors, Solid State Phenomena, vol. 158,2010, pp. 499-509.
[3] K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer,Ultrahigh electron mobility in suspended graphene, Solid State Communications, vol.146, Jun. 2008, pp. 351-355.
[4] B.S.K. Banerjee, F. Ieee, L.F. Register, E. Tutuc, M. Ieee, D. Basu, S. Kim, D. Reddy, andA.H. Macdonald, Graphene for CMOS and Beyond CMOS Applications, Proceedingsof the IEEE, vol. 98, 2010.
[5] T.J. Echtermeyer, M.C. Lemme, J. Bolten, M. Baus, M. Ramsteiner, and H. Kurz,Graphene field-effect devices, The European Physical Journal Special Topics, vol. 148,Sep. 2007, pp. 19-26.
[6] L. Liao and X. Duan, Graphenedielectric integration for graphene transistors,Materials Science and Engineering: R: Reports, vol. 70, Nov. 2010, pp. 354-370.
[7] S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S.K. Banerjee,Realization of a high mobility dual-gated graphene field-effect transistor with Al[sub2]O[sub 3] dielectric,Applied Physics Letters, vol. 94, 2009, p. 062107.
[8] P.R. Wallace, The Band Theory of Graphite, Physical Review, vol. 71, 1947, pp. 622-634.
[9] A. Castro Neto, F. Guinea, N. Peres, K. Novoselov, and A. Geim, The electronicproperties of graphene,Reviews of Modern Physics, vol. 81, Jan. 2009, pp. 109-162.
[10] A.K. Geim and K.S. Novoselov, The rise of graphene.,Nature materials, vol. 6, Mar.
2007, pp. 183-91.
[11] K.S. Novoselov, a K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva,S.V. Dubonos, and a a Firsov, Two-dimensional gas of massless Dirac fermions ingraphene.,Nature, vol. 438, Nov. 2005, pp. 197-200.
[12] M.S. Purewal, Y. Zhang, and P. Kim, Unusual transport properties in carbon basednanoscaled materials: nanotubes and graphene, Physica Status Solidi (B), vol. 243, Nov.2006, pp. 3418-3422.
8/10/2019 Fabrication and Characterization of GFET
45/48
39
[13] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N.Marchenkov, E.H. Conrad, P.N. First, and W. a de Heer, Electronic confinement andcoherence in patterned epitaxial graphene., Science (New York, N.Y.), vol. 312, May.2006, pp. 1191-6.
[14] S. Morozov, K. Novoselov, M. Katsnelson, F. Schedin, D. Elias, J. Jaszczak, and a Geim,Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer, Physical Review Letters,vol. 100, Jan. 2008, pp. 11-14.
[15] E. Hwang, S. Adam, and S. Sarma, Carrier Transport in Two-Dimensional GrapheneLayers, Physical Review Letters, vol. 98, May. 2007, pp. 2-5.
[16] A. a Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau,Superior thermal conductivity of single-layer graphene.,Nano letters, vol. 8, Mar. 2008,pp. 902-7.
[17] P. Blake, P.D. Brimicombe, R.R. Nair, T.J. Booth, D. Jiang, F. Schedin, L. aPonomarenko, S.V. Morozov, H.F. Gleeson, E.W. Hill, A.K. Geim, and K.S. Novoselov,Graphene-based liquid crystal device.,Nano letters, vol. 8, Jun. 2008, pp. 1704-8.
[18] T.J. Booth, P. Blake, R.R. Nair, D. Jiang, E.W. Hill, U. Bangert, A. Bleloch, M. Gass,K.S. Novoselov, M.I. Katsnelson, and a K. Geim, Macroscopic graphene membranes andtheir extraordinary stiffness.,Nano letters, vol. 8, Aug. 2008, pp. 2442-6.
[19] M. Han, B. zyilmaz, Y. Zhang, and P. Kim, Energy Band-Gap Engineering of
Graphene Nanoribbons, Physical Review Letters, vol. 98, May. 2007, pp. 1-4.
[20] X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Chemically derived, ultrasmooth graphenenanoribbon semiconductors., Science (New York, N.Y.), vol. 319, Feb. 2008, pp. 1229-32.
[21] Y.-M. Lin, C. Dimitrakopoulos, K. a Jenkins, D.B. Farmer, H.-Y. Chiu, a Grill, and P.Avouris, 100-GHz transistors from wafer-scale epitaxial graphene., Science (New York,N.Y.), vol. 327, Feb. 2010, p. 662.
[22] J. Moser, A. Barreiro, and A. Bachtold, Current-induced cleaning of graphene,International Materials Reviews, pp. 3-6.
[23] F. Schwierz, Graphene transistors,Nature Nanotechnology, vol. 5, May. 2010, pp. 487-496.
[24] P. Avouris, Graphene: Electronic and Photonic Properties and Devices,Nano Letters,Sep. 2010, p. 100929092847080.
[25] F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, Ultrafast graphenephotodetector.,Nature nanotechnology, vol. 4, Dec. 2009, pp. 839-43.
8/10/2019 Fabrication and Characterization of GFET
46/48
40
[26] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, SupercapacitorDevices Based on Graphene Materials, The Journal of Physical Chemistry C, vol. 113,Jul. 2009, pp. 13103-13107.
[27] M.D. Stoller, S. Park, Y. Zhu, J. An, and R.S. Ruoff, Graphene-based ultracapacitors.,Nano letters, vol. 8, Oct. 2008, pp. 3498-502.
[28] A.K. Geim, Graphene: status and prospects., Science (New York, N.Y.), vol. 324, Jun.2009, pp. 1530-4.
[29] J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, and P.E. Sheehan, Reduced grapheneoxide molecular sensors.,Nano letters, vol. 8, Oct. 2008, pp. 3137-40.
[30] J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M.Parpia, H.G. Craighead, and P.L. McEuen, Electromechanical resonators from graphenesheets., Science (New York, N.Y.), vol. 315, Jan. 2007, pp. 490-3.
[31] C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H.Conrad, P.N. First, and W. a de Heer, Ultrathin Epitaxial Graphite: 2D Electron GasProperties and a Route toward Graphene-based Nanoelectronics, The Journal of PhysicalChemistry B, vol. 108, Dec. 2004, pp. 19912-19916.
[32] W. Deheer, C. Berger, X. Wu, P. First, E. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, andM. Sadowski, Epitaxial graphene, Solid State Communications, vol. 143, Jul. 2007, pp.92-100.
[33] A. Obraztsov, E. Obraztsova, A. Tyurnina, and A. Zolotukhin, Chemical vapordeposition of thin graphite films of nanometer thickness, Carbon, vol. 45, Sep. 2007, pp.2017-2021.
[34] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, and J. Kong,Large area, few-layer graphene films on arbitrary substrates by chemical vapordeposition.,Nano letters, vol. 9, Jan. 2009, pp. 30-5.
[35] J. Coraux, A.T. NDiaye, C. Busse, and T. Michely, Structural coherency of grapheneon Ir(111).,Nano letters, vol. 8, Feb. 2008, pp. 565-70.
[36] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y.Choi, and B.H. Hong, Large-scale pattern growth of graphene films for stretchabletransparent electrodes.,Nature, vol. 457, Feb. 2009, pp. 706-10.
[37] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Highly conductinggraphene sheets and Langmuir-Blodgett films.,Nature nanotechnology, vol. 3, Sep.2008, pp. 538-42.
8/10/2019 Fabrication and Characterization of GFET
47/48
41
[38] G. Eda, G. Fanchini, and M. Chhowalla, Large-area ultrathin films of reduced grapheneoxide as a transparent and flexible electronic material.,Nature nanotechnology, vol. 3,May. 2008, pp. 270-4.
[39] M.C. Lemme, T.J. Echtermeyer, M. Baus, and H. Kurz, A Graphene Field-EffectDevice,IEEE Electron Device Letters, vol. 28, Apr. 2007, pp. 282-284.
[40] M. Lemme, T. Echtermeyer, M. Baus, B. Szafranek, J. Bolten, M. Schmidt, T. Wahlbrink,and H. Kurz, Mobility in graphene double gate field effect transistors, Solid-StateElectronics, vol. 52, Feb. 2008, pp. 514-518.
[41] J.-H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E.D. Williams, and M. Ishigami, Charged-impurity scattering in graphene,Nature Physics, vol. 4, Apr. 2008, pp. 377-381.
[42] Zebrev, Quantum Capacitance vs Chemical Potential Universal Curve and Interface TrapParameter Extraction in Graphene Gated StructuresNo Title,Interface, pp. 1-13.
[43] J.-H. Chen, C. Jang, M. Ishigami, S. Xiao, W.G. Cullen, E.D. Williams, and M.S. Fuhrer,Diffusive charge transport in graphene on SiO2, Solid State Communications, vol. 149,Jul. 2009, pp. 1080-1086.
[44] X. Wang, S.M. Tabakman, and H. Dai, Atomic layer deposition of metal oxides onpristine and functionalized graphene.,Journal of the American Chemical Society, vol.130, Jul. 2008, pp. 8152-3.
[45] S. Xu and Q. Zhang, Causes of asymmetry in graphene transfer characteristics, 2010International Workshop on Junction Technology Extended Abstracts, May. 2010, pp. 1-3.
[46] S. a Thiele, J. a Schaefer, and F. Schwierz, Modeling of graphene metal-oxide-semiconductor field-effect transistors with gapless large-area graphene channels,Journalof Applied Physics, vol. 107, 2010, p. 094505.
[47] H. Wang, S. Member, A. Hsu, J. Kong, D.A. Antoniadis, and T. Palacios, CompactVirtual-Source Current Voltage Model for Top- and Back-Gated Graphene Field-EffectTransistors, vol. 58, 2011, pp. 1523-1533.
[48] P. Palestri,private communication, 2010.
[49] R.L. Puurunen, Surface chemistry of atomic layer deposition: A case study for thetrimethylaluminum/water process,Journal of Applied Physics, vol. 97, 2005, p. 121301.
[50] E. Granneman, P. Fischer, D. Pierreux, H. Terhorst, and P. Zagwijn, Batch ALD:Characteristics, comparison with single wafer ALD, and examples, Surface and CoatingsTechnology, vol. 201, Sep. 2007, pp. 8899-8907.
[51] M. Manouchehri and C. Henkel, private communication, 2010.
8/10/2019 Fabrication and Characterization of GFET
48/48
[52] A. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electronphononcoupling, doping and nonadiabatic effects, Solid State Communications, vol. 143, Jul.2007, pp. 47-57.
[53] A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D.Jiang, K. Novoselov, S. Roth, and A. Geim, Raman Spectrum of Graphene and GrapheneLayers, Physical Review Letters, vol. 97, Oct. 2006, pp. 1-4.
[54] Z. Chen and J. Appenzeller, Mobility extraction and quantum capacitance impact in highperformance graphene field-effect transistor devices, 2008 IEEE International ElectronDevices Meeting, Dec. 2008, pp. 1-4.