+ All Categories
Home > Documents > FACTS devices

FACTS devices

Date post: 14-May-2017
Category:
Upload: shimymb
View: 236 times
Download: 4 times
Share this document with a friend
63
Electronically Controlled Compensations and Network Controllers FACTS Devices Dr. M. EL-Shimy 2014 EPM622_523 PS Control - ASU 1
Transcript

Electronically Controlled

Compensations and Network

Controllers

FACTS Devices

Dr. M. EL-Shimy 2014 EPM622_523 PS Control - ASU 1

References

Kundur, P. (1994). Power system stability and control. Tata McGraw-Hill

Education.

Miller, T. J. E., & Concordia, C. (1982). Reactive power control in electric

systems.

Ekanayake, J., Jenkins, N., Liyanage, K., Wu, J., & Yokoyama, A. (2012).

Smart grid: technology and applications. Wiley.

Milano, F. (2010). Power system modelling and scripting. Springer.

Acha, E., Agelidis, V., Anaya, O., & Miller, T. J. E. (2001). Power electronic

control in electrical systems. Newnes.

Mathur, R. M., Varma, R. K., & Varma, R. K. (2002). Thyristor-based FACTS controllers for electrical transmission systems (pp. 147-149).

IEEE.

Dr. M. EL-Shimy 2 2014 EPM622_523 PS Control - ASU

Power flow control by FACTS devices and FACTS

connections (Shunt, series, and hybrid)

Dr. M. EL-Shimy 3 2014 EPM622_523 PS Control - ASU

Dr. M. EL-Shimy 4 2014 EPM622_523 PS Control - ASU

Dr. M. EL-Shimy 5 2014 EPM622_523 PS Control - ASU

Dr. M. EL-Shimy 6 2014 EPM622_523 PS Control - ASU

Static VAR

Compensators (SVCs)

Dr. M. EL-Shimy 2014 EPM622_523 PS Control - ASU 7

SVCs SVCs are static shunt compensators

Ideal SVC

From equivalent circuit point of view an SVC is

constructed of controllable shunt reactor (CSR) and

controllable shunt capacitor (CSC)

Dr. M. EL-Shimy 8 2014 EPM622_523 PS Control - ASU

An ideal SVC can fix the AC voltage a specific

desired value given that the reactive power

capability limits of an ideal SVC are infinite and

the response time is zero

Dr. M. EL-Shimy 9 2014 EPM622_523 PS Control - ASU

Realistic SVCs do not have infinite capacity and

their response time is limited

Dr. M. EL-Shimy 10 2014 EPM622_523 PS Control - ASU

Simplified power system V-I characteristics

Dr. M. EL-Shimy 11 2014 EPM622_523 PS Control - ASU

Dr. M. EL-Shimy 12 2014 EPM622_523 PS Control - ASU

Composite SVC – power system characteristics

System

SVC

Dr. M. EL-Shimy 13 2014 EPM622_523 PS Control - ASU

Effect of switching capacitor

Dr. M. EL-Shimy 14 2014 EPM622_523 PS Control - ASU

Thyristor Controlled Reactors (TCRs)

Dr. M. EL-Shimy 15 2014 EPM622_523 PS Control - ASU

Dr. M. EL-Shimy 16 2014 EPM622_523 PS Control - ASU

Dr. M. EL-Shimy 17 2014 EPM622_523 PS Control - ASU

Dr. M. EL-Shimy 18 2014 EPM622_523 PS Control - ASU

Harmonics

TCRs injects only odd harmonics

For single phase TCR

Dr. M. EL-Shimy 19 2014 EPM622_523 PS Control - ASU

Dr. M. EL-Shimy 20 2014 EPM622_523 PS Control - ASU

Dr. M. EL-Shimy 21 2014 EPM622_523 PS Control - ASU

Three phase TCRs

Delta connected all triple harmonics are

eliminated by the connection

In Y-connection the harmonics are of the same

orders as the single phase TCR

Dr. M. EL-Shimy 22 2014 EPM622_523 PS Control - ASU

Dr. M. EL-Shimy 23 2014 EPM622_523 PS Control - ASU

TCR-FC SVC

Dr. M. EL-Shimy 24 2014 EPM622_523 PS Control - ASU

Dr. M. EL-Shimy 25 2014 EPM622_523 PS Control - ASU

Examples

Dr. M. EL-Shimy 2014 EPM622_523 PS Control - ASU 26

Dr. M. EL-Shimy 27 2014 EPM622_523 PS Control - ASU

Dr. M. EL-Shimy 28 2014 EPM622_523 PS Control - ASU

Dr. M. EL-Shimy 29 2014 EPM622_523 PS Control - ASU

Dr. M. EL-Shimy 30 2014 EPM622_523 PS Control - ASU

Dr. M. EL-Shimy 31 2014 EPM622_523 PS Control - ASU

Dr. M. EL-Shimy 32 2014 EPM622_523 PS Control - ASU

Dr. M. EL-Shimy 33 2014 EPM622_523 PS Control - ASU

Dr. M. EL-Shimy 34 2014 EPM622_523 PS Control - ASU

Report

Dr. M. EL-Shimy 2014 EPM622_523 PS Control - ASU 35

Dr. M. EL-Shimy 36 2014 EPM622_523 PS Control - ASU

SVC Voltage Regulator

Dr. M. EL-Shimy 2014 EPM622_523 PS Control - ASU 37

The SVC voltage regulator processes the

measured system variables and generates an

output signal that is proportional to the desired

reactive-power compensation. Different control variables and transfer functions of the voltage

regulator are used, depending on the specific SVC application.

The measured control variables are compared with a reference signal,

usually Vref , and an error signal is input to the controller transfer

function.

The output of the controller is a per-unit susceptance signal Bref , which

is generated to reduce the error signal to zero in the steady state.

The susceptance signal is subsequently transmitted to the gate pulse–

generation circuit.

Dr. M. EL-Shimy 38 2014 EPM622_523 PS Control - ASU

Implementations of current droop

(slope) in the voltage regulator The SVC current is

explicitly measured and

multiplied by afactor

KSL representing current

droop before feeding as

a signal VSL to the

summing junction.

RR = response rate

Dr. M. EL-Shimy 39 2014 EPM622_523 PS Control - ASU

In certain cases, it may be difficult to faithfully

obtain the current signal.

This occurs when the SVC is operating close to its

floating state, that is, zero MVA reactive power.

The current signal then comprises a

predominant harmonic component and a

fundamental resistive component corresponding

to the real losses in SVC.

Dr. M. EL-Shimy 40 2014 EPM622_523 PS Control - ASU

To overcome this problem, in certain SVC

controllers the reactive power is computed and

fed back instead of using the SVC current.

The reactive-power signal is calculated by

multiplying the phase currents in SVC by a

fundamental-frequency voltage lagging behind

the actual phase voltage by 90o.

Dr. M. EL-Shimy 41 2014 EPM622_523 PS Control - ASU

The other easily

realizable option is the

susceptance-droop

feedback demonstrated

It is implicitly assumed

that the SVC bus voltage

remains close to 1 pu;

thus the SVC current

that is strictly equal to

Bref

Dr. M. EL-Shimy 42 2014 EPM622_523 PS Control - ASU

The previous loop can be

simplified to the gain-

time constant form

Dr. M. EL-Shimy 43 2014 EPM622_523 PS Control - ASU

Dr. M. EL-Shimy 44 2014 EPM622_523 PS Control - ASU

Dr. M. EL-Shimy 45 2014 EPM622_523 PS Control - ASU

Dr. M. EL-Shimy 46 2014 EPM622_523 PS Control - ASU

SVC Applications

Dr. M. EL-Shimy 2014 EPM622_523 PS Control - ASU 47

SVC Applicatio

ns

Increase in steady-state

power-transfer capacity

Enhancement of

transient stability

Augmentation of power-system

damping SVC mitigation

of subsynchro

nous resonance

(SSR)

Prevention of voltage instability

Improvement of

HVDC link performanc

e

Dr. M. EL-Shimy 48 2014 EPM622_523 PS Control - ASU

Increase in steady-state power-transfer

capacity

Dr. M. EL-Shimy 49 2014 EPM622_523 PS Control - ASU

Let the transmission line be compensated at its

midpoint by an ideal SVC.

Dr. M. EL-Shimy 50 2014 EPM622_523 PS Control - ASU

Dr. M. EL-Shimy 51 2014 EPM622_523 PS Control - ASU

Dr. M. EL-Shimy 52 2014 EPM622_523 PS Control - ASU

Enhancement of transient stability

Dr. M. EL-Shimy 53 2014 EPM622_523 PS Control - ASU

STATCOM (or SSC)

Dr. M. EL-Shimy 2014 EPM622_523 PS Control - ASU 54

The STATCOM (or SSC) is a shunt-connected

reactive-power compensation device that is

capable of generating and / or absorbing

reactive power and in which the output can be

varied to control the specific parameters of an

electric power system.

A STATCOM connected to the distribution

circuits is normally called a D-STATCOM.

Dr. M. EL-Shimy 55 2014 EPM622_523 PS Control - ASU

It is in general a solid-state switching converter

capable of generating or absorbing

independently controllable real and

reactive power at its output terminals

when it is fed from an energy source or energy-storage device at its input terminals.

REM: SVCs can not generate or absorb active power

Dr. M. EL-Shimy 56 2014 EPM622_523 PS Control - ASU

STATCOM applications

Dynamic voltage control in transmission and

distribution systems;

Power-oscillation damping in power transmission

systems;

Transient stability enhancement;

Voltage flicker control; and

Control of not only reactive power but also (if

needed) active power in the connected line, requiring

a dc energy source.

Dr. M. EL-Shimy 57 2014 EPM622_523 PS Control - ASU

STATCOM Operation

Dr. M. EL-Shimy 58 2014 EPM622_523 PS Control - ASU

Dr. M. EL-Shimy 59 2014 EPM622_523 PS Control - ASU

V-I Characteristics

Unlike the SVC,

the STATCOM can provide

full capacitive-reactive power

atany system voltage - even as

low as 0.15 pu.

It is also capable of yielding

the full output of capacitive

generation almost

independently of the system

voltage (constant-current

output at lower voltages).

Dr. M. EL-Shimy 60 2014 EPM622_523 PS Control - ASU

D-STATCOM for load compensation

Dr. M. EL-Shimy 61 2014 EPM622_523 PS Control - ASU

Dr. M. EL-Shimy 62 2014 EPM622_523 PS Control - ASU

Dr. M. EL-Shimy 63 2014 EPM622_523 PS Control - ASU


Recommended