+ All Categories
Home > Documents > Fall 2008 EE 410/510: Microfabrication and Semiconductor ...

Fall 2008 EE 410/510: Microfabrication and Semiconductor ...

Date post: 16-Oct-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
24
Fall 2008 EE 410/510: Microfabrication and Semiconductor Processes M W 12:45 PM – 2:20 PM EB 239 Engineering Bldg. Instructor: John D. Williams, Ph.D. Assistant Professor of Electrical and Computer Engineering Associate Director of the Nano and Micro Devices Center University of Alabama in Huntsville 406 Optics Building Huntsville, AL 35899 Phone: (256) 824-2898 Fax: (256) 824-2898 email: [email protected]
Transcript
Page 1: Fall 2008 EE 410/510: Microfabrication and Semiconductor ...

Fall 2008 EE 410/510:Microfabrication and Semiconductor Processes

M W 12:45 PM – 2:20 PMEB 239 Engineering Bldg.

Instructor: John D. Williams, Ph.D.Assistant Professor of Electrical and Computer Engineering

Associate Director of the Nano and Micro Devices CenterUniversity of Alabama in Huntsville

406 Optics BuildingHuntsville, AL 35899Phone: (256) 824-2898

Fax: (256) 824-2898email: [email protected]

Page 2: Fall 2008 EE 410/510: Microfabrication and Semiconductor ...

• Place MEMS die onto dip chip package, wire bond, and vacuum seal

• Issues:– Dip chip packages are plastic– Ceramic dip chip packages are difficult

to seal– Long term metal to metal packaging fails – Difficult to achieve high vacuum for

device performance and maintain it over years

• Solution: Encapsulate the MEMS device on chip then package the MEMS/IC chip using standard technologies

Figures taken from:

High Volume MEMS:Devices, Stability, Packaging

Page 3: Fall 2008 EE 410/510: Microfabrication and Semiconductor ...

DMD commercial Success

• Robust Manufacturing with high yield and single release process allows for fabrication of Texas Instruments DLPs

• Anodic Bond Package to transparent Pyrex 7740 Glass provides sufficient vacuum for DLP response

• Package is sealed over large area with wide bond seam to prevent long term failure

Figures taken from:

Page 4: Fall 2008 EE 410/510: Microfabrication and Semiconductor ...

Motorola / FreescalePressure Sensor

• Single Crystal sensor mounted in injection molded thermoplastic case

• Machined cap• Silicone oil (most tested oil in the

history of mankind)• No direct IC package integration.

Simple wire bonds from the package are sufficient

• Process utilizes 25 years of experience in pressure sensors at Motorola

• Very little work in novel MEMS process development

• No vacuum sealing of MEMS component required

Figures taken from:

Page 5: Fall 2008 EE 410/510: Microfabrication and Semiconductor ...

AMD Accelerometers• First integrated surface microdevice on the market (1993)• Perhaps the largest market device in MEMS today• Package does not include MEMS encapsulation. Entire die is vacuumed hermetically sealed in IC package

Figures taken from:

Page 6: Fall 2008 EE 410/510: Microfabrication and Semiconductor ...

Motorola’s MMA Air Bag Sensor• 3 layer poly process proven over

multiple years of preproduction• Complete IC integration• Packaging still performed at the die

level• No independent MEMS encapsulation

Figures taken from:

Page 7: Fall 2008 EE 410/510: Microfabrication and Semiconductor ...

SOI Based Optical MEMS by Analog Devices

• CNP and silicon bonding of multiple SOI wafers allows for complete IC integration of tilt mirror optics

• SOI integration allows for low voltage electronics and high voltage MEMS mirrors to be integrated directly on the same die

• Independence of MEMS is provided by multilayer device fabrication and bonding

• Encapsulation is still performed at the die level

Figures taken from:

Page 8: Fall 2008 EE 410/510: Microfabrication and Semiconductor ...

Package Protection from Dicing• Dicing Problems with MEMS• MEMS components can be easily

damaged or destroyed by water and particles present during the dicing process

• This is overcome by a number of methods

– Release is often performed after dicing– Motorola and Bosch use glass frit is

used to seal MEMS components prior to dicing then etched away after.

– TI DLPs required a different solution• First mirrors are released• Protective organic film placed on mirrors

allows for normal cleaning processes• Dicing occurs• Singulated chips are mounted on

ceramic packages prior to dry etching organic layers Figures taken from:

Page 9: Fall 2008 EE 410/510: Microfabrication and Semiconductor ...

Packaging MEMS that need Separate Encapsulation

• Conventional MEMS devices are fabricated, packaged, and connected to IC control circuits for commercial use

• The more compatible the fabrication scheme is with IC processing, the easier the device is to integrate

• However, some devices such as the one pictured, are not directly compatible with IC processing at all

• In both cases, MEMS are manufactured, packaged, integrated either on chip or off chip with an IC, then packaged using dip chip technology and released to the market

• Problem: MEMS encapsulation is not simple or easy

– Issues with bond seams– Issues with material compatibility– Issues with vacuum

• Today: DARPA BAA call currently out to generate a low power MEMS based high vacuum device for integration directly into MEMS packages. Cost will probably be $2- 15M per team over 3 years depending on nature of team and requirements for industrial success Figures taken from:

• The Big Question: How does one get the MEMS component sealed from the remainder of the IC and device package while still providing sufficient interaction with the sensing environment?????

Page 10: Fall 2008 EE 410/510: Microfabrication and Semiconductor ...

Various Bonding Mechanisms

Figures taken from:

Page 11: Fall 2008 EE 410/510: Microfabrication and Semiconductor ...

Permeability of Materials for Packaging to Water

• Although some polymers such as BCB are better than others, packaging with polymers does not provide a long term solution for commercial devices

• Glasses provide relatively long term seals if the width of the bond seam is sufficient.

– bond seams are 0.25 -1mm wide• Metals provide best long term

hermiticity– Al-to nitride– Au eutectic:

• 0.08 mm bond seam for 320oC• >0.25 mm bond seam for Temp

below 250 um– AuIn eutectic: >0.3 mm bond seam

Page 12: Fall 2008 EE 410/510: Microfabrication and Semiconductor ...

BCB Polymer bonding• Advantages

– Low bond temp– No metals– Elastic (less worry about CTE

mismatches)• Disadvantages

– Long term permeability of water– High vapor pressure– Poor mechanical properties

Ideal upper limit: 1*10-9 mbar l/s Sealant used was Si3N4

Page 13: Fall 2008 EE 410/510: Microfabrication and Semiconductor ...

Gold Compression Bonding• Au/Au eutectic: • 0.08 mm bond seam for 320oC• >0.25 mm bond seam for Temp at

220oC

S.M. Spearing, C.H.Tau, M.A.Schmidt, “Gold Thermocompression Bonding,” AMMNS 2008

K. Entesari, G. Rebeiz, “Allow-loss microstrip Surface Mount K-band Package,” 36 European Microwave Conference, 2006.

Page 14: Fall 2008 EE 410/510: Microfabrication and Semiconductor ...

Anodic Bonding• Bonds alkali glass such as Pyrex 7740

to Silicon• Best performance when CTE of glass

and substrate match• Stresses induced by thermal strains

can fracture device• Reasonably hermetic• Electrically insulated• Common process conditions

– 200-300 oC– 200-1000 V (400-600 V is usually

sufficient for 200 um seals)

Figures taken from:

Page 15: Fall 2008 EE 410/510: Microfabrication and Semiconductor ...

Silicon Fusion Bonding• Bonding performed in EV520 at 600oC• First bonded for 5 hrs

– Razor used to test bond strength at side and base of wafer

• Second bond for 12 hrs– IR transmission measurements made– About 5 or 6 measurable voids in the

wafer stack– Only 1 over the devices near the

center of the wafer• Next Steps:

– Anneal in furnace for at least 2 hrs at 1100oC

– Perform CSAM measurements– Dice stack

• Issues: voids and stress cracks in complex shapes

• No long term testing of hermeticity published to date

Void/ Newton fringe

Cracks in the pattern

JDW/SNLDARPA-NAV

Page 16: Fall 2008 EE 410/510: Microfabrication and Semiconductor ...

PSG Packaging• Process developed in early 90’s• Unable to meet long term cycling

demands• Very difficult to create high vacuum

seal in PSG packages

Figures taken from:

Page 17: Fall 2008 EE 410/510: Microfabrication and Semiconductor ...

Aluminum Packaging• High temperature processing of

Aluminum films on SiO2 or Si3N4 yields hermetic seam between structures

• Bond strength is estimated to be 270 MPA which is stronger than the glass fracture strength

Figures taken from:

Page 18: Fall 2008 EE 410/510: Microfabrication and Semiconductor ...

Al-to-Si3N4 RTP bonding

Figures taken from:

Page 19: Fall 2008 EE 410/510: Microfabrication and Semiconductor ...

Combining PSG and Glass-Al-Poly

Figures taken from:

Page 20: Fall 2008 EE 410/510: Microfabrication and Semiconductor ...

Resonator Performance in MEMS Packaging

Figures taken from:

Page 21: Fall 2008 EE 410/510: Microfabrication and Semiconductor ...

Previous Process uses Localized Polysilicon Heater to Create Bond

Figures taken from:

Page 22: Fall 2008 EE 410/510: Microfabrication and Semiconductor ...

Failure of Rapid Thermal Processes Packages

Figures taken from:

• Predictions of the mean and standard deviation time to failure (MTTF)

• For worst case scenario 4 in 31 samples failed by the end of the test

– 90% chance based on worst case that the package will fail in 0.57 years

Page 23: Fall 2008 EE 410/510: Microfabrication and Semiconductor ...

Accelerated Lifetime Testing

Figures taken from:

Page 24: Fall 2008 EE 410/510: Microfabrication and Semiconductor ...

Example of Failed Package• In all bond processes, localized

stresses lead to cracks and defects• The size of these defect regions

varies based on the process capability of the bond scheme and the process development team

• Here one can see how stresses might originate and the type of failure that occurs over time

Figures taken from:


Recommended