+ All Categories
Home > Documents > FALL 2019 CM 3110 PART II COMSOL INSTRUCTIONS AND...

FALL 2019 CM 3110 PART II COMSOL INSTRUCTIONS AND...

Date post: 17-Mar-2020
Category:
Upload: others
View: 0 times
Download: 1 times
Share this document with a friend
3
1 11‐Oct‐19 CM3110_COMSOL Project_Part 2 v2.docx FALL 2019 CM 3110 PART II COMSOL INSTRUCTIONS AND OBJECTIVES Utkarsh Chaudhari and Professor Faith Morrison Department of Chemical Engineering Michigan Technological University, Houghton, MI USA A Herschel‐style Venturi tube is used to measure flowrate continuously during flow through a pipe; the device is sketched in Figure 1 (reference: Perry’s Handbook of Chemical Engineering, 7 th edition). The literature reports recommend that the angle at entrance cone should be within the range of 21± 2°, while the angle at exit cone should be between 5‐15°. Objectives and Questions to be Answered: For Part 2 of the 2019 CM3110 COMSOL project, investigate the effect of geometry (the two angles, leaving all other aspects fixed) on the velocity and pressure fields in a Herschel Venturi tube. Based on your results, what is your assessment of the literature’s recommendations about the values for the entrance‐cone and exit‐cone angles? How effective is your simulation in mimicking real‐world conditions? Substantiate your answer to this question. What can be learned from an unsteady state simulation? How does the flow develop with time when viewed as an unsteady state simulation? Please follow these guidelines for your simulations. 1. Simulate steady velocity and pressure distribution profiles for a fully developed flow entering a 2‐D axisymmetric system Herschel‐style Venturi tube. 2. Perform at least one unsteady state simulation, which you can view with flow animation. The animation will show you how the flow changes with time as it develops. 3. For the fluid, use glycerin. See the hints below to obtain what values Comsol uses for density and viscosity of glycerin. 4. Set up the geometry such that in Comsol the flow is vertical, with the flow entering from the top and leaving from bottom (see Figure 2); neglect gravity. The device dimension at the narrowest part is the throat diameter ; this is a key length. The entry length ( in Figure 2) should be 2 to 3 times ; the exit length in Figure 2) should be longer, maybe 5 to 10 times , to allow the flow to recover from the flow rearrangements caused by the venturi contraction. Use realistic lengths for your geometry. 5. The outlet gauge pressure is zero. If the exit boundary conditions affect your flow, your flow domain is too short. 6. For your first simulation, choose 23 and 15 . Perform simulations of at least two other geometries, varying one or both angles but leaving all other aspects the same. Think ahead to what kinds of comparisons you will want to make in your report. 7. The standard mesh is very coarse; hit remesh once to get a more refined mesh. Use a very refined mesh to get better results. 8. Investigate the effect of flow rate through the Reynolds number, where for this problem the Reynolds number is defined with respect to the flow through the throat ( ). When varying
Transcript
Page 1: FALL 2019 CM 3110 PART II COMSOL INSTRUCTIONS AND …fmorriso/cm310/Comsol/2019/2019ComsolInstructionsPartII.pdf1 11‐Oct‐19 CM3110_COMSOL Project_Part 2 v2.docx FALL 2019 CM 3110

1 11‐Oct‐19  CM3110_COMSOL Project_Part 2 v2.docx 

FALL 2019 CM 3110  

PART II COMSOL INSTRUCTIONS AND OBJECTIVES 

Utkarsh Chaudhari and Professor Faith Morrison Department of Chemical Engineering Michigan Technological University, Houghton, MI USA  

A Herschel‐style Venturi tube is used to measure flowrate continuously during flow through a pipe; the 

device is sketched in Figure 1 (reference:  Perry’s Handbook of Chemical Engineering, 7th edition). The 

literature reports recommend that the angle at entrance cone  𝛼  should be within the range of 21± 2°, 

while the angle at exit cone  𝛼  should be between 5‐15°.  

Objectives and Questions to be Answered: 

For Part 2 of the 2019 CM3110 COMSOL project, investigate the effect of geometry (the two angles, 

leaving all other aspects fixed) on the velocity and pressure fields in a Herschel Venturi tube.  Based on 

your results, what is your assessment of the literature’s recommendations about the values for the 

entrance‐cone and exit‐cone angles?  How effective is your simulation in mimicking real‐world 

conditions?  Substantiate your answer to this question.  What can be learned from an unsteady state 

simulation? How does the flow develop with time when viewed as an unsteady state simulation? 

Please follow these guidelines for your simulations. 

1. Simulate steady velocity and pressure distribution profiles for a fully developed flow entering a 

2‐D axisymmetric system Herschel‐style Venturi tube. 

2. Perform at least one unsteady state simulation, which you can view with flow animation.  The 

animation will show you how the flow changes with time as it develops.  

3. For the fluid, use glycerin.  See the hints below to obtain what values Comsol uses for density 

and viscosity of glycerin. 

4. Set up the geometry such that in Comsol the flow is vertical, with the flow entering from the top 

and leaving from bottom (see Figure 2); neglect gravity.  The device dimension at the narrowest 

part is the throat diameter 𝐷 ; this is a key length.  The entry length (𝑎 in Figure 2) should be 2 to 3 times 𝐷 ; the exit length  𝑐 in Figure 2) should be longer, maybe 5 to 10 times 𝐷 , to 

allow the flow to recover from the flow rearrangements caused by the venturi contraction.  Use 

realistic lengths for your geometry.   

5. The outlet gauge pressure is zero.  If the exit boundary conditions affect your flow, your flow 

domain is too short. 

6. For your first simulation, choose 𝛼 23  and 𝛼 15 .  Perform simulations of at least two 

other geometries, varying one or both angles but leaving all other aspects the same.  Think 

ahead to what kinds of comparisons you will want to make in your report. 

7. The standard mesh is very coarse; hit remesh once to get a more refined mesh.  Use a very 

refined mesh to get better results. 

8. Investigate the effect of flow rate through the Reynolds number, where for this problem the 

Reynolds number is defined with respect to the flow through the throat (𝐷 ).  When varying 

Page 2: FALL 2019 CM 3110 PART II COMSOL INSTRUCTIONS AND …fmorriso/cm310/Comsol/2019/2019ComsolInstructionsPartII.pdf1 11‐Oct‐19 CM3110_COMSOL Project_Part 2 v2.docx FALL 2019 CM 3110

2 11‐Oct‐19  CM3110_COMSOL Project_Part 2 v2.docx 

Reynolds number, space them logarithmically; this can be approximated by using values that are 

decade multiples 1, 2, 5 (e.g. 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, etc).  What are real‐world Reynolds 

numbers for the flow we are simulating? 

Please follow these guidelines for your report. 

1. Whenever possible, organize your results in a well designed table.  

2. Provide representative plots that help the reader understand what you observed (and what 

point you are making in the report). 

3. Consider how you would have addressed your objectives/questions in the absence of the 

Comsol software.  How would you have analyzed this problem? If you can do a hand 

calculation, that would be good to do and to use when assessing your results.  Explain any 

hand calculation (and include in an appendix; it does not have to be typed, just readable). 

Note the following resources: 

1. Hint to making hand solution to Part I match Comsol results (so that you get all the points). http://pages.mtu.edu/~fmorriso/cm310/Comsol/Comsol_hint1.html 

2. Dr. Morrison's handout on calculating forces on a surface in Comsol (Comsol instructions at the end of the discussion). http://pages.mtu.edu/~fmorriso/cm310/Comsol/CalculatingFluidForcesonSurfacesinComsol5_2

015.pdf 

3. Hint for getting the values Comsol is using for density and viscosity (so that you use the same values that Comsol is using). http://pages.mtu.edu/~fmorriso/cm310/email_09Dec2014a.html 

4. Hit for calculating wall drag. http://pages.mtu.edu/~fmorriso/cm310/2014ComsolPartI_calcDrag.pdf 

 

Reference 

1. Perry, Robert H, and Don W. Green. Perry's Chemical Engineers' Handbook, 7th Edition, New 

York: McGraw‐Hill, 2008. Print. 

 

Page 3: FALL 2019 CM 3110 PART II COMSOL INSTRUCTIONS AND …fmorriso/cm310/Comsol/2019/2019ComsolInstructionsPartII.pdf1 11‐Oct‐19 CM3110_COMSOL Project_Part 2 v2.docx FALL 2019 CM 3110

3 11‐Oct‐19  CM3110_COMSOL Project_Part 2 v2.docx 

 

 

Figure 1. Herschel venturi tube [1]. 

 

Figure 2. Simplified diagram of Herschel venturi tube. 


Recommended