+ All Categories
Home > Documents > Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes...

Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes...

Date post: 08-Aug-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
55
1 ECE 6382 Green’s Functions Notes are from D. R. Wilton, Dept. of ECE David R. Jackson Fall 2019 Notes 19
Transcript
Page 1: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

1

ECE 6382

Green’s Functions

Notes are from D. R. Wilton, Dept. of ECE

David R. Jackson

Fall 2019

Notes 19

Page 2: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Green’s Functions

2

Green's Mill in Sneinton (Nottingham), England, the mill owned by Green's father. The mill was renovated in 1986 and is now a science centre.

George Green (1793-1841)

The Green's function method is a powerful and systematic method for determining a solution to a problem with a known forcing function on the RHS.

The Green’s function is the solution to a “point” or “impulse” forcing function.

It is similar to the idea of an “impulse response” in circuit theory.

Page 3: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Green’s Functions

3

Consider the following second-order linear differential equation:

( ) ( ) ( ) ( ) ( )1 ( )d dP x u x Q x u x f xw x dx dx

− + =

u f=or

( ) ( ) ( )1 d dP x Q xw x dx dx

≡− +

where

( f is a “forcing” function.)

Page 4: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Green’s Functions

4

Problem to be solved:

u f=

( ) ( )0, 0 ( )u a u b= = Dirichlet BCs

( ) ( )0, 0 ( )u a u b′ ′= = Neuman BCs

or

Page 5: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Green’s Functions (cont.)

5

We can think of the forcing function f(x) as being broken into many small rectangular pieces.

Using superposition, we add up the solution from each small piece.

Each small piece can be represented as a delta function in the limit as the width approaches zero.

Note:The ∆(x) function becomes a δ (x) function in

the limit as ∆x → 0.

( ) ( )1 , / 2, / 2

0,

x x xx x

∈ ∆ ∆∆ ≡ ∆ otherwise

( ) ( ) ( )P x x x= ∆ ∆1.0 x∆

ix

( )( ) ( )

( )

( )i i

i i

f x P x x

f x x x x

= ∆ ∆ −

x

( )f x

a

x∆ b

( )f x

Page 6: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Green’s Functions (cont.)

6

( ) ( ) ( ) ( ) ( )1 1

, ,N N

i i i ii i

u x f x P x x f x x G x x∆ ∆= =

≈ = ∆∑ ∑

( ) ( ), i i iG x x x x x∆ ∆≡ −solution from single pulse centered at

From superposition:

( ) ( ) ( ) ( )1

, ,bN

i ii a

f x x G x x f x G x x dx∆=

′ ′ ′∆ →∑ ∫

( ) ( ), i i iPP x x x x x∆ ≡ −solution from single pulse centered at

0x∆ →Let

( ) ( ), G x x x x xδ′ ′ ′≡ −solution from centered at

Page 7: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Green’s Functions (cont.)

7

The solution to the original differential equation (from superposition) is then

( ) ( ) ( ),b

a

u x f x G x x dx′ ′ ′= ∫

( ) ( ),G x x x xδ′ ′= −

The Green’s function G(x, x′) is defined as the solution with adelta-function at x = x′ for the RHS.

xx′

( )G x,x′

a a

Page 8: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Green’s Functions (cont.)

8

There are two general methods for constructing Green’s functions.

Method 1:Find the solution to the homogenous equation to the left and right of the delta function, and then enforce boundary conditions at the location of the delta function.

( ) ( )( )

1

2

,,

,Au x x x

G x xBu x x x

′ ≤′ = ′≥

The Green’s function is assumed to be continuous. The derivative of the Green’s function is allowed to be discontinuous.

The functions u1 and u2 are solutions of the homogenous equation.

xx′

( )2Bu x( )1Au x

a b

Page 9: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Green’s Functions (cont.)

9

Method 2:Use the method of eigenfunction expansion.

n n nψ λψ=

( ) ( ), n nn

G x x a xψ′ =∑

Eigenvalue problem:

We then have:

( ) ( )0, 0 ( )a bψ ψ= = Dirichlet BCs

( ) ( )0, 0 ( )a bψ ψ′ ′= = Neuman BCsor

Note:The eigenfunctions

are orthogonal.

Page 10: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Green’s Functions (cont.)

10

Method 1

( ) ( ) ( )

( )( ) ( )

0 0

0

1lim lim

( , ) ( , )1 lim ( ) 1

x x

x x

x

x

d dGG dx P x Q x G dxw x dx dx

P x dG x x P x dG x xx x dx

w x dx dx

ε ε

ε εε ε

ε

εε

δ

′ ′+ +

→ →′ ′− −

+ + − − ′+

→′−

= − + ′ ′ ′ ′ ′ ′

′ = − − = − = ′

∫ ∫

( ) ( ),G x x x xδ′ ′= −

( ) ( ) ( )( )2 1

w xBu x Au x

P x′

′ ′ ′ ′− = −′

( ) ( )( )

1

2

,,

,Au x x x

G x xBu x x x

′ ≤′ = ′≥

Integrate both sides over the delta function:

( )( )

( , ) ( , ) w xdG x x dG x xdx dx P x

+ − ′′ ′ ′ ′ − = − ′

xx′

( )2Bu x( )1Au x

a b

Page 11: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Green’s Functions (cont.)

11

Method 1 (cont.)

Also, we have (from continuity of the Green’s function):

( ) ( )1 2Au x Bu x′ ′=

( ) ( )( )

1

2

,,

,Au x x x

G x xBu x x x

′ ≤′ = ′≥

xx′

( )2Bu x( )1Au x

a b

Page 12: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Green’s Functions (cont.)

12

Method 1 (cont.)

We then have:

( ) ( )( ) ( )

( )( )1 2

1 2 0

w xu x u x A

P xu x u x B

′ ′ ′ ′ ′ −− ′= ′ ′−

( )( )

( ) ( )( )

( )2 1

1 2 1 2

,[ , ] [ , ]

w x u x w x u xA B

P x W u u P x W u u ′ ′ ′ ′

= − = − ′ ′

( )1 2 1 2 1 2[ , ] ( ) ( ) ( ) ( )W u u W x u x u x u x u x′ ′ ′ ′ ′ ′ ′= = − (Wronskian)

where

xx′

( )2Bu x( )1Au x

a b

( )W x′∆ = = −determinantNote :

Page 13: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Green’s Functions (cont.)

13

Method 1 (cont.)

We then have:

( )

( )( )

( ) ( )( )

( )( )

( ) ( )( )

2 1

1 2

,

,

,

w x u x u xx x

P x W xG x x

w x u x u xx x

P x W x

′ ′′− < ′ ′ ′ =

′ ′ ′− > ′ ′

xx′

( )2Bu x( )1Au x

a b

Page 14: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Green’s Functions (cont.)

14

Method 2

xa bx′

n=1n=2

n=3

n=4

The Green’s function is expanded as a series of eigenfunctions.

n n nψ λψ=

( ) ( ), n nn

G x x a xψ′ = ∑

where

The eigenfunctions corresponding to distinct eigenvalues are orthogonal (from Sturm-Liouville theory).

Page 15: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Green’s Functions (cont.)

15

Method 2 (cont.)

xa bx′

n=1n=2

n=3

n=4

( ) ( ),G x x x xδ′ ′= −

( ) ( )n nn

a x x xψ δ ′= −∑

( ) ( )n nn

a x x xψ δ ′= −∑

( ) ( )n n nn

a x x xλ ψ δ ′= −∑

( ) ( ) ( ) ( ), ,n n n m mn

a x x x x xλ ψ ψ δ ψ′= −∑

( ) ( ) ( ) ( )*,n n n m mn

a x x w x xλ ψ ψ ψ′ ′=∑

( ) ( ) ( ) ( )*,m m m m ma x x w x xλ ψ ψ ψ′ ′=

Orthogonality

Delta-function property

Multiply both sides by ψm*(x) w(x) and then integrate from a to b.

Page 16: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Green’s Functions (cont.)

16

Method 2 (cont.)

xa bx′

n=1n=2

n=3

n=4

( ) ( )( ) ( )

*m

mm m m

w x xa

x xψ

λ ψ ψ′ ′

=

Therefore, we have

( ) ( ) ( )( ) ( )

( )*

, nn

n n n n

w x xG x x x

x xψ

ψλ ψ ψ

′ ′′ =

Hence

( ) ( ) ( ) ( )2b

n n na

x x x w x dxψ ψ ψ≡ ∫Note :

Page 17: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Application: Transmission Line

17

A short-circuited transmission line with a distributed current source:

The distributed current source is a surface current.

( )I z

+- ( )V z

( )dsI z0z = z h=

( ) ( ) [ ]A/mds sxI z J z=

x

z

( ) ( ) 1Ads sI z z z Iδ ′= − ⇒ =

Green’s function:

Page 18: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

18

An illustration of the Green’s function:

Application: Transmission Line (cont.)

( ) ( ) ( )0

,h

dsV z I z G z z dz′ ′ ′= ∫

The total voltage due to the distributed current source is then

+- ( ) ( ),V z G z z′=

z z′=

( )I z0z = z h=

z z′=1AsI =

Page 19: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

19

Take the derivative of the first and substitute from the second:

ds

dV j LIdzdI I j CVdz

ω

ω

= −

= −

Telegrapher’s equations for a distributed current source:

(Please see the Appendix.)

Application: Transmission Line (cont.)

( )2

2ds

d V j L I j CVdz

ω ω= − −

Note: j is used instead of i here.

L = inductance/meterC = capacitance/meter

Page 20: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

20

Hence

zk LCω=where

Application: Transmission Line (cont.)

( )2

22

dz s

d V k V j L Idz

ω+ = −

( ) ( ) ( )2

22

1 dz s

d V zk V z I z

j L dzω

+ = −

or

( ) ( ) ( )2

22

,1 ,zd G z z

k G z z z zj L dz

δω

′ ′ ′+ = − −

Therefore:

Page 21: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

21

Application: Transmission Line (cont.)

Compare with:

( ) ( ) ( ) ( ) ( )1 ( )d dP z u z Q z u z f zw z dz dz

− + =

( ) ( ) ( )2

22

1 dz s

d V zk V z I z

j L dzω

+ = −

Therefore:

( ) ( ) ( ) 2, 1, zw z j L P z Q z kω= = =

Note: The self-adjoint property required the operator to be real, which is not the case here since w(z) is not real. However, we can multiply both sides of the equation by j to make the operator real, and then divide the final answer by jat the end. This process does not affect the final result, so it is not done here.

Page 22: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

22

Application: Transmission Line (cont.)

( ) ( ) ( )1 1 sin zV z Au z A k z= =

( ) ( ) ( )( )2 2 sin zV z Bu z B k z h= = −

The general solution of the homogeneous equation is:

Method 1

+- ( ) ( ),V z G z z′=

z z′=

( )I z0z = z h=

1A

22

2 0zd V k Vdz

+ =

Homogeneous equation:

Page 23: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

23

Application: Transmission Line (cont.)

( )

( )( )

( ) ( )( )

( )( )

( ) ( )( )

2 1

1 2

,

,

,

w z u z u zz z

P z W zG z z

w z u z u zz z

P z W z

′ ′′− < ′ ′ ′ =

′ ′ ′− > ′ ′

The Green’s function is:

( ) ( )1 sin zu z k z=

( ) ( )( )2 sin zu z k z h= −

+- ( ) ( ),V z G z z′=

z z′=

( )I z0z = z h=

1A

Page 24: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

24

Application: Transmission Line (cont.)

The final form of the Green’s function is:

( )( ) ( )( ) ( )

( )

( ) ( ) ( )( )( )

sin sin,

,sin sin

,

z z

z z

k z h k zj L z z

W zG z z

k z k z hj L z z

W z

ω

ω

′−′− <

′′ = ′ − ′− > ′

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )1 2[ , ] sin cos cos sin sinz z z z z z zW z W u z u z k k z k z h k z k z h k k h ′ ′ ′ ′ ′ ′ ′= = − − − =

where

+- ( ) ( ),V z G z z′=

z z′=

( )I z0z = z h=

1A

Page 25: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

25

Application: Transmission Line (cont.)

The eigenvalue problem is

Method 2

+- ( ) ( ),V z G z z′=

z z′=

( )I z0z = z h=

1A

22

21

zd k

j L dzψ ψ λψ

ω

− + =

22

2ddzψ λ ψ′= − ( )2 2

zj L kλ ω λ′ ≡ +

This may be written as

where

Note: A minus sign in introduced in the

eigenvalue problem for convenience.

Page 26: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

26

Application: Transmission Line (cont.)We then have:

( ) ( )2

22 , 0 0d h

dzψ λ ψ ψ ψ′= − = =

( ) ( )sinn

n

z znh

ψ λπλ

′=

′ =

The solution is:

( ) ( ) ( ) ( ) ( ) ( ) ( )* 2

0

sin2

b h

n n n na

n z hz z z z w z dz j L dz j Lhπψ ψ ψ ψ ω ω = = =

∫ ∫Note :

( )2

2

sin

1

n

n z

n zzh

n kj L h

πψ

πλω

=

= −

( )2 21n n zk

j Lλ λ

ω′= −Recall :

Page 27: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

27

Application: Transmission Line (cont.)

( ) ( ) ( )( ) ( )

( )*

, nn

n n n n

w z zG z z z

z zψ

ψλ ψ ψ

′ ′′ =

We then have:

where

( )2

2 2 21 1n n z z

nk kj L j L h

πλ λω ω

′= − = −

( ) sinnn zz

hπψ =

( ) ( ) ( )2n nhz z j Lψ ψ ω=

( )w z j Lω′ =

Page 28: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

28

Application: Transmission Line (cont.)

The final solution is then:

( ) ( ) 21 2

sin2, sin

nz

n zn zhG z z j L

h hnkh

ππω

π

=

′ ′ = − −

Page 29: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

29

Summary

Application: Transmission Line (cont.)

( ) ( ) 21 2

sin2, sin

nz

n zn zhG z z j L

h hnkh

ππω

π

=

′ ′ = − −

( )( ) ( )( ) ( )

( )

( ) ( ) ( )( )( )

sin sin,

sin,

sin sin,

sin

z z

z z

z z

z z

k z h k zj L z z

k k hG z z

k z k z hj L z z

k k h

ω

ω

′−′− <

′ = ′ − ′− >

zk LCω=+- ( ) ( ),V z G z z′=

z z′=

( )I z0z = z h=

1A

Page 30: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

30

Application: Transmission Line (cont.)

Other possible Green’s functions for the transmission line:

We solve for the Green’s function that gives us the current I(z)due to the 1A parallel current source.

We solve for the Green’s function giving the voltage due a 1V series voltage source instead of a 1A parallel current source.

We solve for the Green’s function giving the current to due a 1V series voltage source instead of a 1A parallel current source.

Page 31: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Cavity Model for Patch Antenna

Next we use the cavity model and the method of eigenfunction expansion to solve for the input impedance of the rectangular

microstrip patch antenna.

31

xL

z

h rε

Page 32: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Cavity Model

0 0

0 0

e

e

x x Ly y W= + ∆

= + ∆

Note: ∆L is often chosen from Hammerstad’s formula∆W is often chosen from Wheeler’s formula

32

The coordinates (x0, y0) are measured from the corner of the physical patch.

Accounting for fringing:

0 0( , )e ex yPMC

eL

eW

x

y

PEC

22

e

e

L L LW W W

= + ∆= + ∆

( )

( )

0.3 0.264/ 0.412

0.258 0.8

effr

effr

WhL h

Wh

ε

ε

+ + ∆ = − +

ln 4/W hπ

∆ =

Page 33: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Cavity Model (cont.)

eff0e rck k ε=Let

( )effeff1rc r jlε ε= −

eff eff1 1 1 1 1tan

d c sp sw

lQ Q Q Q Q

δ= = = + + +

Assume no z variation (the probe current is constant in the z direction.)

33

0 0( , )e ex yPMC

eL

eW

x

y

PEC

1tan ddQ

δ =Note :

Page 34: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Cavity Model (cont.)We first derive the Helmholtz equation for Ez.

Substituting Faraday’s law into Ampere’s law, we have

efficH J j E

E j Hωε

ωµ∇× = +∇× = −

( )

( )( )

eff

2

2 2

2 2

1 ic

ie

ie

ie

E J j Ej

E j J k E

E E j J k E

E k E j J

ωεωµ

ωµ

ωµ

ωµ

− ∇× ∇× = +

⇒∇× ∇× = − +

⇒∇ ∇⋅ −∇ = − +

⇒∇ + =34

Page 35: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Cavity Model (cont.)Hence

Denote

2 2 iz e z zE k E j Jωµ∇ + =

( , ) ( , )zx y E x yψ =

( , ) ( , )izf x y j J x yωµ=

Then

35

2 2 ( , )ek f x yψ ψ∇ + =

Page 36: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Introduce eigenfunctions of the 2-D Laplace operator:

For rectangular patch we have, from separation of variables,

( , )mn x yψ2 2( , ) ( , )mn mn mnx y x yψ λ ψ∇ = −

0mnCn

ψ∂=

2 22

( , ) cos cosmne e

mne e

m x n yx yL W

m nL W

π πψ

π πλ

=

= +

36

2mnλ− = eigenvalue

Cavity Model (cont.)

Note:The eigenvalues are

real and the eigenvalues are

orthogonal.

Page 37: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Cavity Model (cont.)Assume an “eigenfunction expansion”:

Hence

,( , ) ( , )mn mn

m nx y A x yψ ψ=∑

2 2 ( , )ek f x yψ ψ∇ + =

2 2

, ,( , )mn mn e mn mn

m n m nA k A f x yψ ψ∇ + =∑ ∑

Using the properties of the eigenfunctions, we have

( )2 2

,( , ) ( , )mn e mn mn

m nA k x y f x yλ ψ− =∑

This must satisfy

37

( ), 0,1, 2m n =

Page 38: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Cavity Model (cont.)Multiply the previous equation by and integrate.

Note that the eigenfunctions are orthogonal, so that

Denote

( , )m n x yψ ′ ′

*( , ) ( , ) 0 ( , ) ( , )mn m nS

x y x y dS m n m nψ ψ ′ ′ ′ ′= ≠∫

2, ( , )mn mn mnS

x y dSψ ψ ψ< > = ∫

( )2 2 , ,mn e mn mn mn mnA k fλ ψ ψ ψ− < > = < >

We then have

38

Note: The eigenfunctions are real, so we can drop the conjugate here.

Page 39: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Cavity Model (cont.)Hence, we have

Using

2 2

, 1,

mnmn

mn mn e mn

fAk

ψψ ψ λ

< >= < > −

2 2

, 1,

iz mn

mnmn mn e mn

JA jk

ψωµψ ψ λ

< >= < > −

The field inside the patch cavity is then given by

,( , ) ( , )z mn mn

m nE x y A x yψ=∑

39

( , ) ( , )izf x y j J x yωµ=

Page 40: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Cavity Model (cont.)

2

2

2

2

*

*

*

,

*

,

2

,

1 ( , )21 ( , )212

1 ,2

,1

1

12

,

,

,

iin z z

V

iz z

S

imn z

m nS

imn z

m n

imn z

m n mn mn

mn

imn z

mn

e

mn e

m

mn

n

A

P E x y J dV

h E x y J dS

h J dS

h J

Jh j

k

Jjk

λ

ψω

ψ

ψ

ψωµ

ψ

µψ ψ λ

ψ

< >

= −

= −

= −

= − < >

< > = −

< >

< >

∑∫

To calculate the input impedance, we first calculate the complex power going into the patch as

40

The integral is over the surface of the probe current.

Page 41: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Cavity Model (cont.)

Also, from circuit theory,

212in in inP Z I=

so

22 in

inin

PZI

=

41

2

2 2 2,

,1 1,

imn z

inm n mn mn e mnin

JZ j h

kI

ψωµ

ψ ψ λ

< > = − < > − ∑

Hence we have

, 0 0m n m n

∞ ∞

= =

=∑ ∑ ∑

Page 42: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Cavity Model (cont.)For the rectangular patch:

where

2 22

eff0

cos cosmne e

mne e

e rc

m x n yL W

m nL W

k k

π πψ

π πλ

ε

=

= +

=

( )effeff1rc r jlε ε= −

2 2

0 0

, cos cose eL W

mn mne e

m x n ydx dyL Wπ πψ ψ

=

∫ ∫

42

We need:

Page 43: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Cavity Model (cont.)

so

( )( )0 0, 1 12 2

e emn mn m n

W Lψ ψ δ δ = + +

0

1, 00, 0m

mm

δ=

= ≠

43

Page 44: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Cavity Model (cont.)

We also need . , imn zJψ

44

To calculate this, assume a strip model for the probe feed:

0 0( , )e ex y

eL

eW

x

y

0 0( , )e ex ypWpa

0 0( , )e ex y

Page 45: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

( )( )

0 022

0

, ,2 2

2

4

p pe einsz

p e

p p

W WIJ y y y yW

y y

W a

π

= ∈ − +

− −

=

For a “Maxwell” strip current assumption, we have:

Note: The total probe current is Iin.

45

0 0( , )e ex ypW

Cavity Model (cont.)

Page 46: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

( ) 0 0

32

, ,2 2

4.482

p pe einsz

p

p p p

W WIJ y y y yW

W a e a

= ∈ − +

=

For a uniform strip current assumption, we have:

Note: The total probe current is Iin.

46

0 0( , )e ex ypW

Cavity Model (cont.)

Page 47: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

0

0

20

2

20

0

2

0 0 0

, cos cos

cos cos '

cos cos cos sin

pe

pe

p

p

Wy

ei in

mn zW e e p

y

We

ein

Wp e e

e e ein

p e e e e

m x In yJ dyL W W

I m x n y y dyW L W

I m x n y n yn yW L W W W

π πψ

π π

π π ππ

+

+

=

′ = +

′= −

2

2

0 0

sin

cos cos sinc2

p

p

W

W e

e epin

pp e e e

n y dyW

n WI m x n y WW L W W

π

ππ π

+

′′

=

Assume a uniform strip current model:

0ey y y′= +

Use

Integrates to zero

47

Cavity Model (cont.)

Page 48: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Uniform Model (cont.)

Hence

0 0, cos cos sinc2

e epi

mn z ine e e

n Wm x n yJ IL W W

ππ πψ

=

sinc2

p

e

n WWπ

Note: It is the term that causes the series for Zin to converge.

Note:We cannot assume a probe of zero radius,

or else the series will not converge – the input reactance will be infinite.

48

Page 49: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Cavity Model (cont.)Summary

2

2 2 20 0

,1 1,

imn z

inm n mn mn e mnin

JZ j h

kI

ψωµ

ψ ψ λ

∞ ∞

= =

< > = − < > − ∑∑

49

( )( )0 0, 1 12 2

e emn mn m n

W Lψ ψ δ δ = + +

0 0, cos cos sinc2

e epi

mn z ine e e

n Wm x n yJ IL W W

ππ πψ

=

eff0e rck k ε= ( )eff

eff1rc r jlε ε= −

where

2 2

mne e

m nL Wπ πλ

= +

eff 1/l Q=

32 4.482p p pW a e a=

Page 50: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Cavity Model (cont.)CAD Formulas for Q Factors*

50

( )effeff1rc r jlε ε= − eff eff

1 1 1 1 1tand c sp sw

lQ Q Q Q Q

δ= = = + + +

1tand

d

=

where

0 0ave

( )2c

s

k hQR

η =

( )ave patch ground / 2s s sR R R= +

1 0

3 116 /

ersp

e

LQpc W hε

λ

hed

hed1r

sw spr

eQ Qe

= − *Derived in ECE 6345.

1sR

σδ=

2δωµσ

=

Page 51: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Cavity Model (cont.)CAD Formulas for Q Factors (cont.)

51

( )

hed3

01

1

3 1 11 14

r

r

e

k hc

πε

=

+ −

1 2

1 2 / 51r r

cε ε

= − +

( ) ( ) ( ) ( )

( ) ( )

2 4 2220 2 4 0 2 0

2 22 2 0 0

3 11 210 560 5

170

ap k W a a k W c k L

a c k W k L

= + + + +

+

2 0.16605a = −

4 0.00761a =

2 0.0914153c =−

Page 52: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

Appendix

52

Allow for distributed sources

+−L z∆

C z∆dsi z∆

dsv z∆

v+v -

+

-

+

-

∆z

i+i-

This appendix presents a derivation of the telegrapher’s equations with distributed sources.

Page 53: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

53

( ) ( )d ds sv v v z L z i i z

t+ − −∂− = ∆ − ∆ + ∆

ds

v iv Lz t∂ ∂

= −∂ ∂

0 :z∆ →

+−L z∆

C z∆dsi z∆

dsv z∆

v+v -

+

-

+

-

∆z

i+i-

Appendix (cont.)

Page 54: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

54

0 :z∆ →

+−L z∆

C z∆dsi z∆

dsv z∆

v+v -

+

-

+

-

∆z

i+i-

( )ds

vi i i z C zt

++ − ∂− = ∆ − ∆

ds

i vi Cz t∂ ∂

= −∂ ∂

Appendix (cont.)

Page 55: Fall 2019 David R. Jackson - University of Houstoncourses.egr.uh.edu/ECE/ECE6382/Class Notes/Notes 19...Green’s Functions 2 Green's Mill in Sneinton (Nottingham), England, the mill

55

In the phasor domain:

ds

ds

v iv Lz ti vi Cz t

∂ ∂= −

∂ ∂∂ ∂

= −∂ ∂

ds

ds

dV V j LIdzdI I j CVdz

ω

ω

= −

= −

jt

ω∂→

Appendix (cont.)


Recommended