+ All Categories
Home > Documents > Farm and landscape tools at Farming Systems Ecology Workshop on Modelling Biodiversity and Ecosystem...

Farm and landscape tools at Farming Systems Ecology Workshop on Modelling Biodiversity and Ecosystem...

Date post: 26-Dec-2015
Category:
Upload: christopher-dickerson
View: 228 times
Download: 2 times
Share this document with a friend
Popular Tags:
35
Farm and landscape tools at Farming Systems Ecology Klik op het pictogram als u een afbeelding wilt toevoegen Workshop on Modelling Biodiversity and Ecosystem Services, Rome, 7 & 8 May 2015 Walter Rossing & Jeroen Groot
Transcript

Farm and landscape tools at Farming Systems Ecology

Klik op het pictogram als u een afbeelding wilt toevoegen

Workshop on Modelling Biodiversity and Ecosystem Services, Rome, 7 & 8 May 2015

Walter Rossing & Jeroen Groot

Biocontrol, pollination, and more

• Biocontrol• Agricultural returns• Soil fertility• Biodiversity• Nutritive values• Landscape amenity• Water quality• Recreational value• etc

What is the scope for improvement in one objective before trading off with others?

Research Design

Analysis SynthesisStructure

Function

Purpose

Purpose

Function

Structure

New facts, new realities

Conclusions Decisions

Knowledge

Questions

Problems

Reality (agroecosystems) Adapted from Goewie (1993) and

Tittonell (2013)

Learning cycles and the role of research

Action:Implementing a

‘bright idea’

Observation:Find out

consequences

Analysis:What are

implications?

Plan:Which

improvements?

Describe: What?

Explain: Why?

Explore Diversify What if?

Design Which?

InDEED

Fields, landscape elements

Farms

Landscapes

FarmIMAGES - FarmDESIGN - FarmSTEPS - FarmDANCES - FarmSCALES

FieldIMAGES - NDICEA - ROTAT - RotSOM - RotEROSION - RotYIELD

LandscapeIMAGES - LandscapeDISPLAY - ActorIMAGES

Spatialcoherence

Landscape

metrics

Nutrient balance

Labor balance

Farmingstyle

Economicresults

Nutrient balance

Crop yield

Organicmatter

Nutrient uptake

Soilerosion

Nutrient losses

Feedbalance

Nutrientlosses

Waterbalance

Plantdiversity

Economicresults

Nutrientlosses

Technology adoption

Policy efficiency

COMPASS

Insectdispersal

Seed predation

Humannutrition

Bio-energyproduction

GHGemissions

Householdbudget

Nutritionaldiversity

Speciesdispersal

Landscape

quality

Farmtypologies

Co-innovation and Modeling Platform for Agro-eco System Simulation

Outline

Framework for exploration of multiple objectives at multiple scales

Farm and Landscape models at Farming Systems Ecology

●Farm DESIGN

●Landscape IMAGES

Framework for exploration of multiple objectives at multiple scales

Naturevalue

Gross margin

Framework for exploration of multiple objectives at multiple scales

Naturevalue

Gross margin

Rank 1

Rank 1

Rank 1Rank 1

Framework for exploration of multiple objectives at multiple scales

Naturevalue

Gross margin

22

2 2

Framework for exploration of multiple objectives at multiple scales

generateby allocatingland-use activities

evaluatefor multipleindicators

rankusing non-weightingPareto-based methods

Farm DESIGNLandscape IMAGES

evolu

tion

ary

alg

ori

thmNature

value

Gross margin

1

1

11

22

2 2

2

33

34

4

5

Framework for exploration of multiple objectives at multiple scales

generateby allocatingland-use activities

evaluatefor multipleindicators

rankusing non-weightingPareto-based methods

Farm DESIGNLandscape IMAGES

evolu

tion

ary

alg

ori

thmNature

value

Gross marginPareto ranking applicable with any number of objectives

Pareto or trade-off frontier

Outline

Framework for exploration of multiple objectives at multiple scales

Farm and Landscape models at Farming Systems Ecology

●Farm DESIGN

●Landscape IMAGES

Model concept Farm DESIGN

Feed

Animal

Soil Manure

Crop FarmfamilyCrop

Crop

FeedFeed

AnimalAnimal

ManureManure

Areas of crops

Use of crops/feeds

Numbers of animals

Amount of manures/fertilizers

Environment Economics Buildings Machines

Model outputs: e.g.

Feed balance (E, P)

Nutrient flows, balances (C, NPK)

Manure production &breakdown

Organic matter balance

Water balance

Labor balance

Economic results

Bio-energy production

Greenhouse gas emissions

Human nutrition indicators

Static / quasi dynamic; Spatially implicit

Farm DESIGN: Describe / explain

MODEL

Maize mgt i; area

Milk cow; number

Fertilizer type t; amount

Inputs(Describe):

Groundnut mgt k; area

Calves; number

Operating profit

Rotation area

Nitrogen soil losses

Outputs(Explain):

Labour balance

Organic matter balance

Farm DESIGN: Explore

EXPLORATION

MODEL

Maize mgt i; area

Milk cow; number

Fertilizer type t; amount

Inputs(Describe):

Groundnut mgt k; area

Calves; number

Operating profit

Rotation area

Nitrogen soil losses

Outputs(Explain):

Labour balance

Organic matter balance

Decisionvariables:

Objectivesand constraints:

Minimum = 0

Maximum = 10

✔ Objective

Direction= minimize, or maximize

✔ Constraint

Minimum = 1000

Maximum = 2000

Farm DESIGN interface

DESCRIBE – currentfarm configuration

EXPLAIN – indicatorsof farm performance

DESIGN – adjustedfarm configurations

EXPLORE – tradeoffsand synergies

Groot et al (2012) Agric Syst.

Groot, Oomen & Rossing, 2012. Agricultural Systems.

Red = original farmBlue = farms performing better for all objectivesGreen = other farms that meet constraints

Nutrient cycle example

Model concept Landscape IMAGES

Model outputs: e.g.

Ecological connectivity

Land-use / landscape diversity

Pest suppression potential

Plant-derived resources (insects)

Landscape quality (culture-history)

Functional nutritional diversity

And:

Aggregated farm indicators

Static / quasi dynamic; Spatially explicit

Field and field margin polygons which hold land use activities

Delimitation of farms

Landscape IMAGES interface Groot et al (2007) Agric Ecosyst Environ.

Groot et al (2010) Eur J Agron.

DESCRIBE – currentland-use configuration

EXPLAIN – indicators oflandscape performance

DESIGN – adjustedlandscape configurations

EXPLORE – tradeoffsand synergies

Farming and hedgerow management NFW

Groot et al (2007) Agriculture, Ecosystems and Environment 120, 58-69.

Friesian Landscape Management NGO

Farming and hedgerow management NFW

Groot et al (2007) Agriculture, Ecosystems and Environment 120, 58-69.

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100

0

2

4

6

8

10

12

14

0 20 40 60 80 100

0

2

4

6

8

10

12

0 20 40 60 80 100

0

20

40

60

80

100

120

140

0 20 40 60 80 100

0

200

400

600

800

1000

1200

0 20 40 60 80 100

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100 120 140

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120 140

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800 1000 1200

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000 12000

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45

Spa

tial

co

hesi

onL

/T r

atio

Por

osit

yS

ight

line

ho

mog

enei

tyH

edge

row

s ad

ded

(km

)H

edge

row

s re

mov

ed (

km)

Sight line homogeneity

Hedgerows added (km)

Spatial cohesion

L/T ratio PorosityHedgerow length (km)

a.

b. g.

c.

d.

e.

h.

i.

j.

l.

m.

n.

f. k. o.

p.

q.

r.

s.

t. u.

Pareto frontier for 7 indicators ofecology, landscape quality and cost(Groot et al., 2010; EJA)LEGEND

extremesintermediatesbest compromises

Strengthening hedgerow structure NFW

Groot et al (2010) European Journal of Agronomy 32, 112-119.

As planned by the landscape management NGO

Flexible technical framework (general core)

Multi-scale and multifunctional assessment

Field – farm – household – landscape

Farm indicators:

Economic results

Flows, balances of C, N, P, K

Water balance

Manure production &breakdown

Organic matter balance

Labor balance

Feed balance (E, P)

Bio-energy production

Greenhouse gas emissions

Field indicators:

Crop yield

Nutrient uptake

Crop composition

Water dynamics

Soil nutrient dynamics

Organic matter dynamics

Erosion rate

Landscape indicators:

Ecological coherence

Nutritional functional diversity

Land-use diversity

Landscape amenity

Household indicators:

Dietary diversity

Nutrition adequacy

Household budget

Types of models

Evaluation modules (spatially implicit or explicit):

● Static (e.g. balances: economics, nutritional quality, labour; erosion)

● Dynamic simulation (e.g. soil organic matter)

● Landscape metrics

● Network analysis

● Etc.

Framework kernel:

● Pareto-based Differential Evolution (evolutionary algorithm)

● [Agent based models]

Current projects CRP Humidtropics (PhD + 2 postdocs; Kenya, Zambia), with IITA, ICRAF, Bioversity, AVRDC

CRP Agric. for Nutrition & Health (Zambia), with Bioversity, Columbia Univ., IFPRI

CATIE/CIRAD/SupAgro AgTrain (PhD; Costa Rica)– Ecosystem services in coffee

CIRAD (2 PhD; Amazonia)– Integrated crop-livestock-tree systems

CRP WLE (Vietnam, Cambodia) Consultancy – Landscapes and biological control, FFS

NWO (China) postdoc – Living landscapes biological control and pollination

NWO (postdoc; the Netherlands)- Biodiversity Works national program

EU-FP7 (postdoc; Europe)- Quantification of Ecosystem Services in Agro-ecosystems

CRPs MAIZE (Attic; 4 PhD + postdoc; Ethiopia, Nepal, Mexico) and WHEAT (Nutrition), with CIMMYT

CCAFS (through Birthe Paul; South Vietnam, Tanzania), with CIAT

Africa RISING (2 PhD; Tanzania, Malawi, Eastern Zambia, Northern Ghana), with IITA, CIAT, IFPRI, MSU

CIRAD/Africa RICE (PhD; Benin) - Smallholder livelihoods in rice-based systems

IRD/Univ. O/NGOs WASSA (Burkina Faso) PhD project – Woody amendments for soil

FAO (Madagascar, Zimbabwe) PhD + postdoc – Building resilience for climate change

Quasi-dynamic application: adaptive capacity

Cortez-Arriola et al., in prep.

Adaptation space by re-arranging current resources and technologies

Adaptation space by adding new resources or technologies

Scenarios, optimization, tradeoff analysis

Groot et al (2009) Journal of Environmental Management 90, S147-S160.

Nutrition indicators

Dietary diversity scores, based on 9-16 food groups

● HDDS, WDDS, MDD-W (Kennedy et al., 2010, 2014)

Food pattern

● Balancing demand and supply of food groups

Nutrient adequacy

● Balancing requirement and supply of energy, nutrients

Nutritional Functional Diversity

● Fraction of foods diversity available in an area or farm, relative to the ‘potential’ diversity in that landscape

Relating goals of society to indicators

UPublic

UFarmer

Groot et al (2007) Agriculture, Ecosystems and Environment 120, 58-69.

Parra-López et al (2009) Land Use Policy 26, 1020-1030.

Evolution of solution spaces

ΔUpublic

ΔUprivate

p2

p1

ΔUpublic

ΔUprivate

ΔUsociety=0

p1

p0

ΔU = change in utility

Parra-López et al (2009) Land Use Policy 26, 1020-1030.


Recommended