+ All Categories
Home > Documents > Fatigue_Methods.pdf

Fatigue_Methods.pdf

Date post: 02-Jun-2018
Category:
Upload: anonymous-dkml2wzu
View: 229 times
Download: 2 times
Share this document with a friend
91
8/10/2019 Fatigue_Methods.pdf http://slidepdf.com/reader/full/fatiguemethodspdf 1/91
Transcript
Page 1: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 1/91

Page 2: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 2/91

© 2014 Grzegorz Glinka. All rights reserved. 2

1. Bannantine, J., Corner, Handrock , Fundamentals of Metal Fatigue Analysis, Prentice-Hall,1990.... (good general reference)

2. Dowling, N., Mechanical Behaviour of Materials, Prentice Hall, 2011, 3 rd edition(middle chapters are a great overview of most recent approaches to fatigue analysis),

3. Stephens, R.I., Fatemi, A., Stephens, A.A., Fuchs, H.O., Metal Fatigue in Engineering, JohnWiley, 2001.... (good general reference),

4. M. Janssen, J. Zudeima, R.J.H. Wanhill , Fracture Mechanics, VSSD, The Netherl ands, 2006(understandable, rigorous, mechanics perspective),

5. Socie, D.F., and Marquis, G.B., Multiaxial Fatigue , Society of Automotive Engineers, Inc.,Warrendale, PA, 2000

5. Haibach, E., Betriebsfestigkeit , VDI Verlag, Dusseldorf, 1989 (in German).

6. Bathias, C., and Pineau, A., Fatigue des Materiaux et des Structures , Hermes, Paris, 2008 (inFrench and English),

7. Radaj, D., Design and Analysis of Fatigue Resistant Structures, Halsted Press, 1990,(Complete, civil and automotive engineering analysis perspective),

8. V.A. Ryakhin and G.N. Moshkarev , Durabili ty and Stability of Welded Structures in Earth MovingMachinery” , Mashinos troenie, Moscow, 1984 (in Russian, cranes and earth moving machinery),

9. A. Chattopadhyay, G. Glinka, M. El-Zein, J. Qian and R. Formas, Stress Analysis and Fatigue of Welded Structures, Welding in the World , (IIW), vol. 55, No. 7-8, 2011, pp. 2-21.

Bibliography

Page 3: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 3/91

© 2011 Grzegorz Glinka. All rights reserved. 3

Mechanical Engineer – yesterday and today……

Slide ruler Calculator Computer PC/laptop

1-2 operation/min. 1-10 operation/min. 10 ? operation/min.

Before yesterday Yesterday Today

Page 4: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 4/91

© 2008 Grzegorz Glinka. All rights reserved. 4

DAY 1

Contemporary Fatigue AnalysisMethods

(basics concepts and assumptions)

Page 5: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 5/91

Information Path for Strength and Fatigue Life Analysis

ComponentGeometry

LoadingHistory

Stress-Strain Analysis

Damage Analysis

Fatigue Life

MaterialProperties

© 2008 Grzegorz Glinka. All rights reserved. 5

Page 6: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 6/91

Stress Parameters Used in Fatigue Analyses

© 2008 Grzegorz Glinka. All rights reserved. 6

K Y S a

a)

Sn

y

d n

0

T

epeak

S

y

d n

0

T

peak

M

b) c)

y

a

0

T

K a2

S

S

apeak

epeak

Sn crack

S n – net nominal stress; S – gross nominal stresse

peak – local linear-elastic notch-tip stress

apeak – local actual elastic-plastic notch-tip stress

Kt = epeak /S n – stress concentration factor

K – stress intensity factor

Page 7: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 7/91

What stress parameter is needed for the FractureMechanics based ( da/dN- K) fatigue analysis?

x

a0

T

S t r e s s ( x )

2 x

x

K

S

SThe Stress Intensity Factor K characterizingthe stress field in the crack tip region i sneeded!

The K factor can be obtained from :- ready made Handbook so lutions (easy to usebut often inadequate in practice)

- from the near crack tip stress (x)distribution or the displacement data obtained

from FE analysis of a cracked body (tedious)- from the weight function by using the FEstress analysis data of un-cracked body(versatile and suitable for FCG analysis)

© 2008 Grzegorz Glinka. All rights reserved. 7

Page 8: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 8/91

Loads and stresses in a structure

n

Load F

peak

© 2008 Grzegorz Glinka. All rights reserved. 8

Page 9: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 9/91

The Most Popular Methods for Fatigue Life Analysis - outlines

• Stress-Life Method or the S - N approach;uses the nominal or simple engineering stress ‘ S ‘ toquantify fatigue damage

• Strain-Life Method or the - N approach;uses the local notch tip strains and stresses to quantifythe fatigue damage

• Fracture Mechanics or the da/dN - K approach;uses the stress intensity factor to quatify the fatiguecrack growth rate

© 2008 Grzegorz Glinka. All rights reserved. 9

Page 10: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 10/91

Information path for fatigue life estimation based onthe S-N method

LOADING

F

t

GEOMETRY, K f

PSO

MATERIAL

0

E

Stress-Strain Analysis

Damage Analysis

Fatigue Life

MATERIAL

No N

n

e ADF

© 2008 Grzegorz Glinka. All rights reserved. 10

Page 11: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 11/91

a) Structu re

Q

H

F

K 5

n

The Similitude Concept states that if the nominal stress histories in the structure and in the testspecimen are the same, then the fatigue response in each case will also be the same and can bedescribed by the generic S-N curve. It is assumed that such an approach accounts also for the stressconcentration, loading sequence effects, manufacturing etc.

K0K1K2K3K4K5

S t r e s s a m p l i t u d e ,

n / 2 o r

h s / 2

Number of cycl es, N0

The Simili tude Concept in the S-N Method

© 2008 Grzegorz Glinka. All rights reserved. 11

Page 12: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 12/91

Steps in Fatigue Life Prediction Procedure Based on theS-N Approach

The S – N method

5

e) Standard S-N curves

K0K1K2K3K4K5

S t r e s s a m p l i t u d e ,

n / 2 o r

h s / 2

Number of cycl es, N

d) Standard welded joints

c) Section with welded joint

a) Structure

b) Component

V

PR

Q

H

F

Weld

© 2008 Grzegorz Glinka. All rights reserved. 12

Page 13: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 13/91

5

5

5

5

5

11

1 5

22

2 5

33

3 5

44

4 5

55

5 5

1

1

1

1

1

m

m

m

m

m

D N C

D N C

D

N C

D N C

D N C

1 2 3 4 5 ; D D D D D 1

2

3 4

5

S t r e s s

t

g)

Fatigue damage:h)

Total damage:i)

Fatigue life: N blck =1/D j)

S t r e s s

, nf)

t

K5

n

Steps in Fatigue Life Prediction Procedure Basedon the S-N Approach (continued)

© 2008 Grzegorz Glinka. All rights reserved. 13

Page 14: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 14/91

© 2008 Grzegorz Glinka. All rights reserved. 14

The linear hypothesis of Fatigue Damage Accumulation(the Miner rule)

1

1

1

1;

m

D N A

31 52 4

1 1;

1 1 1 1 1 R R R f L

N L

N N

N n

D N N

2

22

1;

m

D N A

4

4

4

1;

m

D N A

5

10; D 42 51 3

5

5

1

32 41

1 1 1 1 1;

1 !!

i

i

D

N

D

N

D

N

D D

N N

D

if D Failure

e

N0N2

N1 N3

S t r e s s r a n g e

,

N4

N5

Cycles

Ni(

i)m = A or N

i=A/(

i)m

n R

3

33

1;

m

D N A

Page 15: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 15/91

The FALSN fatigue life estimation sof tware – Typical input and output data

Weldment

© 2008 Grzegorz Glinka. All rights reserved. 15

Page 16: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 16/91

The scatter in fatigue:Fatigue S-N curves for assigned probabili tyof failure; P-S-N curves

S t r e s s a m p l i t u d e S

a [ N / m m

2 ]

Number of cycles N

400

450

500

10 5 10 6 10 7

(source: S. Nishijima, ref. 39)

S45 Steel temperedat 600 o C (W1)

Probability of failureP(%)

P=99%

P=90%

P=50%

P=10%

P=1%

8

6

48

10 8

f(N)

f(S)

m

a A N

© 2008 Grzegorz Glinka. All rights reserved. 16

Page 17: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 17/91

N

j < LT

COMPUTING of T j

SAMPLING A SET OF RANDOM DATA

f K

Kf K

f R

RwR

f S

S maxS

STRUCTURAL COMPONENT

PWL

MATERIAL

No N

S

Rw

LOADING

S

t

Failure probability calculationP f = P[T(X) Tr ]:

( ) f f

L T Tr P

L

Probabilistic fatigue life assessment

© 2008 Grzegorz Glinka. All rights reserved. 17

Page 18: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 18/91

Over designedUn-satisfactory Most

frequent

Characterist ic regions of cumulativeprobability of the fatigue life distribution

© 2008 Grzegorz Glinka. All rights reserved. 18

Page 19: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 19/91

LOADING

F

t

GEOMETRY, K f

PSO

MATERIAL

0

E

Stress-Strain Analysis

Damage Analysis

Fatigue Life

Information path for fatigue lifeestimation based on the -N method

MATERIAL

2N f

© 2008 Grzegorz Glinka. All rights reserved. 19

Page 20: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 20/91

a) Specimen

b) Notched component

peak x

y

z

peak

peak

'

'

2 22

b f f f f N N c E

l o g ( / 2 )

lo g

(2N f )

f

0

l)

j)

The Similitude Concept states that if the local notch-tip strain history in thenotch tip and the strain history in thetest specimen are the same, then the

fatigue response in the notch tip regionand in the specimen will also be thesame and can be described by thematerial strain-life ( -N) curve.

The Simili tude Concept in the – N Method

© 2008 Grzegorz Glinka. All rights reserved. 20

Page 21: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 21/91

Steps in fatigue life prediction procedure based onthe - N approach

a) Structure

b) Component

c) Section with welded joint

d)

peak

n

peak

hs

nhs

© 2008 Grzegorz Glinka. All rights reserved. 21

Page 22: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 22/91

Fatigue damage:

1 2 3 41 2 3 4

1 1 1 1; ; ; ; D D D D

N N N N

Total d amage:

1 2 3 4 ; D D D D D

Fatigue life: N blck =1/D

e )

l o g ( / 2 )

'

'2 22

b c f f f f N N

E

e /E

log(2N f )

f /E

f

02N e

2N

2

: peak

Neuber E

' '

' '

'

'

,

,

,

?,?

f f

f f

f

f

f N

p e=

p e a k

t

1

2

3

4

5

6

7

8

1'

f )

0

t'

1

'

n

E K

0

3

2,2'4

5,5'7,7'

68

1,1'

(continued). Steps in fatigue life prediction procedure based on the -N approach

© 2008 Grzegorz Glinka. All rights reserved. 22

Page 23: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 23/91

© 2008 Grzegorz Glinka. All rights reserved. 23

Page 24: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 24/91

© 2008 Grzegorz Glinka. All rights reserved. 24

Page 25: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 25/91

© 2008 Grzegorz Glinka. All rights reserved. 25

Page 26: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 26/91

Three basic sets of input data for the evaluation of the Fatigue CrackInitiation Life and Reliability (the – N approach)

T T

R(T) = 1 - F(T)1

f(T)

LOADING

S

t

f(k)

Scaling factor k

LIFE CALCULATION: T i

i < LY

SAMPLING: k , K t , f , f ' , K’

N

COMPONENT

f(K t)

SCF K t

K5

S S

Computing of failure probabilities

( ) f r

f r

L T T P P T X T

L

MATERIAL

2N 1

K'

f M1

’f e

f M3

K’M

f M2

’f s

2 p

2, f

, f

E

2

© 2008 Grzegorz Glinka. All rights reserved. 26

Page 27: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 27/91

P r o b a b i l i t y o f f a i l u r e

© 2008 Grzegorz Glinka. All rights reserved. 27

Page 28: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 28/91

Information path for fatigue life estimation based onthe da/dN- K method

LOADING

F

t

GEOMETRY, K t

PSO

MATERIAL

0

E

Stress-Strain Analysis

Damage Analysis

Fatigue Life

MATERIAL

n

KKth

da

dN

© 2008 Grzegorz Glinka. All rights reserved. 28

Page 29: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 29/91

The Similitude Concept states that i f the stressintensity K for a crack in the actual componentand in the test specimen are the same, then thefatigue crack growth response in the componentand in the specimen wi ll also be the same andcan be described by the material fatigue crackgrowth curve da/dN - K.

a) Structure

Q

H

F

ab) Weld detail

c) Specimena

P

P

K 10 -12

10 -11

10 -10

10 -9

10 -8

10 -7

10 -6

1 10 100

C r a c k G r o w t h R a t e

, m / c y c l e

mMPa,K

The Similitude Concept in the da/dN – K Method

© 2008 Grzegorz Glinka. All rights reserved. 29

Page 30: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 30/91

Page 31: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 31/91

Stress intensity factor, K(indirect method)

Weight function, m(x,y)

, , A

n

K x y m x y dxdy

K Y

a

Stress intensity factor, K(direct method)

2 I yFE FE

n

K x

or

dU K E EGda

K Y

a

(x, y)

f)

a

g)

0

1

m

i i i N

f ii

i

a C K N

a a a

N N

Integration of Paris’ equationh)

a f

a i

Number of cycles , N

C r a c k d e p t h

, a

Fatigue Life

i)

Steps in Fatigue Life Prediction Procedure Based on theda/dN- K Approach (cont’d)

© 2008 Grzegorz Glinka. All rights reserved. 31

Page 32: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 32/91

© 2008 Grzegorz Glinka. All rights reserved. 32

Page 33: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 33/91

© 2008 Grzegorz Glinka. All rights reserved. 33

Page 34: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 34/91

© 2008 Grzegorz Glinka. All rights reserved. 34

Page 35: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 35/91

No

j < LYes

CALCULATION of T j

SAMPLING RANDOM VARIABLES

f a

aa

f C

CC

f S

S maxS

STRUCTURAL COMPONENT

PWL

MATERIALLOADING

S

t

Failure probability calculationP f = P[T(X) Tr ]:

L)Tr T(LP f

f

f Kth

KthKth

f K

KtK

n

K

da

Kth

dN

f Kc

KIcKc

Probabilistic analysis using MC simulation

The FALPR statistical simulation flow chart for the analysis of fatigue crack growth© 2008 Grzegorz Glinka. All rights reserved. 35

Page 36: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 36/91

Irregular geometrical shape of a real fatigue crack

© 2008 Grzegorz Glinka. All rights reserved. 36

Page 37: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 37/91

Page 38: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 38/91

© 2008 Grzegorz Glinka. All rights reserved. 38

Global and Local Approaches to Stress Analysis and Fatigue

Page 39: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 39/91

© 2010 Grzegorz Glinka. All rights reserved. 39

22a

11a

32a =0

33a

31a 13

a = 0

12a = 0

21a =

0 23

a

11

22

33

0 0

0 0

0 0

a

a aij

a

Stress state near the notch tip (on the symmetry line)

1

2

3

Page 40: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 40/91

© 2010 Grzegorz Glinka. All rights reserved. 40

22a

11a = 0 32

a

33a

31a 13

a = 0

12a = 0

21a =

0 23

a

11

22 23

32 33

0 0

0

0

a

a a aij

a a

Stress state in the disk at the blade-disk interface

1

2

3

Page 41: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 41/91

© 2010 Grzegorz Glinka. All rights reserved. 41

1

peak

n

22

11

33

3

2

A D B

C

F

F

A, B

22

22

22

22

33

11

C

D

n

net

p t neak

F

A and

K

Stresses concentration in axis-symmetric notched body

Page 42: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 42/91

© 2010 Grzegorz Glinka. All rights reserved. 42

Stresses concentration in a prismatic notched body

net

pea

n

n t k

F

A and

K

A, B, C

22

22

22

33

D

E

11

peak

n

22

11

33

3

2

AD B

C

F

F

1

E

Page 43: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 43/91

Page 44: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 44/91

© 2008 Grzegorz Glinka. All rights reserved. 44

Loads and stresses in a structure

;

;,

, ?

?

i

i

ak

n

p

i

e i F F

F F

f f

g g

F

t

F i

F i+1

F i-1

0

n pea

k

Page 45: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 45/91

© 2008 Grzegorz Glinka. All rights reserved. 45

Loads and StressesThe load, the nominal stress, the local peak stress and the stress concentration factor

, ,

;

;

; ;

;

;

;

1

;

peak t F F

F peak i i

F

F n i i

n net

n F

F n

F pe

et

ak

h h K F

h k F F

k

F A

k F

k A

h F

Axial load – linear elas ti c analysis

n

y

d n

0

T

peak

S t r e s s

F

F

Analyt ical, FEM Hndbk

Page 46: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 46/91

© 2008 Grzegorz Glinka. All rights reserved. 46

Loads and StressesThe load, the nominal stress, the local peak str ess and the stress concentration factor

, ,

,

;

;

; ;

b t M peak i pe M i ak i i

net n

net

n M

net M M n i i

net

M or k h M K

M c I

k M

c k k M I

Bending load – linear elastic analysis

n

y

d n

0

T

peak S t r e s s

M

b) M

Page 47: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 47/91

© 2008 Grzegorz Glinka. All rights reserved. 47

peak eak t t

n

p o K rS

K

Kt – st ress concentrat ion factor (net or gross, net K t gross K t !! )

peak – st ress at th e notch t ip

n - net nominal stress

S - gross nominal stress

Stress Concentration Factors in Fatigue AnalysisThe nominal stress and the stress concentration factor in simple load/geometry configurations

n net gross

P or S

A A

gross net

n net gross

M c M c or S

I I

Simple axial load

Pure bending load

n

y

d n

0

T

r

peak

S t r e s s

S

S

Tension

n

y

d n

0

T

r

peak S t r e s s

MS

SM

Bending

net K tgross K t

Page 48: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 48/91

Page 49: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 49/91

© 2008 Grzegorz Glinka. All rights reserved. 49

Stress concentration factors for notched machine components

(B.J. Hamrock et. al.

1.0

1.4

1.8

1.2

1.6

2.0

2.2

2.4

2.6

2.8

3.0

0 0.05 0.10 0.15 0.20 0.25 0.30

H/h=6H/h=2

H/h=1.2H/h=1.05H/h=1.01

S t r e s s c o n c e n t r a t i o n f a c t o r K

t = p e a k / n

Radius-to-height ratio r/h

peak

r

Mh

b

MH

2

6 n

c M I bh

Page 50: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 50/91

© 2008 Grzegorz Glinka. All rights reserved. 50

Various stress distributions in a T-butt weldment with transverse fillet welds;

r

t

t1

ED

BC

A

pea

k

n

hs

FP

M

C

• Normal stress distribution in the weld throat plane (A),• Through the thickness normal stress distribution in the weld toe plane (B),• Through the thickness normal stress distribution away from the weld (C),• Normal stress distribution along the surface of the plate (D),• Normal stress distribution along the surface of the weld (E),• Linearized normal stress distribution in the weld toe plane (F).

Stress concentration & stress distributions in weldments

Page 51: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 51/91

© 2010 Grzegorz Glinka. All rights reserved. 51

0.65

1 exp 0.92 1

1 22.8 21 exp 0.45

2

ten t

W h h

K W rW t h

: 2 0.6 pwhere W t h h

Range of application - reasonably designed weldments, (K.Iida and T. Uemura, ref. 14)

Stress concentration factor for a butt weldmentunder axial loading

g = h

r

t

l = h p

PP

St t ti f t f T b tt

Page 52: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 52/91

© 2010 Grzegorz Glinka. All rights reserved. 52

Stress concentration factor for a T-buttweldment under tension load; (non-load carrying fillet weld)

0.65

1 exp 0.9 2 11

2.8 21 exp 0.452

t t

W h h

K W rW t h

: 2 0.3 2 p pwhere W t h t h

Validated for : 0.02 r/t 0.16 and30 o 60 o

, source [14]

t

r

t1= t p hp

h

PP

y

x

Page 53: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 53/91

Cyclic Loads and Cyclic Stress Patterns(histories) in Engineering Objects

© 2008 Grzegorz Glinka. All rights reserved. 53

Page 54: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 54/91

Page 55: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 55/91

3

3

32 ;

; ; ;4 2 64

b b

b

eak n p M c M S

I d W d d

M L l c I

Note! In the case of smooth components,such as the railway axle, the nominal str ess and the local peak stress are the same!

b)

d N.A.

,min 3

32 n

b M d

,min 3

32 n

b M d

1

2

3

n,max

n,min

time S t r e s s

n,a

1 cyclec)

1

2

3

AB

y

x

L

Moment M b

a)

R ARB

W/2W/2 W/2

W

The load W and the nominal stress n in an railway axle

© 2008 Grzegorz Glinka. All rights reserved. 55

Fluctuations and complexity of the stress state at the

Page 56: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 56/91

22

A B C

t

t

23

0

0

A

B

C

23

2

20

A B C

t

t

23

0

0

22

A

B

C

23

22

0

Non-proportional loading path Proportional loading path

F

2 R

t

x2

x3

F

T

T

22

33

22

33

x2

x3

23

Fluctuations and complexity of the stress state at thenotch tip

© 2008 Grzegorz Glinka. All rights reserved. 56

Page 57: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 57/91

How to establish the nominal stress history?a) The analytical or FE analysis should be carried out for one characteristic load magnitude, i.e.P=1, M b =1, T=1 in order to establish the proportionality factors, k P, k M, and k T such that:

;; P M T n n n

P M T b k P k M k T

b) The peak and valleys of the nominal stress history n,,i are determined by scaling the peak andvalleys load history P i, Mb,I and Ti by appropriate proportionality factors k P, k M, and k T such that:

, , ,;, P M T n i n i n i ii P M T b i P k M k T

c) In the case of proportional loading the normal peak and valley stresses can be added and theresultant nominal normal stress history can be established. Because all load modes in proportionalloading have the same number of simultaneous reversals the resultant history has also the samenumber of resultant reversals as any of the single mode stress history.

;,, i M i P n b i P k M

d) In the case of non-proportional loading the normal stress histories (and separately the shear stresses) have to be added as time dependent processes. Because each individual stress historyhas different number of reversals the number of reversals in the resultant stress history can beestablished after the final superposition of all histories.

ii i n M b t t t k P k M

© 2008 Grzegorz Glinka. All rights reserved. 57

Superposition of nominal stress histories induced by two

Page 58: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 58/91

Two p roportional modes of lo ading

0

Mode a

S t r e s s

n , b

0

S t r e s s

n , a

0

Mode b

S t r e s s n

Resultant stress: n= n,a + n,b

0

Mode a

S t r e s s

n , b

0

S t r e s s

n , a

0

Mode b

S t r e s s n

Resultant stress:n(t i)= n,a (t i)+ n,b (t i)

time

time

Two non-proportional modes of loading

Superposition of nominal stress histories induced by twoindependent loading modes

© 2008 Grzegorz Glinka. All rights reserved. 58

Page 59: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 59/91

Wind load and stress f luctuations in a windturbine blade

Note! One reversal of the wind speed results in several stress reversals

Wind speed fluctuations + Blade vibrations Stress fluctuations

Source [43]

In-plane bending Out of plane bending

Time [s]600 605 610 615 620

Time [s]600 605 610 615 620

W i n d s p e e d [ m / s ]

L o a d - l a g s t r e s s [ M P a ]

- 5

5

0

8

10

12

14

- 400

10

12

14

- 50

- 30

- 28

W i n d s p e e d [ m / s ]

L o a d - l a g s t r e s s [ M P a ]

© 2008 Grzegorz Glinka. All rights reserved. 59

Page 60: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 60/91

a) Ground loads on the wings, b) Distribution of the wing bending moment induced by the groundload, c) Stress in the lower wing skin induced by the ground and flight loads

Characteristic load/stress history in the aircraft wing skin

time

S t r e s s

0

Source [9]

0

a)

LandingTaxiing

Flying

b)

c)

© 2008 Grzegorz Glinka. All rights reserved. 60

Loads and stresses in a structure

Page 61: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 61/91

Loads and stresses in a structure

;

;,

, ?

?

i

i

ak

n

p

i

e i F F

F F

f f

g g

F

t

F i

F i+1

F i-1

0

n pea

k

© 2008 Grzegorz Glinka. All rights reserved. 61

Page 62: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 62/91

How to get the nominal stress from the

Page 63: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 63/91

How to get the nominal stress n from theFinite Element method stress data?

Notched shaft under axial, bending and torsion load

a) Run each load case

separately for an unitload

b) Linearize the FE stressfield for each load case

x3

F

r

D

t

x2F

T

T MM

d

Discrete cross section stress distributionobtained fro m the FE analysis

d 22

0

nx3

peak

© 2008 Grzegorz Glinka. All rights reserved. 63

00

Page 64: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 64/91

© 2010 Grzegorz Glinka. All rights reserved. 64

0 0

13 2 2

1 6 62

;1

12

n

i i b t t n

t y y dy y y dy y y y

c M t I t t

0

2

2

0

1 1

6

6

b t n

n

m

n

i

t n

ii

n

y y dy

t

y y

ydy

t

y y y

t t

0 0

1

1

;1 1

ni

m t t n

y dy y dy y y P

t t t t

Determination of nominal stressesfrom discrete FE databy the linearizationmethod

x

y

y i

(y i)

y iyn

(yn)

(y1)

yn

t1

peakn

t

Page 65: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 65/91

How to get the resultant stress distribution from theFinite Element stress data? (Notched shaft under axial, bending load)

x3

P22

33

r

D

t

x2

P 23

MM

d d 22

0

nb

x3

Bending

d

x3

22

0

nm

Axial

d 220

peak

Resultant

x3

(x 3)

© 2008 Grzegorz Glinka. All rights reserved. 65

Cyclic nominal stress and corresponding fluctuating stress dist ribution

Page 66: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 66/91

Cyclic nominal stress and corresponding fluctuating s tress dist ribution

S t r e s s

n

time

n, max

n, 0

n, min

x3

d22

0

Resultant

22(x 3, n,max )22(x 3, n,0 )22(x 3, n,min )

© 2008 Grzegorz Glinka. All rights reserved. 66

Th h ld

Page 67: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 67/91

© 2010 Grzegorz Glinka. All rights reserved. 67

• Multiaxial state of stress at weld toe

• One shear and twonormal stresses

• Due to stressconcentration, xx isthe largest component – Predominantly responsible

for fatigue damage

zz

xx

xx

zz

zx

xz

The stress state at the weld toe

Determination of the nominal, n , and the hot spot

Page 68: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 68/91

n pstress , hs , from 3D-FE stress analysis data

a) Stress distribution in the critical cross section near the cover plate ending and the nominal or thehot spot stress n (independent of length L ) and hs (independent of length L),

b) Stress distribution in the critical plane near the ending of a vertical attachment (gusset) and thenominal or the hot spot stress n (dependent on length L ) or hs (independent of length L)

L

L t

m b t hs s h

n

s t

h

x y dxdy P

t L

x y d x y ydy t

t

t y

L

/2 0

/2

00

2

,

6 0,0,

- depends on L and is constant along the weld toe line

Independent of L but it changesalong the weld toe line

y

x

P

P

(x,y)

a)

L

tpeak

hs

y

x

PP(x,y)

b)

L

t

© 2008 Grzegorz Glinka. All rights reserved. 68

The Nominal Stress ers s the local Hot Spot Stress

Page 69: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 69/91

The Nominal Stress n versus the local Hot Spot Stress hs

y

PP

(x,y)

t

x

A

B

xy

hs,B

hs,A

L

m b m b hs A hs h A hs B s A hs hs B B, ,, , , ,; ;

n A

n B

P t L,

,

;

??;

© 2008 Grzegorz Glinka. All rights reserved. 69

Page 70: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 70/91

Example:Preparation and Analysis of Representative

Stress/Load History:

The Rainflow Cycle Counting Procedure

© 2008 Grzegorz Glinka. All rights reserved. 70

Page 71: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 71/91

Page 72: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 72/91

Page 73: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 73/91

© 2008 Grzegorz Glinka. All rights reserved. 73

B di M Ti S i

Page 74: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 74/91

Bending Moment Time Series

-35

-30

-25

-20

-15-10

-5

0

5

10

15

20

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81

Load point No.

B e n d i n g m o m e n t [ 1 0

k N m ]

Bending Moment measurements obtained at constant time intervals

© 2008 Grzegorz Glinka. All rights reserved. 74

Page 75: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 75/91

Bending Moment Histo ry - Peaks and Valleys

-35

-30

-25

-20

-15-10

-5

0

5

10

15

20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Load point No.

B e n d i n g m o m e n t v a l u e [ 1 0 k N m ]

Bending Moment signal represented by the reversal point values

© 2008 Grzegorz Glinka. All rights reserved. 75

Constant and Variable Amplitude Stress Histories;

Page 76: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 76/91

Constant and Variable Amplitude Stress Histories;Definiti on of the Stress Cycle & Stress Reversal

max min

max min

max min

min

max

;

2 2

;2

a

m

R

S t r e s s

Time

0

Variable amplitude stress history

Onereversal

b)

0

One cycle

mean

max

min

S t r e s s

Time0

Constant amplitude stress historya)

© 2008 Grzegorz Glinka. All rights reserved. 76

Page 77: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 77/91

Stress Reversals and Stress Cycles in a Variable Amplitude Stress History

The reversal is s imply an excursion between two-consecutive reversalpoints, i.e. an excursion between subsequent peak and valley or valleyand peak.

In recent years the rainflow cycle counting method has been acceptedworld-wide as the most appropriate for extracting stress/load cycles for fatigue analyses. The rainflow cycle is defined as a stress excursion ,which when applied to a deformable material, will generate a closedstress-strain hysteresis loop . It is believed that the surface area of thestress-strain hysteresis loop represents the amount of damage inducedby given cycle. An example of a short stress history and its rainflowcounted cycles content is shown in the following Figure.

© 2008 Grzegorz Glinka. All rights reserved. 77

Stress History and the “ Rainflow ” Counted Cycles

Page 78: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 78/91

S t r e s s

Time

Stress history Rainflow counted cycles

i-1

i-2

i+1

i

i+2

Stress History and the “ Rainflow ” Counted Cycles

1 1i i i i ABS ABS

A rainflow counted cycle is identified when any two adjacent reversals in thestress history satisfy the following relation:

© 2008 Grzegorz Glinka. All rights reserved. 78

The Mathematics of the Cycle Rainflow Counting Method

Page 79: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 79/91

A rainflow counted cycle is identified when any two adjacent reversals inthee stress history satisfy the following relation :

1 1i i i i ABS ABS

The stress amplitude of such a cycle is:

1

2i i

a

ABS

The stress range of such a cycle is:

1i i ABS

The mean stress of such a cycle is:

1

2i i

m

The Mathematics of the Cycle Rainflow Counting Methodfor Fatigue Analysis of Fluctuating Stress/Load Histories

© 2008 Grzegorz Glinka. All rights reserved. 79

The rainflow cycle counting procedure - example

Page 80: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 80/91

The rainflow cycle counting procedure - example

Determine stress ranges, S i, and corr esponding mean str esses, S mi for the stress historygiven below. Use the ‘ rainflow ’ counting procedure.

S i= 0, 4, 1, 3, 2, 6, -2, 5, 1, 4, 2, 3, -3, 1, -2 (units: MPa 10 2)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

0

-1

-2

-3

S t r e s s S

i ( M P a 1 0 2 )

Reversing point number, i

© 2008 Grzegorz Glinka. All rights reserved. 80

Page 81: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 81/91

The ASTM rainflow counting procedure

1. Find the reversing point with highest absolute stress magnitude,2. The part of the stress history before the maximum absolute attach to the end of

the hi story,

3. Perform the rainflow counting on the re-arranged stress histo ry, i.e. frommaximum to maximum

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5

Original stress history

Absolute maximum !

© 2008 Grzegorz Glinka. All rights reserved. 81

The ASTM modification of the Stress History

Page 82: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 82/91

1 2 3 4 5 6 7 8 9 11 12 13 14 150

10

1

23

45

6

-1-2

-3

The modifiedstress history

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5

Absolute maximum

The original s tress history

© 2008 Grzegorz Glinka. All rights reserved. 82

Page 83: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 83/91

Start counting from the point No. 2 !!

Page 84: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 84/91

7676 7 6 ,6 7

3 23 2 1; 2.5;2 2

m

5454 5 4 ,4 5

1 41 4 3; 2.5;2 2 m

1 2 3 4 5 6 7 8 9 11 12 13 14 15

-3

-2

-1

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 11 12 13 14 15

-3

-2

-1

0

1

2

3

4

5

6

© 2008 Grzegorz Glinka. All rights reserved. 84

Page 85: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 85/91

2 32 3 2 3 ,6 7

2 52 (5) 7; 1.5;2 2

m

9 109 10 9 10 ,9 10

1 21 ( 2) 3; 0.5;2 2 m

1 2 3 4 5 6 7 8 9 11 12 13 14 15

-3

-2

-1

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 11 12 13 14 15

-3

-2

-1

0

1

2

3

4

5

6

© 2008 Grzegorz Glinka. All rights reserved. 85

Page 86: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 86/91

1 2 3 4 5 6 7 8 9 11 12 13 14 15

-3

-2

-1

0

1

2

3

4

5

6

13 1413 14 13 14 ,13 14

3 23 2 1; 2.5;2 2

m

11 1211 12 11 12 ,11 12

4 14 1 3; 2.5;2 2 m

1 2 3 4 5 6 7 8 9 11 12 13 14 15

-3

-2

-1

0

1

2

3

4

5

6

© 2008 Grzegorz Glinka. All rights reserved. 86

Page 87: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 87/91

1 81 8 1 8 ,1 8

6 36 ( 3) 9; 1.5;2 2

m

1 2 3 4 5 6 7 8 9 11 12 13 14 15

-3

-2

-1

0

1

2

3

4

5

6

Cycles counted –ASTM method

1. 6- 7 =1; m,6- 7 = 2.5;2. 4- 5 =3; m,4- 5 = 2.5;3. 13- 14 =1; m,10- 11 = 2.5;

4. 11- 12 =3; m,11- 12 = 2.5;5. 2- 3 =7; m,2- 3 = 1.5;6. 9- 10 =3; m,9- 10 =-0.5;7. 1- 8 =9; m,1- 8 = 1.5;

© 2008 Grzegorz Glinka. All rights reserved. 87

Page 88: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 88/91

Extracted rainflow cycles, m

Total number of cycles, N=854

m -32 -22 -13 -3.2 6.44 16.1 25.7 35.3 45 54 64.1 73.7 83.3 92.9 103 112 122 131 141 151 298.8 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

283.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

268.9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

254 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

239 0 0 0 0 0 0 0 1 2 2 0 0 0 0 0 0 0 0 0 0 5

224.1 0 0 0 0 0 0 0 0 2 2 1 0 0 0 0 0 0 0 0 0 5

209.2 0 0 0 0 0 0 0 3 4 5 2 0 0 0 0 0 0 0 0 0 14

194.2 0 0 0 0 0 1 0 1 7 2 0 0 0 0 0 0 0 0 0 0 11

179.3 0 0 0 0 0 0 1 0 4 4 0 0 0 0 0 0 0 0 0 0 9164.3 0 0 0 0 1 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 5

149.4 0 0 0 0 0 0 1 0 0 0 0 2 1 0 0 0 0 0 0 0 4

134.5 0 0 0 0 0 0 0 0 0 0 0 4 1 1 0 0 0 0 0 0 6

119.5 0 1 1 0 0 0 0 0 0 0 3 1 5 1 2 0 0 0 0 0 14

104.6 0 0 1 2 1 0 0 0 0 2 4 3 7 3 2 1 2 1 0 0 29

89.64 0 1 2 3 7 2 0 0 0 1 2 8 10 7 5 6 2 1 0 0 57

74.7 1 1 3 4 3 5 0 1 2 2 10 18 23 20 17 11 4 1 0 0 126

59.76 2 1 5 7 4 1 4 5 1 2 11 20 34 31 31 28 9 7 1 1 205

44.82 1 6 9 7 9 7 10 3 3 8 15 37 49 64 62 41 16 11 2 1 361

29.88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14.94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

854

Mean stress, m

S t r e s s r a n g e ,

© 2008 Grzegorz Glinka. All rights reserved. 88

Extracted rainflow cycles, m

Page 89: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 89/91

© 2008 Grzegorz Glinka. All rights reserved. 89

Total number of cycles in th e entire history, NT

a) The stress range

Page 90: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 90/91

b) the stress rangefrequency distributiondiagram

Number cycles N

S t r e s s r a n g e

j

j=7 j=6

n j=6 - number of cycles j=6

in the class j=6

max

R e l a t i v e s t r e s s r a n g e

j / m a x

Relative number of cycles N/N T

0

j=7 j=6 j=4321

n j=6 /NT

max / max1

j=4 / max

0.5 1.0

0.5

0

j=4321

a) The stress rangeexceedance diagram(stress spectrum)

© 2008 Grzegorz Glinka. All rights reserved. 90

Page 91: Fatigue_Methods.pdf

8/10/2019 Fatigue_Methods.pdf

http://slidepdf.com/reader/full/fatiguemethodspdf 91/91

Day 1

The End